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Introduction

In this concluding chapter, our goal is to find a way to unify and extend the
three main theorems of vector analysis (namely, the theorems of Green, Gauss,
and Stokes). To accomplish such a task, we need to develop the notion of a
differential form whose integral embraces and generalizes line, surface, and
volume integrals.

8.1 An Introduction to Differential Forms

Throughout this section, U will denote an open set in R", where R" has coor-
dinates (xi, x2, ..., X;), as usual. Any functions that appear are assumed to be
appropriately differentiable.

Differential Forms

We begin by giving a new name to an old friend. If f: U € R" — R is a scalar-
valued function (of class C¥), we will also refer to f as a differential 0-form,
or just a 0-form for short. 0-forms can be added to one another and multiplied
together, as well we know.

The next step is to describe differential 1-forms. Ultimately, we will see that a
differential 1-form is a generalization of f(x)dx—that is, of something that can
be integrated with respect to a single variable, such as with a line integral. More
precisely, in R”, the basic differential 1-forms are denoted dx;, dx,, ..., dx,.
A general (differential) 1-form o is an expression that is built from the basic
1-forms as

w=F(x;,....,x)dx; + Fo(x1,....,x)dxo+ ...+ F,(x1,...,x,)dx,,

where, for j = 1, ..., n, F; is a scalar-valued function (of class C k) onU C R".
Differential 1-forms can be added to one another, and we can multiply a 0-form
f and a 1-form w (both defined on U C R") in the obvious way: If

w = F]dxl +F2d)€2+"'+ F,ldxn,
then

fo=fFdx+ fEdx—+ -+ fF,dx,.
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EXAMPLE 1 InR, let
w=xyzdx +z*cosydy + ze*dz and n = (y — z)dx + z*sin ydy — 2 dz.
Then

w+n=(xyz+y—2)dx +z*(cosy +siny)dy + (z¢* —2)dz.
If f(x,y,z)=xe” —z, then

fo = (xe’ —2)xyzdx + (xe¥ — z)z%> cos ydy + (xe¥ — z)ze*dz. .

Thus far, we have described 1-forms merely as formal expressions in certain

symbols. But 1-forms can also be thought of as functions. The basic 1-forms

dxy, ..., dx, take as argument a vector a = (ay, az, . . ., a,) in R”; the value of
dx; on ais

dxi(a) = da;.

In others words, dx; extracts the ith component of the vector a.
More generally, for each x, € U, the 1-form w gives rise to a combination
wy, of basic 1-forms

wyx, = Fi(Xo)dx) + -+ + Fy(X0) dxy;
wy, acts on the vector a € R" as

wy,(a) = Fi(Xo)dx1(a) + Fa(xg) dxz(a) + - - - + F,(Xo) dx,(a).

EXAMPLE 2 Suppose w is the 1-form defined on R? by
w = x*yzdx + y*zdy — 3xyzdz.
Ifxg = (1,—=2,5) and a = (ay, a;, a3), then
w(,-2,5(a) = —10dx(a) + 20dy(a) + 30dz(a)
= —10a; + 20a; + 30a3,

and, if xo = (3, 4, 6), then

w(3.4.0(a) = 216 dx(a) + 96 dy(a) — 216 dz(a)
— 216a; + 96a; — 216as.

The notation suggests that a 1-form is a function of the vector a but that this
function varies from point to point as Xy changes. Indeed, 1-forms are actually
functions on vector fields. 2

A basic (differential) 2-form on R” is an expression of the form
dx; Ndxj, i,j=1,...,n.

It is also a function that requires fwo vector arguments a and b, and we evaluate
this function as

dxi(a)  dxi(b)

dx; Adxj(a,b) = dxj(a) dxj(b) |

(The determinant represents, up to sign, the area of the parallelogram spanned
by the projections of a and b in the x;x;-plane.) It is not difficult to see that, for
i,j=1,...,n,
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dxi Ndx; = —dxj Ndx; (1)
and

dx; Ndx; = 0. 2)

Formula (1) can be established by comparing dx; A dxj(a,b) with dx; A
dx;(a,b). Formula (2) follows from formula (1). Given formulas (1) and (2),
we see that we can generate all the linearly independent, nontrivial basic 2-forms
on R” by listing all possible terms dx; A dx;, where i and j are integers between
land n withi < j:

dxy Ndxy, dxi Ndxs, ..., dx; Ndx,,
dxo Ndxz,...,dxy Ndx,,
dx,—1 Ndx,.

To count how many 2-forms are in this list, note that there are n choices for dx;
and n — 1 choices for dx; (so that dx; # dx; in view of (2)), and a “correction”
factor of 2 so as not to count both dx; A dx; and dx; A dx; inlight of (1). Hence,
there are n(n — 1)/2 independent 2-forms.

Let x = (x1, x2, ..., x,). A general (differential) 2-form on U C R” is an
expression

w = Flz(X)dxl Adxy + F13(x)dx1 ANdxy~+ -+ Fn_ln(x)dx,,_l Adx,,

where each Fj; is a real-valued function Fj;: U € R" — R. The idea here is to
generalize something that can be integrated with respect to two variables—such
as with a surface integral.

EXAMPLE 3 1In R’ a general 2-form may be written as
Fi(x,v,2)dy ndz+ Fy(x,y,2)dz ANdx + F5(x, y,z)dx Ady.

The reason for using this somewhat curious ordering of the terms in the sum will,
we hope, become clear later in the chapter. *

Given a point Xy € U C R”, to evaluate a general 2-form on the ordered pair
(a, b) of vectors, we have

wy,(a, b) = Fia2(xo) dx1 A dxa(a, b) + Fi3(Xo) dx; A dx3(a, b)
+ o+ Fn—ln(XO) dxp—1 A dxn(aa b)

EXAMPLE 4 InR3 letw =3xydy Adz+ 2y +2)dz Adx + (x —2)dx A

dy. Then
wi,2,-3)(a,b) =6dy Adz(a,b) +dz Adx(a,b)+4dx Ady(a, b)
_la b az b3 a b
=6 as b3 + a) bl +4 as bz

= 60(axb3 — azby) + (asby — a1b3) +4(a1by — axby). *
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Finally, we generalize the notions of 1-forms and 2-forms to provide a defi-
nition of a k-form.

DEFINITION 1.1 Let k be a positive integer. A basic (differential) k-form
on R” is an expression of the form

dxiy Ndxi, A --- Ndx;,,
where1 <i; <nforj=1,..., k. Thebasic k-forms are also functions that
require k vector arguments a,, a, ..., a; and are evaluated as
dxl-l(al) dxil(az) C dx,-l(ak)

dx,(a)) dx,(ay) - dxi(ag)
dxiy A+ ANdx(ar, ..., ap) = det ) 1 B ’ : : '

| dxik(al) dxik(az) OO dx,-k(ak) |

EXAMPLE 5 Let
a;=(1,2,-1,3,0), a,=(54,3,2,1), and a;=(0,1,3,—2,0)

be three vectors in R>. Then we have

1 5 0
dxy ANdxsz Ndxs(ay, ap, a3) = det| —1 3 3 = -3.
0 1 0 ¢

Using properties of determinants, we can show that

dxjy N - Ndxi; N Ndxg A Ndx,
)

= —dxj N ANdxjy N Ndxip A Ndx,

and
dxiy N+ Ndxi; A-oo Ndxg A A dxg, = 0. (4)

Formula (3) says that switching two terms (namely, dx;; and dx;) in the basic
k-form dx;, A --- A dx;, causes a sign change, and formula (4) says that a basic
k-form containing two identical terms is zero. Formulas (3) and (4) generalize
formulas (1) and (2).

DEFINITION 1.2 A general (differential) k-form on U C R”" is an expres-
sion of the form

n
w = Z El...ik(x) d'xil ZANERIVAN dxika
i i

..... ir=1

where each Fj,_;, is a real-valued function F; ; :U — R. Given a point
Xo € U, we evaluate w on an ordered k-tuple (a, ..., a;) of vectors as

n
a)xo(al, RN ak) = E Fil...ik(XO) dxil AN AN dx,-k(al, cee, ak).
i i

..... 1k=1
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Note that a O-form is so named because, in order to be consistent with a
1-form or 2-form, it must take zero vector arguments!
In view of formulas (3) and (4), we write a general k-form as

w = Z Fl-l_n,-kdx,-l ANRIRRIAN dx,-k.

1<ij<--<ix<n

(That is, the sum may be taken over strictly increasing indices i, ..., i;.) For
example, the 4-form

w=Xydxy Ndx3 Ndxg ANdxs+ (x3 — xsz) dxy Ndxy ANdxs A dxz
+ x1x3dxs ANdxz Adxg N dx

may be written in the “standard form” with increasing indices as
o= (x; —x1x3)dx; ANdxz Ndxg ANdxs + (x52 —x3)dxy Ndxy; Ndxs A dxs.

Two k-forms may be added in the obvious way, and the product of a 0-form
f and a k-form w is analogous to the product of a 0-form and a 1-form.

Exterior Product

The symbol A that we have been using does, in fact, denote a type of multiplication
called the exterior (or wedge) product. The exterior product can be extended to
general differential forms in the following manner:

DEFINITION 1.3 LetU < R"beopen. Let f denotea0-formonU. Letw =
> Fi_idxiy A--- Adx;, denote a k-form on U and n =) G} ;dx; A
-+ Adxj, an[-form. Then we define

fAw=fo= ZfFil...ikdxn A ANdxg,
(O n= ZFil...iijl...dexil YANDID /\dx,'k /\dle VAR /\dle'

Thus, the wedge product of a k-form and an /-form is a (k + /)-form.

