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7.4 Further Vector Analysis; Maxwell’s
Equations
In this section, we use Gauss’s theorem and Stokes’s theorem first to prove some

abstract results in vector analysis and then to study Maxwell’s equations of elec-
tricity and magnetism.

Green’s Formulas

Our purpose in §7.4 is to establish a few fundamental results of vector analysis.
Throughout the discussion all scalar and vector fields are defined on subsets of R?.
The following pair of results is established readily:

THEOREM 4.1 (GREEN’S FIRST AND SECOND FORMULAS) Let f and g be scalar
fields of class C?, and let D be a solid region in space, bounded by a piecewise
smooth surface S = 9D, oriented as in Gauss’s theorem. Then we have

Green’s first formula:

/// VfngdV+//f szngZ#ngodS.
D D S

Green’s second formula:

// D(fvzg_gvzf)d"=ﬁ%(fvg—gi) .dS.

PROOF The first formula follows from Gauss’s theorem applied to the vector
field F = fVg. (We leave the details to you.) The second formula follows from
writing the first formula twice:

ff/nvf'w"+/f DfVngV=#Sng-ds; (1)
f//DVg'Vde+///L)gV2de:ﬁigi.dS. (2)

Now, subtract equation (2) from equation (1). [ |

The third of Green’s formulas requires considerably more work to prove.

THEOREM 4.2 (GREEN’S THIRD FORMULA) Assume f is a function of class C2.
Then, for 9D = S oriented as in Gauss’s theorem and points r in the interior

of D,
RN IAILY
fo = ///Dnr—xn
s I VI® )
e ﬁi( f("w(ur—xn) * ||r—x||) as-

In this formula, dV denotes integration with respect to the variables in x =
(x,y,2) (i.e.,r = (r1, 2, r3) is fixed in the integration), and the symbol V means
Vi, differentiation with respect to x, y, and z.

A proof of Theorem 4.2 appears in the addendum to this section.
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An Inversion Formula for the Laplacian

Green’s third formula is a type of inversion formula—a formula that enables
us to recover the values of a function f by knowing certain integrals involving
its gradient and Laplacian. Green’s third formula is mainly of technical interest
in proving further results. We use it here to obtain an inversion formula for the
Laplacian operator.

We begin by applying the Laplacian V2 to Green’s third formula:

2 2| b fo(x)
v/ = V[ f/fpnr—xndv
4L (V"f (X)—f(x)vx( ! )) dS] 3)
an U — x| Ir—x|

The trick is to move V? inside the surface integral, which is justified since x # r
when x varies over S:

Vo f (%) ( I ))
\Y — Vy -dS
r #g <||r— RN
- (3o ()
s U= x| Ir— x|

By direct calculation, Vrz(l/llr —x|)=0forx #r,so
v (W(x)) _
l[r — x|

Similarly, since f(x) does not involve r,

v (v (o)) = s (2 )
r — x| lr — x|
=f<x)vxv3( : )

e

=0.
Therefore, the Laplacian of the original surface integral is 0. We may conclude
from equation (3) that, for r in the interior of D,

VZf(r) = / / /D ”v:_(;:ﬁ ’

and we have shown the following.

THEOREM 4.3 If ¢ = V2 f for some function f of class C?, then for r in the

interior of D,
0= f f fD el (—Xz&n

Theorem 4.3 provides an inversion formula for the Laplacian in the following
sense: If V2 f = ¢, then

== [[| £ v+ e,

where g is any harmonic function (i.e., g is such that V?>g = 0). That is, if the
Laplacian of f is known, we can recover the function f itself, up to addition of
a harmonic function.
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Finally, it can be shown that the result of Theorem 4.3 holds under consider-
ably less stringent hypotheses than having ¢ be the Laplacian of another function.'

Maxwell’s Equations

Maxwell’s equations are fundamental results that govern the behavior of—and
interactions between—eclectric and magnetic fields. We see how Maxwell’s equa-
tions arise from a few simple physical principles coupled with the vector analysis
discussed previously.

Gauss's law for electric fields If E is an electric field, then the flux of E
across a closed surface S is

Flux of E = # E-ds. 4)
s

Applying Gauss’s theorem to formula (4), we find that

FluxofE:f//DV-EdV, %)

where D is the region enclosed by S.
If the electric field E is determined by a single point charge of ¢ coulombs

located at the origin, then E is given by
qg X
Ex) = —_—, 6

R E P ©
wherex = x i+ yj + z k. Inmks units, E is measured in volts/meter. The constant
€o is known as the permittivity of free space; its value (in mks units) is

8.854 x 10~'2 coulomb? /newton-meter?.

For the electric field in equation (6), we can readily verify that V - E = O wherever
E is defined. From formulas (4) and (5), if S is any surface that does not enclose
the origin, then the flux of E across S is zero.

But now a question arises: How do we calculate the flux of the electric field
in equation (6) across surfaces that do enclose the origin? The trick is to find
an appropriate way to exclude the origin from consideration. To that end, first
suppose that S, denotes a sphere of radius b centered at the origin (i.e., S, has
equation x> + y? 4 z2 = b?). Then the outward unit normal to S}, is

xit+yj+zk 1
n=—/—————=-X
b b
(See Figure 7.53.) From equation (6),

# E.-dS= -1 # x Lias
. fr— —-—X
S, drey Jfs, IIXI> b

On S}, we have ||x|| = b, so that

#E-dS: 9 X Xis=_14 IxI
s, dmey Jfs, b3 b 4rey Jfs, b

b2
-1 # S | ﬁg ds
dmey JIs, b* 4megb? JTs,

Figure 7.53 The sphere S, q

of radius b, centered at the = dreoh? (surface area of Sj,)

origin, together with an

outward unit normal vector. __ 4 (4 nbz) _49
4megh? €

1'See, for example, O. D. Kellogg, Foundations of Potential Theory (Springer, 1928; reprinted by Dover
Publications, 1954), p. 220.