EXAMPLE 6 Let
o =xtdx; Adxy+ (2x3 — x2)dxy Adxs + €™ dxs Adxy
and
N =x4dx; ANdxz ANdxs + xgdxy N dxy N dxg
be, respectively, a 2-form and a 3-form on R®. Then Definition 1.3 yields
wAn= x12X4 dx; Ndxy ANdxy Adxs A dxs
4+ (2x3 — xp)x4dx; Adxs ANdxy Adxs Adxs
+eBxsdxy Adxa ANdxy Adxy A dxs
+ xlzx(, dxi ANdxo Ndxy ANdxg A dxg
4+ (2x3 — xp)xgdxy Adxz ANdxy Adxgy A dxg
+ eMxgdxs Adxs Adxs Adxy A dxg.
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Because of formula (4), most of the terms in this sum are zero. In fact,
w AN =2x3 —x2)x6dxi ANdxs Adxy Adxg N dxg
= ()Cz — 2)63))C6 dxi ANdxy ANdxz ANdxg N dxg,
using formula (3). *
From the various definitions and observations made so far, we can estab-

lish the following results, which are useful when computing with differential
forms:

PROPOSITION 1.4 (PROPERTIES OF THE EXTERIOR PRODUCT) Assume that all
the differential forms that follow are defined on U C R”":

1. Distributivity. If w; and w, are k-forms and 7 is an /-form, then

(w1 + ) An=wi An+wr An.

2. Anticommutativity. If w is a k-form and 5 an /-form, then

oArn=(=D"nAo.

3. Associativity. If o is a k-form, n an [-form, and 7 a p-form, then

(A AT=wA(nAT).

4. Homogeneity. If w is a k-form, 1 an [-form, and f a 0-form, then

(fo)ynn= flwaAn)=wA(fn).

8.1 Exercises

Determine the values of the following differential forms on the
ordered sets of vectors indicated in Exercises 1-7.

1. dx; —3dxy;a=(7.3)

. 2dx +6dy —5dz;a=(1,—1,-2)

. 3dx; Adxy;a= (4, —1),b=(2,0)

4dx ndy—Tdy Adz;a= (0,1, —1),b=(1,3,2)

. 7dx Ady Adz; a=(1,0,3), b=(2,—1,0), ¢=
(5,2,1)

6. dxy ANdxo +2dxy ANdx3 + 3dx; A dxy; a:(1,2,
3,4),b=(4,3,2,1)

7. 2dxi ANdxs ANdxg+ dxy Adxs A dxs; a=(1,0,
—1,4,2),b=1(0,0,9,1,—1),¢ =(5,0,0,0, =2)

8. Let w be the 1-form on R? defined by

u p W N

o =x*ydx + y*zdy + x dz.
Find w3, -1 4)(a), where a = (a1, az, a3).
9. Let w be the 2-form on R* given by
w = x1x3dx1 Ndxz — xox4dxy A dxy.

Find w,—1,-3.1)(a, b).

10. Let w be the 2-form on R? given by
w = cosxdxndy —sinzdyAdz + (y* + 3)dx A dz.
Find @ 1,72 (a,b), where a=(ai,az, a3) and
b = (b1, by, b3).

11. Let o be as in Exercise 10. Find w( , »((2, 0, —1),
(1,7,5)).

12. Let w be the 3-form on R? given by
w= (ex cosy + (y2 + 2)622) dx ANdy Ndz.
Find a)(o’oyo)(a, b, C), where a = ((ll, ay, Ll3), b=
(b1, ba, b3), and ¢ = (c1, 2, ¢3).

13. Let o be as in Exercise 12. Find @ y.-((1, 0, 0),
(0,2,0),(0,0,3)).

In Exercises 14—19, determine w A 1.

14. On R’ w=3dx+2dy—xdz; n=x’dx—
cosydy + 7dz.

15. On R*: w=ydx —xdy, n=zdx Ady+ ydx A
dz +xdy ANdz.
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17.

18.

19.

20.
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OnR*: w=2dx; Adxy — x3dxy Adxs;n=2xsdx; A
dxy 4+ (x3 — x) dx3 A dxy.

On R* w=x,dx; +2x,dx, +3x3dx3; n=(x; +
x)dxy Adxy ANdxy + (x3 — xq)dxy Adxy A dxy.

On R*: w=(x;+x))dx; Adxy Adxs + (x3 — x4)
dxy Ndxy ANdxqg; n=x1dx, + 2x,dxy + 3x3dx;.

OnR>: w = x,dxs Adx; — xax3dx; A dxs;
n =e“Sdx; ANdxqy Ndxs — x1cosxsdxy Adxy A
d)C4.

Prove formula (3) by evaluating dx;, Adxi, A--- A

dx;, onk vectors aj, ..., a; in R".

21.
22.

23.
24,

25.
26.

Prove formula (4). (Hint: Use formula (3).)

Explain why a k-form on R" with & > 1 must be iden-
tically zero.

Prove property 1 of Proposition 1.4.

Prove property 2 of Proposition 1.4. (Hint: Use for-
mula (3).)

Prove property 3 of Proposition 1.4.
Prove property 4 of Proposition 1.4.

8.2 Manifolds and Integrals of k-forms

In this section, we investigate how to integrate k-forms over k-dimensional objects
(i.e., curves, surfaces, and higher-dimensional analogues) in R”.

Integrals over Curves and Surfaces

We begin by considering integrals of 1-forms and 2-forms over parametrized

curves and surfaces.

DEFINITION 2.1

Let x: [a, b] — R" be a C! path in R". If @ is a 1-form
defined on an open set U € R” that contains the image of x, then the integral
of w over X, denoted [ w, is

fxw = fab wxo)(X'(2)) dt.

EXAMPLE 1 Letw = (x> + y)dx + yzdy + (x + y — z) dz. We integrate o
over the path x: [0, 1] — R3, x(t) = (2 +3,3¢,7 — 1).
We have x'(¢) = (2, 3, —1) so that, using Definition 2.1, we find that

!
/w =/ woi4331,7-1)(2, 3, —=1)dt
X 0

1
= / [((2f +3)* +31)dx(2,3, —1) +3t(T— 1) dy(2,3, —1)
0

+ (2t +3+3t —(7T—1))dz(2,3, —1)]dt

1
=/ [(46% + 151 4+ 9)+2 + (211 — 312) 3 + (61 — 4) - (—1)] dt
0

1
— 2 _ 391
_/0 (=17 + 87t +22)dt = =.

In general, if

w=Fdx + Fdx, +

-+ F,dx,
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is a 1-form on R" and x: [a, b] — R" is any path, then
oxn(X' (1) = Fi(x(1)) dx1 (X' (1)) + F2(x(1)) dx2(x (1))
+ o+ Fu(x(1)) doxa(X'(1))
= Fi(x0))xi(t) + FR(x(0))xy(1) + - - + Fu(x(1))x,(1)
= (Fi(x(1), Fa(X(1)). ..., Fu(x(1)) -X'(1).

From this we conclude the following:

PROPOSITION 2.2 If F denotes the vector field (Fy, F>, ..., F,) and
w=Fdx + Fdx)+- -+ F,dx,
and if x: [a, b] — R" is a C! path, then

fx = / ba)x(,)(x’(t))dtz / bF(x(t))-x’(t)dt = f F.ds.

That is, integrating a 1-form over a path (or, indeed, over a simple, piecewise C'!
curve) is exactly the same as computing a vector line integral.

Now we see how to integrate 2-forms over parametrized surfaces in R?.

DEFINITION 2.3 Let D be a bounded, connected region in R? and let
X: D — R? be a smooth parametrized surface in R®. If w is a 2-form defined
on an open set in R? that contains X(D), then we define fx w, the integral

of w over X, as
f w = /f wx(s,,)(Ts, T,)ds dt.
X D

(Recall that Ty = 0X/ds and T, = 0X/0dt.)

Let’s work out the integral in Definition 2.3. We write w as
Fidyndz+ Fodz Adx + F3dx Ady
and X(s, 1) as (x(s, 1), y(s, t), z(s, t)). Therefore,

/w:/f wx(s.)(Ts, Ty)ds dt
X D

- ] f LF/(X(s. 1)) dy A dz(Ty, T)) + Fx(X(s, 1)) dz A dx(Ty., T,)
D

+ F3(X(s, t))dx Ady(Tg, T,)]ds dt.
By definition of the basic 2-forms,

[ ay(T,)  dy(T,)
i dz(Ty) dz(T,)

dy Ndz(Tg, T,) = det

dy/ds  dy/dt | d(y.z)

= det = .
dz/ds  dz/dt a(s, 1)
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Similarly, we have

0@ X)  d dx Ady(T,. T,) = 25
A(s. 1) a(s, 1)

Hence, if F = (F), F>, F3), then

dzNdx(T;, T,) =

B Ay, z) a(z, x)
Lw = //;)[Fl(X(S, 1)) 3. 1) + F2(X(s, 1)) 3.0

+ F3(X(s, r))%] ds dt

= [ [ s (522 55 S
) ’ A(s, 1) 3(s, 1) (s, 1) '

Recall from formula (7) in §7.1 that

<8(y’ z) d(z,x) d(x,y)
(s, 1) (s, 1) A(s, 1)

the normal to X(D) at the point X(s, #). Therefore, we have established the fol-
lowing Proposition (see also Definition 2.2 of Chapter 7):

): N(s, 1),

PROPOSITION 2.4 If F denotes the vector field F = Fi+ F,j+ F; kand
w=Fdyndz+ F,dz ANdx + Fsdx Ndy

and if X: D — R? is a smooth parametrized surface such that w (or F) is defined
on an open set containing X(D), then

fxw:‘/“/l)a)x(s’,)(Ts,T,)dsdt:/LF(X(S,I))-N(s,t)dsdt
://XF.dS.

Parametrized Manifolds

Next, we generalize the notions of parametrized curves and surfaces to
higher-dimensional objects in R”. To set notation, let R* have coordinates

(wy,uy, ..., ug).

DEFINITION 2.5 Let D be aregion in R¥ that consists of an open, connected
set, possibly together with some or all of its boundary points. A parametrized
k-manifold in R” is a continuous map X: D — R” that is one-one except,
possibly, along 9 D. We refer to the image M = X(D) as the underlying
manifold of X (or the manifold parametrized by X).

Such a k-manifold possesses k& coordinate curves defined from X by
holding all the variables u1, ..., u; fixed except one; namely, the jth coor-
dinate curve is the curve parametrized by

uj— X(ay,...,aj_1,uj,aj1, ..., a),
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wherethe a;’s (i # j)are fixed constants. If X is differentiable and x4, x5, . . .,
x, denote the component functions of X, then the tangent vector to the jth
coordinate curve, denoted T, 1S

T — 3X_ 3)61 3)62 8xn
”j_auj_ auj’auj"”’auj ’

A parametrized k-manifold is said to be smooth at a point X(uy) if the
mapping X is of class C! in a neighborhood of u, and if the k tangent vectors
T,,,..., T, arelinearly independent at X(u). (Recall that k vectors v, ..., v;
in R” are linearly independent if the equation ¢; vy + - - - 4+ ¢, v, = 0 holds ifand
onlyifcy = c¢; = -+ = ¢, = 0.) A parametrized k-manifold is said to be smooth
if it is smooth at every point of X(u,) with u in the interior of D.

Sometimes we will refer to the underlying manifold M = X(D) of a para-
metrized manifold X: D — R” as a parametrized manifold; we do not expect any
confusion will result from this abuse of terminology.

EXAMPLE 2 Let D =[0,1] x [1,2] x [—1, 1]and X: D — R be given by
X(uy, uz, uz) = (uy + uz, 3uz, ugu3, uy — us, Sus).

We show that M = X(D) is a smooth parametrized 3-manifold in R®.
Note first that X is continuous (in fact, of class C*°) since its component
functions are polynomials. To see that X is one-one, consider the equation

X(u) = X(@); (1
we show that u = 1i. Equation (1) is equivalent to a system of five equations:

uy +upy =ity + i
3u2=3ﬁ2

2

\ UaUz = 1221/72

Py
3

ug—u3=ﬁ2—ﬁ3

5Lt3 = 5L~t3

The second equation implies u, = ii,, and the last equation implies us = 5.
Hence, the first equation becomes

U t+ur=u)+u <= u=1u,.
Thus,
u = (ur, us, u3) = (ity, ily, ii3) = 0.

To check the smoothness of M, note that the tangent vectors to the three
coordinate curves are

0X
Tul = L = (17 Oa 09 07 0)3
8u1
X
Tuz = =(193a M%’ 190)9
8142 :
X
Ty, = — = (0,0, 2usus, —1, 5).

8”3
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1 (.X3, y?)
(X2, y2)

3 (1, y1)

Figure 8.1 The planar robot arm
of Example 3. Each rod is free to
pivot about the appropriate linkage
points.

Therefore, to have ¢; T + ¢, T, + ¢3T3 = 0, we must have
(cl + C2, 3C2, ”gcz + 2Ll21/l3C3, Cy — C3, 5C3) = (07 09 Oa 09 O)

It readily follows that ¢; = ¢; = ¢3 = 0 is the only possibility for a solution.
Hence, T,,, T,,, T,, are linearly independent at all u € D and so M is smooth at
all points. *

Parametrized k-manifolds, although seemingly abstract mathematical notions
when £ is larger than 3, are actually very useful for describing a variety of situa-
tions, one of which is illustrated in the next example.

EXAMPLE 3 A planar robot arm is constructed consisting of three linked rods
of lengths 1, 2, and 3. (See Figure 8.1.) The rod of length 3 is anchored at the
origin of R? but free to rotate about the origin. The rod of length 2 is attached to
the free end of the rod of length 3, and the rod of length 1 is, in turn, attached to
the free end of the rod of length 2. We describe the set of positions that the arm
can take as a parametrized manifold.

Clearly, each state of the robot arm is determined by the coordinates (x;, y;),
(x2, ¥2), and (x3, y3) of the linkage points, which we may consider to form a vector
X = (X1, y1, X2, Y2, X3, ¥3) in R. However, not all vectors in R® represent a state
of the robot arm. In particular, the point (x;, y;) must lie on the circle of radius 3,
centered at the origin, the point (x,, y,) must lie on the circle of radius 2, centered
at (x1, y1), and the point (x3, y3) must lie on the circle of radius 1, centered at
(x2, ¥2). Thus, for x = (x1, y1, X2, ¥2, X3, y3) to represent a state of the robot arm,
we require

X+ yi=9
(o —x1)?+ (2 — ) =4. (2
(35— + (3 — »)? =1

We may parametrize each of the circles in the system (2) in a one-one fashion by
using three different angles 6, 6,, and 65. Hence, we find

(x1, y1) = (3cos by, 3sinby),
(x2, y2) = (x1 +2cosbh, y; +2sinb,)
= (3cosB; +2cosbs,3sinf; + 2sinb,), 3)
and
(x3, y3) = (x2 + cos b3, y, + sinb3)
= (3cosO; + 2cosb, + cosbs, 3sinf; + 2sin b, + sinb),

where 0 < 6, 65, 03 < 2m. Therefore, themap X: [0, 27) x [0, 27) x [0, 277) —
R® given by

X(01, 62, 63) = (x1, Y1, X2, Y2, X3, V3),

where (x1, y1, X2, y2, X3, y3) are given in terms of 6y, 6,, and 65 by means of the
equations in (3), exhibits the set of states of the robot arm as a parametrized 3-
manifold in R®. We leave it to you to check that X defines a smooth parametrized
3-manifold. .
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Just like a parametrized surface, a parametrized k-manifold M = X(D) may
or may not have a boundary, denoted, as usual, by dM. If M has a nonempty
boundary, then d M is contained in the image under X of the portion of the
boundary of the domain region D that is also part of D. Under suitable (and
mild) hypotheses, d M, if nonempty, is, in turn, a union of finitely many (k — 1)-
manifolds (without boundaries).

EXAMPLE 4 Let B C R? denote the closed unit ball {u = (uy, uz, u3) | u% +
u3 4+ u3 < 1}, and define X: B — R* by

X(uy, uz, uz) = (uy, uz, us3, u% + u% + M%)-

Then M = X(B) is a portion of a “generalized paraboloid” having equation w =
x>+ y?+ 7%, wehave M = {(x,y,z,w) e R* |w =x?+y2 + 22, x2 +y?> +
72 < 1}. In this case, dM = {(x,y,2,1) | x% 4+ y2 + z2 = 1}. Note that 9M is a
parametrized 2-manifold in R*, as we may see via the map

Y: [0, 7] x [0,27) — R*  Y(s,t) = (sinscost,sinssint, coss, 1). @

Integrals over Parametrized k-manifolds

Now, we see how to define the integral of a k-form over a smooth parametrized
k-manifold. Our definition generalizes those of Definitions 2.1 and 2.3.

DEFINITION 2.6 Let D be a bounded, connected region in R* and X: D —
R” a smooth parametrized k-manifold. If w is a k-form defined on an open
set in R” that contains M = X(D), then we define the integral of @ over M
(denoted [y w) by

fw:/...fa)X(u)(Tul,.,.,Tuk)du]“‘duk.
X D

(Here [ --- [ refers to the k-dimensional integral over D.)

EXAMPLE 5 Let X:[0, 1] x [1,2] x [=1, 1] = R® be the parametrized 3-
manifold defined by

X(uy, uy, uz) = (uy + us, 3us, uzug, uy — usz, Sus).
(See Example 2.) Let w be the 3-form defined on R as
w = x1x3dx; ANdxz Adxs + (x3xq4 — 2x2x5)dxy A dxg N dxs.

We calculate [y .
Recall from Example 2 that the tangent vectors to the three coordinate curves
are

Tu1 = (lv Os 07 Oa 0)7
Tuz - (13 37 u%v 13 0)7

and
Tu3 = (0, O, 2112143, —1, 5)
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Then, from Definition 2.6,

[ o

1 2 1
= f / / {(uy + w2)usu3 dxy Adxsy Adxs(T,,, Ty, Ty,)
—1J1 0

+ (uau3(us — uz) — 30uzu3) dxy Adxg Adxs(Ty,. Ty, Tyy)} duy duy dus

Lol 1 1 0
= f / / (Lt] + l«tz)uzug 0 u% 2u2u3
-1J1 Jo 0 0 5
0 3 0
+ (u%u% — uzug —30uu3)| 0 1 —1 duyduy dus
0 0 5
1 2 pl
= / / f S(uy + uz)uzug‘du] dusdusy = %7. ¢
—-1J1 Jo

EXAMPLE 6 Ifw is a 3-form on R?, then @ may be written as
w=F(x,y,z)dx Ndy Ndz.

(Why?) If D* is abounded regionin R* and X: D* — R?is asmooth parametrized
3-manifold, then Definition 2.6 tells us that

/ w = /// a)X(lllu2 u})(Tu19 TMZ’ Tu3)duldu2du3

:/f/ F(X(u))dx Ady ANdz(T,,, T,,. Ty,)du dus dus

ox/ouy  dx/du,  Ix/Jduj

:f[f FX(w) | 9y/0u,  dy/dus  dy/duz |duidusdus
D*
8z/8u1 8z/8u2 az/8u3

/ f / PG, . sy (1 29 g, duy dus

Uz, u3)
=:|:/ff F(x,y,z)dxdydz,
D

from the change of variables theorem for triple integrals (Theorem 5.5 of Chapter
5), where D = X(D%). *

Orientation of a Parametrized k-manifold

We have seen that vector line integrals and vector surface integrals may be defined,
respectively, over oriented curves and surfaces in amanner effectively independent
of the parametrization used. We now see how it is possible to define the integral
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Figure 8.2 An orientation of the
curve C shown is a choice of
continuously varying unit tangent
vector T along C.
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Figure 8.3 An orientation of
the surface S is a choice of
continuously varying unit normal
vector N along S.
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of a k-form over a parametrized k-manifold X: D — R” so that it depends largely
on the underlying manifold M = X(D), rather than on the particular map X. To
do this, we must consider how reparametrization of M affects the integral, and
we must define what we mean by an orientation of M.

First, we consider the notion of orientation. We have previously seen how
parametrized curves and surfaces can be oriented by using some fairly natural
geometric ideas. A smooth parametrized curve implicitly received an orientation
from the parameter; typically, we orient a curve by indicating the direction in
which the parameter variable increases. We may also think of an orientation of
a curve as a choice of a unit tangent vector T at each point of the curve, made
so that T varies continuously as we move along the curve. (See Figure 8.2.) An
orientation of a smooth parametrized surface in R3, when it exists, is a choice
of a continuously varying unit normal vector N at each point of the surface. (See
Figure 8.3.)

To define notions of orientation and orientability for a parametrized k-
manifold when k > 2, we will need to work more formally.

First, we need to introduce two related ideas from the linear algebra of R”.
Thus, suppose vy, vz, ...,V are vectors in R”. By a linear combination of
Vi, ..., Vi, We mean any vector v € R” that can be written as

V=cVi+ v+ Vi

for suitable choices of the scalars ¢y, ..., cx. The set of all possible linear com-
binations of vy, ..., vi, called the (linear) span of v, ..., v, will be denoted
Span{vy, ..., v;}. That is,

Span{vy, ..., vt} ={civi+ -4+ cxve | c1, ..., cr € R}

DEFINITION 2.7 Let M = X(D), where X: D € R* — R", be a smooth
parametrized k-manifold. An orientation of M is a choice of a smooth,
nonzero k-form € defined on M. If such a k-form 2 exists, M is said to be
orientable and oriented once a choice of such a k-form is made.

Although we cannot readily visualize an orientation Q2 of a parametrized k-
manifold when k is large, we can nonetheless see how the tangent vectors to the
coordinate curves relate to it.

DEFINITION 2.8 Let M = X(D) be a smooth parametrized k-manifold
oriented by the k-form 2. The tangent vectors Ty, . .., T,, to the coordinate
curves of M are said to be compatible with Q if

QX(u)(Tul’ ey Tuk) > 0.

We also say that the parametrization X is compatible with the orientation <2
if the corresponding tangent vectors T,,, ..., T, are.

Note that if T, ..., T,, are incompatible with the orientation €2, then they
are compatible with the opposite orientation —2. Alternatively, we may change
the parametrization X of M by reordering the variables uy, . . ., uy to, say, u,, uy,
us, ..., ug,sothatT, T, T,....,T, are compatible with Q.
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Definition 2.7 is consistent with the earlier definitions of orientations of
curves and surfaces, as we now discuss. Suppose first that x: / — R” is a smooth
parametrized curve in R" (where / is an interval in R) and T is a continuously
varying choice of unit tangent vector along C = x(/). Then we may define an
orientation 1-form 2 on C by

Qyn(a)=T-a.

Conversely, given an orientation 1-form €2, we may define a continuously varying
unit tangent vector from it by taking T to be the unique unit vector parallel to
x/(¢) such that, for any nonzero vector a parallel to x'(¢),

T - a has the same sign as Qy(a).

That T is uniquely determined follows because T must equal +x'(¢)/(x'(¢)||, so
knowing a and the value of €(a) determines the choice of sign for T.

Similarly, suppose S = X(D) is a smooth parametrized surface in R? (i.e., a
smooth parametrized 2-manifold). If we can orient S by a continuously varying
unit normal N, then we may define an orientation 2-form 2 on S by

QX(,,l,uz)(a, b) = det[ N ab ],

where [ N a b ]is the 3 x 3 matrix whose columns are, in order, the vectors
N, a, b. Conversely, given an orientation 2-form 2 on §, we may define a con-
tinuously varying unit normal N from it by taking N to be the unique unit vector
perpendicular to T,,, and T,, (and hence to every vector in Span{T,, , T,,}) such
that, for any pair a, b of linearly independent vectors in Span{T,,, T,,},

det[ N ab ] has the same sign as Qx, ,)(a, b).
To see that N is uniquely determined, note that, given linearly independent vectors
a, b in Span{T, , T,,}, the only possibilities for N are
T, xT,
T, X T, |l

Hence, we choose the sign for the normal vector N so that det| N a b ] has
the same sign as Q2x,,.u,)(a, b).

EXAMPLE 7 Consider the generalized paraboloid M = {(x, y, z, w) € R* |
w = x% + y2 + z?}, which we may exhibit as a smooth parametrized 3-manifold
via

X: R’ — R4, X(uy, up, uz) = (uy, uy, us, u% + u% + u%)

We show how to orient M.

Note that the equation x? + y? + z2 — w = 0 shows that M is the level set at
height 0 of the function F(x, y, z, w) = x2+ y2 + 72 — w. Hence, the gradient
VF = (2x, 2y, 2z, —1)isavector normal to M. If we employ the parametrization
X and normalize the (parametrized) gradient, we see that

(2u1, 2u2, 2u3, —1)
\/4u% +4u% +4u§ +1

N(ui, uz, u3) =

is a continuously varying unit normal. Moreover, the 3-form 2 defined on M as

Qxw(ar, a2, a3) =det[N a; a, a;]
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gives an orientation for M. Note that

QX(U)(Tul E) Tuz El Tu_;) — det [N Tlll Tuz Tu3]

f— 2 —
a 10 0
\/4u% +4u§ +4u§ +1
2
1 0 1 0
\/4u% Fdud 4 42 4 1
= det
2Lt3
0 0 1
\/4u% + 4u§ + 4u§ +1
-1
2u; 2uy 2uj
| A+ 4+ 4+ 1 |

= \/4u% +4u3 + 4ul + 1.

Since this last expression is strictly positive, we see that T,,, T,,, T,, are com-
patible with . *

EXAMPLE 8 We may generalize Example 7 as follows:

Suppose that M C R” is the graph of a function f: U € R*~! — R"; that
is, suppose M is defined by the equation x,, = f(x1, ..., x,_1). Then M may be
parametrized as an (n — 1)-manifold via

X:U C R — R",  X(up,...,up—1) =Wy, ... ty—y, f(Ur, ..., Uy_1)).
Since M is also the level set at height 0 of the function
F(xy, ..., x)) = f(x1, 00 Xum1) — X,

avectornormal to M is provided by the gradient VF = (fy,, ..., fx,_,, —1). If we
normalize V F and use the parametrization X, we see that we have a continuously
varying unit normal

(fll]» ) «}Cun—l’ _1)

N(uy, ... upe1) = ;

from which we may define our orientation (n — 1)-form 2 for M by

Qxw(@r. ..., a,-1) =det[N a; - a, ] .

Now suppose that M is a smooth parametrized k-manifold in R” with non-
empty boundary o M. If M is oriented by the k-form €2, then there is a way to
derive from it an orientation for 0 M, which we describe in Definition 2.9. To
set notation, let X: D € R¥ — R" denote the parametrization of M and suppose
Y: E C R*"! — R" gives a parametrization of a connected piece of dM as a
smooth (k — 1)-manifold. Since M is part of M, if's = (sy, ..., s—1) € E, then
there is some u = (uy, ..., u;) € D such that Y(s) = X(u).
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Figure 8.4 The outward-pointing
unit vector V of Definition 2.9.

DEFINITION 2.9 Let M be a smooth parametrized k-manifold in R* with
boundary d M. Suppose M is oriented by the k-form Q2. Then the connected
pieces of 9 M are said to be oriented consistently with M, or that 9 M has
its orientation induced from that of M, if the orientation (k — 1)-form Q¥
is determined from €2 as follows. Let V be the unique, outward-pointing unit
vector in R”, defined and varying continuously along d M, that is tangent to
M and normal to 9 M. (See Figure 8.4.) Then QM is defined as

Q@i - ) = Qxa(Vs ar, - ),

where the map X: D € R¥ — R” parametrizes M, themap Y: E C RF=! —
R”" parametrizes a connected piece of d M, and Y(s) = X(u).

Note that, in particular, the vector V in Definition 2.9 must be such that

* Ve Span{T,,,..., T, } (ie., Vis tangent to M);
*V.T, =0fori=1,...,k—1(ie., Visnormal to dM);
* V points away from M.

These conditions are often not difficult to achieve in practice. Definition 2.9 will
be very important when we consider a generalization of Stokes’s theorem in the
next section.

EXAMPLE 9 Consider the surface S in R consisting of the portion of the
cylinder x? + y> = 4 with 2 < z < 5. Note that the boundary of S consists of the
twocircles {(x, y,z) | x> +y> =4, z=2}and {(x, y.z) | x> + y> =4, z = 5}.
We investigate how to orient d S consistently with an orientation of S.

The cylinder may be parametrized as a 2-manifold in R* by

X:[0,27) x [2,5] — R?, X(uy,up) = (2cosuy,2sinuy, uy).
Then the tangent vectors to the coordinate curves are
T, = (—2sinu;,2cosu;, 0)
and
T,, =(0,0,1).

Since S is a portion of the level set at height 4 of the function F(x, v, 7) = x% + y2,
a unit normal N to S is given by

VF _ (2x,2y,0) _ (f Y 0)
IVFI— Vaz+ 42 272
In terms of the parametrization X, the normal N is also given by
N = (cosuy, sinuy, 0).
Then we may define an orientation 2-form on S by

Qx(ulyuz)(al, a,) = det [N a; az].



Figure 8.5 Orienting the
boundary of the surface S of
Example 9. Note the
outward-pointing tangent vectors
Vtop and Vipottom-
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Hence,

cosu; —2sinu; 0
Qx(uyup)(Tu,, Ty,) =det | sinuy  2cosu; 0 | =2>0.
0 0 1

Thus, T,,, T,, are compatible with .
We may parametrize dS by using two mappings:

Bottom circle:  Y;:[0,27) — R?,  Y;(s) = (2coss, 2sins, 2)
and
Top circle:  Y,:[0,27) — R?,  Ys(s) = (2coss, 2sins, 5)

To use Definition 2.9 to orient 9.5, we must identify outward-pointing vectors tan-
gent to S and normal to dS. From Figure 8.5, we see that along the top circle V =
Viop = (0,0, 1) works, while along the bottom circle, V = Vigyom = (0, 0, —1)
suffices. Hence, Definition 2.9 tells us that, along the bottom circle,

Qgfblw(s‘)(a) = Qx(5.2)(Viottom» @) = det [ N Vistom 2 ],
while along the top circle,
QY (@) = x(.5)(Vip. @) = det [N Vo, a].

For both maps Y; and Y,, we have that the coordinate tangent vector is T, =
(—2sins, 2 cos s, 0). Thus, along the bottom circle,

coss 0 —2sins
Q*’YSI(S)(TS) =det| sins 0 2coss | =2,
0 -1 0

so T is compatible with the orientation 1-form Q. However, along the top
circle,
coss 0 —2sins
QY 5(T,) =det | sins 0 2coss |=-2,
0 1 0

so T, is incompatible with Q%5. Therefore, we must orient the top circle clockwise
around the z-axis and the bottom circle counterclockwise. *

The following example is the three-dimensional analogue of Example 9:

EXAMPLE 10 Considerthesubset M € R*givenby M = {(x, v, z, w) | x> +
y?> 4+ 72 =4, 2 < w < 5). This set M is a portion of the cylinder over a sphere
of radius 2. Note that the boundary of M consists of the two spheres Syouom =
{(x,y,2.2) | x>+ 2+ 22 =4}and Spp = {(x, . 2,5) | x2 + y* + 22 = 4}. We
investigate M and d M as parametrized manifolds, orient M, and study the induced
orientation on M.

First, we note that M may be parametrized as a 3-manifold in R* by

X: [0, 7] x [0, 27) x [2,5] — R*,
X(uy, up, uz) = (2sinuy cosuy, 2sinu; sinuy, 2Cosuy, us).

(This is the usual parametrization of a sphere using spherical coordinates ¢ = u,
6 = u,, with an additional parameter u3 for the “vertical” w-axis.) The tangent
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vectors to the coordinate curves are given by
T, = (2cosujcosuy,2cosu;sinuy, —2sinuy, 0),

T,, = (=2sinu; sinu,, 2sinu; cosuy, 0, 0),

and
T.,, =(0,0,0,1).

Note that this parametrization fails to be smooth when u; is 0 or 7, since then
T,, = 0 at those values for «;. You can check that the parametrization is smooth
at all other values of X(u) (i.e., foruin (0, ) x [0, 27) x |2, 5]).

Because M is a portion of the level set at height 4 of the function F(x, y,
z, w) = x> + y% + z%, a unit normal N to M is given by

VF _ (2x,2y,2z,0) _ <£ y oz 0)

IVFI  Jax2+4y2 442 \272°2° )
In terms of the parametrization X, the normal N is also given by

N = (sinu; cosuy, sinu; sinuy, cosuy, 0).
We define an orientation 3-form €2 for M by
Qx)(ar. ay, a3) = det[N a; a; az].
Then
Sinu; CoSuUy 2COSU | COSUy —2sinuySinu, 0

sinu;sinu, 2cosujsinu, 2sinujcosur, 0
QX(u)(Tul y Tuz’ Tu3) = det

coS Uy —2sinu; 0 0
0 0 0 1
=4sinu; >0

for 0 < u; < 7 (which is where the parametrization X is smooth). Hence, T,,,
T.,, T,, are compatible with €.
We parametrize the two pieces of d M with two mappings:

“Bottom” sphere Spottom:
Y;:[0, 7] x [0,27) — R*,
Y (s1.52) = (2sin sy coss,, 2sins; sinsy, 2 cos sy, 2),
and
“Top” sphere Siqp:
Y,: [0, ] x [0, 27) = R*,
Y,(s1. 82) = (2sin s cos sy, 2 sins; sins,, 2 cos sy, 5).
Note that both parametrizations Y; and Y, give the same tangent vectors to the
corresponding coordinate curves, namely,
T, = (2coss; cos sz, 2cos sy sinsy, —2sinsy, 0)
and
T;, = (—2sins; sinsy, 2sins; cos sz, 0, 0),

and, by considering these tangent vectors, we see that the parametrizations are
smooth whenever s; #£ 0, 7.
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To give 0 M the orientation induced from that of M, we identify outward-
pointing unit vectors tangent to M and normal to d M. Thus, we need V such that

¢ V € Span{Tul ’ Tuz’ Tu3} :> V M N = O,
oV.TSl:V.TSz:O;
* V points away from M.

It’s not difficult to see that we must take V = V,, = (0, 0, 0, 1) along S, and
V = Viottom = (0, 0, 0, —1) along Sporom- Therefore, Definition 2.9 tells us that
along Spottom,

Q;){j:/fs)(al, a) = Qx(5,2)(Voottom. a1, a2).
In particular,
QHY/KS)(Tn B TS2) = det [N Vbottom Tsl TSZ]

sins;coss, 0 2cossjcoss, —2sins; sins;
sins;sins, O 2coss;sins, 2sinsj CoS sy

= det CoS 81 0 —2sin sy 0
0 -1 0 0
=4sins; >0

for 0 < s; < 7 (i.e., where the parametrization Y, is smooth). Thus, Y; is com-
patible with Q™. Along Siop> however, we have

Uy (T T = det [N Viwan Ty, T,

sins;coss, 0 2coss;cossy —2sins; sins,

sins;sins, 0 2cossjsins, 2s8insj CoSs»
= det .
COS 81 0 —2sins; 0
0 1 0 0
= —4sins; <0

for 0 < s, < 7, so Y, is incompatible with Q. We must take care with this
distinction when we consider the general version of Stokes’s theorem. *

Next, we examine how the integral of a k-form @ can vary when taken
over two different parametrizations X: D1y — R” and Y: D, — R” for the same
k-manifold M = X(D;) = Y(D,).

DEFINITION 2.10 Let X:D; CRf¥ - R"” and Y: D, C RF — R” be
parametrized k-manifolds. We say that Y is a reparametrization of X if there
is a one-one and onto function H: D, — D, withinverse H~' D, — D, such
that Y(s) = X(H(s)), thatis, such that Y = X o H. If X and Y are smooth and
Hand H~! are both class C', then we say that Y is a smooth reparametrization
of X.

Since H is one-one, it can be shown that the Jacobian det DH cannot change
sign from positive to negative (or vice versa). Thus, we say that both H and Y are
orientation-preserving if the Jacobian det DH is positive, orientation-reversing
if det DH is negative.
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The following result is a generalization of Theorem 2.5 of Chapter 7 to the
case of k-manifolds.

THEOREM 2.11 Let X: D; € R — R” be a smooth parametrized k-manifold
and @ a k-form defined on X(D;). If Y: D, € R¥ — R" is any smooth
reparametrization of X, then either

X
.fY. . . .

fo=fo

if Y is orientation-reversing.

In view of Theorem 2.11, we can define what we mean by f w @, where M
is a subset of R" that can be parametrized as an oriented k-manifold and w is a
k-form defined on M. We simply let

e

where X: D € R¥ — R” is any smooth parametrization of M that is compatible
with the orientation chosen.

EXAMPLE 11 We evaluate |, ¢ @, where C is the (oriented) line segment in R’
from (0, —1, =2)to (1,2,3)and w = zdx + xdy + y dz.

Using Theorem 2.11, we may parametrize C in any way that preserves the
orientation. Thus,

x:[0,1] = R, x(t) = (1 — £)(0, —1, =2) +£(1,2,3) = (¢, 3t — 1,5t — 2)

is one way to make such a parametrization. Then x'(¢) = (1, 3, 5) and, hence,
from Definition 2.1, we have

fc o= ] o= ]0 oK ()1

1
zf (5t =2)-141-3+@Bt—1)-5}dt
0

! 23
= / (23t — 7)dt = (—t2 - 7t)
0 2

Note that if we parametrize C in the opposite direction by using, for example,
the map

1

0

y:[0,1] = R3, y(t)=1(0,—1,=2)+ (1 —1)(1,2,3)=(1 — 1,2 — 3,3 — 5¢),
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then we would have

fy o= fo oY) dr
1

= / {B=5)(-1)+(1—=1)(=3)+2—=3t)(-5)}dt

0

! 23 ,
:/ (23t — 16)dt = | —t~ — 16¢
0 2

In light of Theorem 2.11, this result could have been anticipated from our pre-
ceding calculation of [ o. .

1

0

Note on k-manifolds

The central geometric object of study in this section, namely, a parametrized
k-manifold, is actually a rather special case of a more general notion of a k-
manifold. In general, a k-manifold in R” is a connected subset M C R” such that,
for every point x € M, there is an open set U C R* and a continuous, one-one
map X: U — R" with x € X(U) C M. (A k-manifold with nonempty boundary
requires a somewhat modified definition.) That is, M is a (general) k-manifold
if it is locally a parametrized k-manifold near each point. It is possible to extend
notions of orientation and integration of k-forms to this more general setting,
although it requires some finesse to do so. For the types of examples we are
encountering, however, our more restrictive definitions suffice.

robot arm may be described by a smooth parametrized 5-

1. Check that the parametrized 3-manifold in Example 3 is in

2.

fact a smooth parametrized 3-manifold.

A planar robot arm is constructed by using two rods as
shown in Figure 8.6. Suppose that each of the two rods may
telescope, that is, that their respective lengths /; and [, may
vary between 1 and 3 units. Show that the set of states of
this robot arm may be described by a smooth parametrized
4-manifold in R?,

(X2 ¥2) \

L

y

(x1, y1)
ll/v\ 1)1
— *

Figure 8.6 Figure for Exercise 2.

. A planar robot arm is constructed by using a rod of length

3 anchored at the origin and two telescoping rods whose
respective lengths /; and /5 may vary between 1 and 2 units
as shown in Figure 8.7. Show that the set of states of this

manifold in R®. (See Exercise 2.)

Y (%3, y3)
13/

(%2, ¥2) T\
L
\
3 (1, 1)

Figure 8.7 Figure for Exercise 3.

4. A robot arm is constructed in R? by anchoring a rod

of length 2 to the origin (using a ball joint so that
the rod may swivel freely) and attaching to the free
end of the rod another rod of length 1 (which may
also swivel freely; see Figure 8.8). Show that the set of
states of this robot arm may be described by a smooth
parametrized 4-manifold in RS.

. Suppose vy, ..., v are vectors in R". If x € R" is orthog-

onal to v; fori =1, ..., k, show that x is also orthogonal
to any vector in Span{vy, ..., vi}.
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(%2, Y2, 75)

7

X y
Figure 8.8 Figure for Exercise 4.

. Leta, b,and c be positive constants and x: [0, 7] — R>

the smooth path given by x(¢) = (a cost, bsint, ct). If
w=bdx —ady + xydz, calculate [ w.

. Evaluate [, w, where C is the unit circle x* + y* = 1,

oriented counterclockwise, and w = ydx — x dy.

. Compute fc w, where C is the line segment in R”

from (0,0,...,0)to (3,3,...,3) and w = x;dx; +
x3dxy + -+ x"dx,.

. Evaluate the integral [ w, where X is the parametrized

helicoid

X(s,t) = (s cost,s sint,t), 0<s<1,0<r<4rn

and

w=zdx Ndy+3dzANdx —xdy Ndz.

Consider the helicoid parametrized as

X(uy, up) = (uy cos3uy, uy sin3uy, Suy),
0<u; <5 0<u, <2m.
Let S denote the underlying surface of the helicoid and

let 2 be the orientation 2-form defined in terms of X
as

—55sin 3u2 aj bl

Qx(ul,uz)(a, b) = det 5cos3uy a; by

—3u1 as b3

(a) Explain why the parametrization X is incompatible
with €.

(b) Modify the parametrization X to one having the
same underlying surface S but that is compatible
with €.

(¢) Alternatively, modify the orientation 2-form €2 to &’
so that the original parametrization X is compatible
with '

11.

12.

13.

14.

15.

(d) Caleulate [, where o =zdx Ady—(x*+
y?)dy A dz and S is oriented using .

Let M be the subset of R® given by {(x, y,z) | x* +

y2—6<z<4—x>—y?}. Then M may be
parametrized as a 3-manifold via

X: D—R3; X(uy, vy, uz)=(uy cosuy, uy sinuy, usz),

where

D={(uy,ur,u3) e R |0 <u; < \/g, 0 <uy <2m,
u% —6<u3;<4-— uz}.

(The parameters uj, u,, and us correspond, respec-
tively, to the cylindrical coordinates r, 6, and z. Hence,
it is straightforward to obtain the aforementioned
parametrization.)

(a) Orient M by using the 3-form 2, where
Qxw(a, b, ¢) =det[a b c].

Show that the parametrization, when smooth, is
compatible with this orientation.
(b) Identify 0 M and parametrize it as a union of two
2-manifolds (i.e., as a piecewise smooth surface).
(c) Describe the outward-pointing unit vector V, vary-
ing continuously along each smooth piece of d M,
that is normal to d M. Give formulas for it in terms
of the parametrizations used in part (b).

Calculate f ¢ @, where § is the portion of the paraboloid

z=x%>+y? with 0 <z <4, oriented by upward-
pointing normal vector (—2x,—2y, 1), and w =
edx Ndy + ydz Andx +xdy Ndz.

Calculate [, w, where S is the portion of the cylinder
x2 + 72 =4 with —1 < y < 3, oriented by outward
normal vector (x, 0, z),andw = zdx Ady + e’ dz A
dx +xdy ndz.

Consider the parametrized 2-manifold
X:[1,3] x [0,27) = R*,  X(s,1)
= (J/scost, /4 — ssint, \/ssint,
Find

4 —scost).

/ (x§ + xf) dx) Ndxy — (fo + 2x32) dxy A dxy.
X
Consider the parametrized 3-manifold
X: [0, 1] x [0, 1] x [0, 1] — R*,
X(uy, uy, u3) = (uy, uy, uz, Quy — uz)?).
Find

f Xy dxy Adxy ANdxg + 2x1x3dxy Adxy A dxs.
X
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8.3 The Generalized Stokes’s Theorem

We conclude with a discussion of a generalization of Stokes’s theorem that relates
the integral of a k-form over a k-manifold to the integral of a (k — 1)-form over
the boundary of the manifold. Before we may state the result, however, we need
to introduce the notion of the exterior derivative of a k-form.

The Exterior Derivative

The exterior derivative is an operator, denoted d, that takes differential k-forms
to (k 4+ 1)-forms and is defined as follows:

DEFINITION 3.1 The exterior derivative df of a O-form f on U C R" is

the 1-form
5] 5) %)
df=—de1+—deQ+"'+ f
8)61 8)62 d

dx,.
Xn

For k > 0, the exterior derivative of a k-form
W= Z B pdxy A --- Ndx;,
is the (k 4 1)-form
do =Y (dF;. i) Adxi, A+ Adx,

where d F;, ;, is computed as the exterior derivative of a 0-form.

1eedk

EXAMPLE 1 If
J(x1, X2, X3, X4, X5, X6) = X1X2X3 + X4X5X6,
then
df = xox3dx; + x1x3dxy + x1x2dx3 + x5x6 dxg4 + xX4x6 dxs + X4x5dxs.  ®
EXAMPLE 2 [f w is the 1-form
® = x1xpdxy + xx3 dxy + (2x1 — x2) dx3,
then
do =d(x1x2) Ndx) +d(xax3) Adxy +d(2x1 — x2) Adxs
= (xpdx; +x1dxy) ANdxy + (x3dxy +x2dx3) Adxy + 2dxy—dxy) A dxs.

Using the distributivity property in Proposition 1.4 and the facts that dx; A dx; =0
and dx; ANdx; = —dx; A dx;, we have

do =x1dxy ANdxy + x2dxs Ndxy +2dx; ANdxs —dxa N dxs

= —x1dx; ANdxy +2dx; ANdx3y — ()Cz + l)d)CZ A dxz. *

Stokes’s Theorem for k-forms

We now can state a generalization of Stokes’s theorem to smooth parametrized
k-manifolds in R”".

THEOREM 3.2 (GENERALIZED STOKES’S THEOREM) Let D C R be a closed,
bounded, connected region, and let M = X(D) be an oriented, parametrized k-
manifold in R". If 9M £ O, let 9 M be given the orientation induced from that
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of M. Let w denote a (k — 1)-form defined on an open set in R” that contains M.

Then
/dw:f w.
M aM

If 9M = Q, then we take |, oy @ to be 0 in the preceding equation.

We make no attempt to prove Theorem 3.2.! Instead, we content ourselves
for the moment by checking its correctness in a particular instance.

EXAMPLE 3 We verify the generalized Stokes’s theorem (Theorem 3.2) for the
2-form w = zwdx A dy, where M is the 3-manifold M = {(x, y, z, w) € R* |
w = x2 4+ y2 4+ 22, x> + y? + z% < 1} oriented by the 3-form Q corresponding
to the unit normal

B (2x,2y,2z,—1)
VA2 + 4y + 42+ 1

The manifold M is a portion of the 3-manifold given in Example 7 of §8.2
and may be parametrized as

X: B — R%, X(uy, uaz, uz) = (uy, uz, us, u% + u% + u%),

where B = {(uy, uz, u3) | u% + u% + u% < 1}. Using this parametrization, we
have
T, =(1,0,0,2u;)

T,, =(0,1,0,2u,)
Tlt3 - (09 07 19 2“3)
(2”1, 2M2, 2u3, —l)

\/414% +4ud +4ud + 1

N =

so the orientation 3-form 2 is given by
Qx(u)(al ,a), 33) = det [N a; ap 33].

Example 7 of §8.2 shows that the parametrization X is compatible with this
orientation. Hence, we may use this parametrization without any adjustments
when we calculate [, do.

The boundary of M is dM = {(x, v, z, w) | x*> + y*> + z> = w = 1} and may
be parametrized as

Y: [0, 7] x [0,27) = R*  Y(s1, 52) = (sins; coss,, sin s; sinss, cos sy, 1).

Then
T,, = (coss| cos sy, cos sy sinsy, — sinsy, 0)
and

T, = (—sins; sin s, sins; cos sy, 0, 0).

! For a full and rigorous discussion of differential forms and the generalized Stokes’s theorem, see J. R.
Munkres, Analysis on Manifolds (Addison-Wesley, 1991), Chapters 6 and 7.
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An outward-pointing unit vector V = (v, va, v3, v4) tangent to M and normal to

o0 M must satisfy

* V.N=0along M,
*V.-T,, =V.-T,, =0.

Along d M, we have

1 ) ) )
N = —(2sin s cos sp, 2 sins; sin sy, 2cos sy, —1).

NE]

Thus, V must satisfy the system of equations

(2sin sy cos s2)vy + (2sin sy sinsy)va + (2cossy)vy —vg =0

(cos s; coss2)vy + (cos sy sinsy)v, — (sinsy)vy =0

—(sin s sinsp)v; + (sin sy cossy)vy, =0

After some manipulation, one finds that the unit vector that satisfies these equa-

tions and also points away from M is

I . .
V = —(sin sy cos 7, sin sy sin s;, oS 81, 2).

NG
Then the induced orientation 2-form Q% for 9 M is given by
92{%)(31, ay) = Qxw(V, ay, a2),
where X(u) = Y(s). In particular, we have
QU (Ty,. Ty) = det [N V Ty, T

L

2 . . . . -
== sins; COS § Sin s COS sy COS S| COSs, —sins; sins
7 1 2 7 1 2 1 2 1 2
2 sins; sins, —=sins; sins, coss;sins, sins; coss;
NS NG
= det ) ) 0
—=-coss —=COS s —sin s
/5 ! NG ! !
L 2 0 0
L NG NG ]
=sins; > 0

for 0 < 51 < 7. Hence, the parametrization Y of d M, when smooth, is compatible
with the induced orientation, so we may use this parametrization to calculate

faM I?ow we are ready to integrate. We first compute f y dow. Since w = zwdx A
dy, we have
do =d(zw)Adx Ndy = (zdw +wdz) Adx Ndy
=zdwAdx ANdy+wdzANdx ANdy.
Thus,

/ dw:/// da)x(u)(Tul,Tuz,Tm)dulduzdu3
M B ’
:/f/ {ugdw/\dx/\dy(Tul,Tuz,Tu})
B

+ (u% + u% + u%) dzNdx Ndy(T,,, T,,, Tl,z)} duy duy dus
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2uq 2uy  2uj
_ f / f w1 0 0
B 0 0

1
:2u3
0 0 1
+@+ui+ud)| 1 0 0|4 duduydus
0O 1 0
——

:// (u%+u§—|—3u§)du1duzdu3.
B

Since B is a solid unit ball, the easiest way to evaluate this iterated integral is to
use spherical coordinates p, ¢, and 6. Hence,

2 b4 1
/ dw :/ / / (p* +2p? cos® @) p* sinp dp dg dO
M o Jo Jo

2 b4 1
= / / / p* (sing +2cos® g sing) dp dg db
o Jo Jo
2 7
:/ / 3 (sing + 2 cos g sing) dedo
o Jo

L[> 2 S\
25/0 <—cos<p—§cos (p)

do
=0

On the other hand,

f w = // Cl)Y(s)(Tsl s Tsz)dsl dsZ
oM [0,7]x[0,27)

2w T
= / / cossydx Ndy(T,, Ts,)ds) ds»
0 0

27 T
= / / COS 51
0 0

2 b4
= / / cos sy (cos sy sinsy) dsy ds»
0o Jo

2 T
= / / cos® sy sin s ds; ds,
0 0
2 T

1 L) 4
:/ <——cos3s1> dszzf —dszz—n.
0 3 s1=0 0

3 3
Therefore, the generalized Stokes’s theorem is verified in this case. *

COS §1 COSSsp — sins; sin sy
dS] dSz

CcOoS sy Sinsy  Sinsj COSs»
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Besides being notationally elegant, the integral formula in Theorem 3.2 beau-
tifully encompasses all three of the major results of vector analysis, as we now
show.

First, let w be a 1-form defined on an open set U in R?. Then

w=M(x,y)dx + N(x,y)dy,
so that
do =dM Ndx +dN Ndy

oM
= (a—dx—i-—dy)/\dx—i—(—dx—l——dy)/\dy
X
oN  IM
=|— —— |dx Ady.
ox ay

The generalized Stokes’s theorem (Theorem 3.2) says that if D is a 2-manifold
contained in U and d D is given the induced orientation (see Figure 8.9), then

/ do = / w,
D aD
or, in this instance, that

daN oM
// (———)dxdy: Mdx 4 Ndy,
p \ 9x dy aD

which is Green’s theorem.

y y

:) x x
s N

[ do =], (gffj—g—éj) dx dy janw:cﬁanM dx+ N dy

Figure 8.9 The generalized Stokes’s theorem implies Green’s theorem.

Next, suppose o is a 1-form defined on an open set U in R?. Then
w=Fx,y, 2)dx + F(x,y,2)dy + F3(x, y, 2) dz.
It follows that

oF; OF oF, OF
do = — - =2 dy Nndz + Lo )z adx
Z 0z ox
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Recall from Proposition 2.2 that if S is a parametrized 2-manifold (surface in R?),

then
f w= 5& F.ds,
s as

where F = Fy i+ F,j+ F; k. From Proposition 2.4,

/da):f G-ds,
s S
where

oF;  OF oF, OF oF, OF
G = ST )i (228 j+ 2 _ " l)lk=VxF.
ay 0z 0z dx dx ay

Theorem 3.2 tells us, if S is oriented and 9 S is given the induced orientation, that

f w:fda),

as S

jg F-dS=//VXF-dS,
as S

which is the classical Stokes’s theorem. (See Figure 8.10.)

or, equivalently, that

Jgdo=[[;VxF-ds [go=$ F-ds

Figure 8.10 The generalized Stokes’s theorem gives the classical Stokes’s
theorem.

Finally, let w be a 2-form defined on an open set in R>. So
w=Fx,y,2)dy Ndz+ Fy(x,y,2)dz ANdx + F3(x, y,z)dx ANdy.
You can check that

do = (% %—i- %)dx Ady Ndz.

ax ay 0z
If D is a region in R?, then D is automatically a parametrized 3-manifold, since
the map X: D — R3, X(x, y, z) = (x, y, z) parametrizes D. (One can show that
in this instance D is always orientable as well.) If D is bounded and 9 D (which is
a surface) is given the induced orientation (i.e., outward-pointing normal), then
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/ a):# F.dS,
aD aD

where F = Fy i+ F, j+ F; k. From Example 6 of §8.2,

IF JdF JIF
/da)Z/ (—1+—2+—3)dx/\dy/\dz=//fV'FdV-
D p\ 0x dy 9z D

Theorem 3.2 indicates that [, , w = [, dw or

fh vas=[[[ v-rav.

which is, of course, Gauss’s theorem. (See Figure 8.11.)

Proposition 2.4 states that

Z

X
[, do =[] V- Fav [, =4, F-as

Figure 8.11 The generalized Stokes’s theorem gives
rise to Gauss’s theorem.

In the foregoing remarks, we have implicitly set up a sort of “dictionary”
between the language of differential forms and exterior derivatives and that of
scalar and vector fields. To be explicit, see the table of correspondences shown in
Figure 8.12.

The theorems of Green, Stokes, and Gauss all arise from Theorem 3.2
applied to 1-forms and 2-forms. The next question is, can the “dictionary” and
Theorem 3.2 provide a corresponding result for 0-forms? The generalized Stokes’s
theorem (Theorem 3.2) states, for a 0-form w and an oriented parametrized curve

C, that
/ do = / w.
C aC
Differential k-form Field Derivative

1) Scalar field f dw < Vf
w=Fidx+ F,dy+ Fzdz Vector field dw <> VxF

F=Fi+Fj+ Fk
w=Fdyndz+ F,dzANdx + Fydx Ndy Vector field dw <> V-F

F=Fi+Fj+ Fk

Figure 8.12 A differential forms—vector fields dictionary.
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C +02B

Figure 8.13 The orientation
of the curve C induces an
orientation of its boundary

(ie.,

the endpoints A and B).

8.3 Exercises

Now, if C is closed, then dC is empty (and so f sc @ = 0). Butif C is not closed,
then 0C consists of just two points. In that case, what should /;)c w mean? In
particular, to apply Theorem 3.2, we must orient dC in a manner that is consistent
with the orientation of C, which can be done by assigning a “— sign to the initial
point A of C and a “+” sign to the terminal point B. (See Figure 8.13.) Then
/;} cwisjust f(B) — f(A), where f is the function (scalar field) corresponding
to w in the table. Since dw corresponds to V f, Theorem 3.2 tells us that

/C Vf.ds= f(B) — f(A). (1

the result of Theorem 3.3 in Chapter 6.

Finally, for the case n = 1, that is, the case of 0-forms (functions) on R, the
0-form w corresponds to a function f of a single variable, and V f is the ordinary
derivative f'. Furthermore, a parametrized curve in R is simply a closed interval
[a, b]. Then equation (1) reduces to

b
/ F)dx = F(b) — f(a).

a version of the fundamental theorem of calculus. Thus, we can appreciate that
the generalized Stokes’s theorem is an elegant and powerful generalization of the
fundamental theorem of calculus to arbitrary dimensions.

In Exercises 1-7, determine dw, where w is as indicated. 11. Verify the generalized Stokes’s theorem (Theorem 3.2)
- for the 3-manifold
1. w =¥~
M= . Hx=8—2y? =222 — 2w’ x >
2.w=x3y—2xz2+xy2z {(x,y,z,w) € R" | x=8 y Z w, x > 0}
(2 12 , and the 2-form w = xy dz A dw. (Hint: First compute
3. o=("+y)dx+xydy [y @- To calculate [, dw, study Example 3 of this
4. 0 = x1dx; — xpdxy + x3x4 dxg — x4x5 dxs5 section.)
5. w =xzdx Andy — y*zdx Adz 12. (a) Let M be a parametrized 3-manifold in R? (i.e., a
solid). Show that
6. w=x1xx3dxy ANdx3 ANdxs+ xox3x8dxy Adxy A .
dxs Volume of M = 3/ xdyNdz —ydx ANdz
7. 0=3%", x2dx; A---Adx; A--- Adx, (Note: dx; oM

10.

means that the term dx; is omitted.)

. Let u be a unit vector and f a differentiable function.

Show that dfy,(u) = D, f(Xo). (Recall that D, f(x¢)
denotes the directional derivative of f at X in the di-
rection of u.)

. Ifw = F(x,z)dy + G(x, y)dz is a (differentiable) 1-

form on R?, what can F and G be so that dw =
zdx Andy + ydx ANdz?

Verify the generalized Stokes’s theorem (Theorem 3.2)
for the 3-manifold M of Exercise 11 of §8.2, where
w=2xdy ANdz—zdx Ndy.

+zdx ANdy.

(b) Let M be a parametrized n-manifold in R". Ex-
plain why we should have

n-dimensional volume of M

1

=—/ xydxy A+ ANdxy,
n Jsm

—xpdxy Adxz AN ANdxy,
+x3dxiy Adxy ANdxg N ANdxy + - -

+ (=" xydxy Adxa Ao Adxy_.
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Miscellaneous Exercises for Chapter 8

. (dxAndy+dyndz)(1,0,1),(0,-1,3)) =0.
cdxy Adxy Adxs ANdxy =dxy Adxg Adxy Adxs.
. There are 21 basic 5-forms in R’.

dxi ANdxy =dxy Ndx;.

(dxy ANdxy) Adxs = dxsz A (dxy; Adxy).

o U A W N

. If w is a 3-form on R® and 5 is a 5-form on R®, then
WA =1Ao.

7. If w is a 2-form on R® and 7 is a 3-form on R?, then
WA =1Aw.

8. dx Ady Adz(a,b,¢) = —dz Ady A dx(a, ¢, b).
9. dx; A dxj(a, b) = —dx; A d)Cj(b, a).

10. Let D =[0,2] x [—1, 1]and let X: D — R* be given
by

X(s, 1) = (s — 1, st?, sé', 4r).

Then M = X(D) is a smooth parametrized 2-manifold

in R%.
11. Let D =[-2,2] x[0,5] x [-3,3] and let X: D —
R* be given by

22 34
X(uy, up, uz) = (ujuz, uycosus, uy — uy, uyiz).

Then M = X(D) is a smooth parametrized 3-manifold

in R%.
12. If D = [0, 1] x [0, 1], then the underlying manifolds
of X: D - R3,
X(s, 1) = (s cos2xt, ssin2mt, s°)
and Y: D — R?,

Y(s, 1) = (t cos2ms, tsin2mws, t2)
are the same.

13. Let @ =dx Ady and D =[0,1] x [0, 1].
Jx@® = [, ©, where X: D — R,

Then

X(s, t) = (scos2mt, ssin2mt, sz),

Miscellaneous Exercises for Chapter 8

14.

15.

16.

17.

18.

19.
20.

and Y: D — R?,
Y(s,1) = (t cos2zs, tsin2xs, 17).

Let B={ueR}| u% + u% + u% < 1}. The general-
ized paraboloid X: B — R* defined by

X(uy, uy, us) = (uy, uy, us, u% + 2u§ + 3u§)
has asits boundary the ellipsoid Y: [0, 7] x [0, 27) —
R*,

— (qi e ; L
Y(s, t) = (sins cost, 5 sinssint, 75 €085, 1).

Let M C R" be the graph of a function f:U C
R*~! — R" parametrized by X: U — R",

X(ul, ey Lln—l) - (”17 cee, Up—1, f(ul» ey un—l))-

If
(ﬁtl’ ceey fun_p _1)

\/f'421+“.+ iy 1

N(I/tl, ...,Mn_l) =

is a unit normal, then the parametrization X is compat-
ible with the (n — 1)-form 2 defined by

Qx(u)(al,...,a,,_]) =det[ a) a,_; N ]

If w=x1x3dxy Adxs, then dw = x3dx; Adx, A
dxs + x1dxy ANdx3 A dxg.

If o = x1dxs — xodx; + x1x2x3 dx3, then

dw = (xpx3 + 1)dx; Adx; +dxy Adx,
+ x1x3dxy A dxs.

If w=x1x2dxi Adxy+ xpx3dx; Adxs + x1x3dx;
A dx3, then

dw =2x3dxy ANdxy ANdxs.
If w 1s an n-form on R", then dw = 0.

If M is a parametrized k-manifold without boundary
in R” and w is (k — 1)-form defined on an open set
containing M, then [, dw = 0.

1. Let w be a k-form, n an [-form. Show that
dwAn) =doAn+ (Do Ady.

This is accomplished by the following steps:

(a) Show that the resultis true whenk = [ = 0, thatis,
when w = f and n = g. (Here f and g are scalar-
valued functions.)

2.

(b) Establish the result when k = 0 and [ > 0.
(c) Establish the result when k > 0 and [ = 0.
(d) Establish the result when k and [ are both positive.
Let M be the subset of R

{(X], X2, X3, X4, X5) | X5 = X1X2X3X4,
x4 < 1}.

described as
0 < xy,x2, x3,
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(a) Give a parametrization for M (as a 4-manifold)
and check that your parametrization is compati-
ble with the orientation 4-form Q = dx; Adx, A
dxz N dxy.

(b) Calculate fM xqdxy Ndxy Adxs N dxs.

. (a) Let C be the curve in R? given by y = f(x),

a < x < b. Assume that f is of class C!. If C
is oriented by the direction in which x increases,
show that if w = y dx, then

/ w = area under the graph of f.
c

(b) Let S be the surface in R? given by the equation z =
f(x,y), where (x,y) € [a, b] X [c,d]. Assume
that f is of class C'. If S is oriented by upward-
pointing normal, show that if o = zdx A dy, then

/ w = volume under the graph of f.
s

(c) Now we generalize parts (a) and (b) as follows:
Suppose f: D — R is a function of class C! de-
fined on a connected region D € R"~!. Let M be
the (n — 1)-dimensional hypersurface in R" de-
fined by the equation x,, = f(xy, ..., x,_), where
(x1,...,x1) € D.Ifw =x,dx; A+ ANdx,_q,
show that

/ w = £(n-dimensional volume
M
under the graph of f).

How can we guarantee a “4-” sign in the equation?

. Let M be the portion of the cylinder x> +z> =1,

0 < y < 3, oriented by unit normal N = (x, 0, 7).
(a) Use N to give an orientation 2-form 2 for M. Find
a parametrization for M compatible with .

(b) Identify 9 M and parametrize it.

(c) Determine the orientation form Q%Y for M in-
duced from 2 of part (a).

(d) Verify the generalized Stokes’s theorem (Theorem
32)for M andw = zdx + (x +y + z)dy—x dz.

. Use the generalized Stokes’s theorem to calcu-

late f g1 @, where S* denotes the unit 4-sphere
{(x1, x2, x3. X4, x5) € R? | x12 —I—x22 +x32 —I—xf +x§ =
1} and o =x3dxi Adxy; ANdxgq ANdxs + xqgdx; A
dx; ANdxzy N dxs.

. (a) Let w be a O-form (i.e., a function) of class C2.

Show that d(dw) = 0.

(b) Now suppose that w is a k-form of class C?, mean-
ing that when w is written as

Z Fil,..ik a'xil VANEIIERVAN dxl-k,

1<ij<--<ix<n

10.

each Fj, _; isofclass C 2 Usepart (a) and the result
of Exercise 1 to show that d(dw) = 0.

In this problem, show that the equation d(dw) = 0 im-
plies two well-known results about scalar and vector
fields.

(a) First, letw be a 0-form (of class C?). Then w corre-
spondsto ascalarfield f. Use the chart onpage 559
to interpret the equation d(dw) = 0.

(b) Next, suppose that w is a 1-form (again of class
C?). Then w corresponds to a vector field. Inter-
pret the equation d(dw) = 0 in this case.

. Let

xdyndz+ydz Ndx +zdx Ady
W= .
(X2 + y2 4 2232
(a) Evaluate fs w, where S is the unit sphere x> +

y2 + 7% = 1, oriented by outward normal.
(b) Calculate dw.

Figure 8.14 Figure for Exercise 8.

(c) Verify Theorem 3.2 over the region M =
{(x,y,2) | a®> < x? 4+ y> 4+ 72 < 1}, wherea # 0.

(d) Now let M be the solid unit ball x> + y> 4+ z2 < 1.
Does Theorem 3.2 hold for M and w? Why or why
not?

(e) Suppose that S is any closed, bounded surface that
lies entirely outside the sphere S = {(x, y, z) |
x2 4+ y? + 22 = €?}. (See Figure 8.14.) Argue thatif
S is oriented by outward normal, then [¢ @ = 4.

. Let M be an oriented (k + [ + 1)-manifold in R"; let

 be a k-form and 7 an /-form defined on an open set
of R" that contains M. If 0M = @, use Theorem 3.2
and Exercise 1 to show that

fden:(—l)k+1/ w Adn.
M M

Let M be an oriented k-manifold. Use Exercise 1 and
the general version of Stokes’s theorem to establish
“integration by parts” for k-forms @ and 0-forms f:

[y [ oo