Figure 7.54 The solid region D is
the region inside S and outside Sj,.
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Now, suppose S is any surface enclosing the origin. Let S, be a small sphere
centered at the origin and contained inside S. Let D be the solid region in R?
between S, and S. (See Figure 7.54.) Note that V - E = 0 throughout D, since
D does not contain the origin. (E is still defined as in equation (6).) Orienting
oD = S U S, with normals that point away from D, we obtain

#E-dS—# E.dS:# E.dS:]// V-EdV =0,
s S aD D

using Gauss’s theorem. We conclude that

#E-dS:i 7)
S €0

for any surface that encloses the origin. By modifying equation (6) for E appro-
priately, we can show that formula (7) also holds for any closed surface containing
a single point charge of ¢ coulombs located anywhere. (Note: The arguments just
given hold for any inverse square law vector field F(x) = kx/||x||>, where & is a
constant. See Exercise 13 in this section for details.)

We can adapt the arguments just given to accommodate the case of n discrete
point charges. Fori = 1, ..., n, suppose a point charge of ¢; coulombs is located
at position r;. The electric field E for this configuration is

X —T;

E(x) =

®)

V=

For E as given in equation (8), we can calculate that V - E = 0, except at x = r;.
If S is any closed, piecewise smooth, outwardly-oriented surface containing the
charges, then we may use Gauss’s theorem to find the flux of E across S by taking
n small spheres S;, S, ..., S,, each enclosing a single point charge. (See Fig-
ure 7.55.) If D is the region inside S but outside all the spheres, we have, by
choosing appropriate orientations and using Gauss’s theorem,

#E-dS—Z# E.dszﬁg E-dS:f//V-EdV:O,
S =1 VS aD D

since V-E = 0 on D. Hence,
n 1 n
E-dS = #E.dS:— qi
»#; ,Zl: Si €0 zZI:

1
= — (total charge enclosed by S). 9)
€0

Figure 7.55 D is the solid region inside the
surface S and outside the small spheres
S1, 82, ..., S,, each enclosing a point charge.
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To establish Gauss’s law, consider the case not of an electric field determined
by discrete point charges, but rather of one determined by a continuous charge
distribution given by a charge density p(x). The total charge over a region D in

space is
[[] pwav.

so that, in place of formula (8), we have an electric field,

b= o [ [ [ o= (10)

In equation (10), the integration occurs with respect to the variables in x. (Note:
It is not at all obvious that the integral used to define E(r) converges at points
r € D, where p(r) # 0, because at such points the triple integral in equation (10)
is improper. See Exercise 20 in this section for an indication of how to deal with
this issue.)

The integral form of Gauss’s law, analogous to that of formula (9), is

fhe-as==[[[ vav. (1)

where S = dD. If we apply Gauss’s theorem to the left side of formula (11), we

T et

Since the region D is arbitrary, it may be “shrunk to a point.” From this, we
conclude that

v.E= 2. (12)

Equation (12) is the differential form of Gauss’s law.

Magnetic fields A moving charged particle generates a magnetic field. To be
specific, if a point charge of g coulombs is at position ry and is moving with
velocity v, then the magnetic field it induces is

(g (VX (r—rg)
B = >( v = rol? ) -

In mks units, B is measured in teslas. The constant . is known as the perme-
ability of free space; in mks units

o = 4m x 1077 N/amp? ~ 1.257 x 10~° N/amp?.

In the case of a magnetic field that arises from a continuous, charged medium
(such as electric current moving through a wire), rather than from a single moving
charge, we replace g by a suitable charge density function p and the velocity of
a single particle by the velocity vector field v of the charges. Then we define the
current density field J by

J(x) = p(X)v(x). (14)



S

Figure 7.56 The
total current /
across S is the flux
of the current
density J across S.
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In place of formula (13), we use the following definition for the magnetic field
resulting from moving charges in a region D in space:

B(r) = f f / PXIV(X) X ——= X||3

In equation (15), as in equation (10), the integration is with respect to the vari-
ables constituting x. As in equation (10), it is not obvious that the integrals in
equation (15) are convergent if r € D, but, in fact, they are. (See Exercise 21 in
this section.)

Before continuing our calculations, we comment further regarding the current
density field J. The vector field J at a point is such that its magnitude is the current
per unit area at that point, and its direction is that of the current flow. It is not
hard to see then that the total current / across an oriented surface S is given by

the flux of J; that is,
I:ffJ-dS. (16)
s
(See Figure 7.56.)

Returning to the magnetic field B in equation (15), we show that it can be
identified as the curl of another vector field A (to be determined). First, by direct

calculation,
v ( 1 > r—x
r\ T | — 7 =
lr — x| r — x|

Therefore, equation (15) becomes

wo = =52 [[ [ v (g ) av )

We rewrite equation (17) using the following standard (and readily verified) iden-
tity, where f is a scalar field and F a vector field (both of class C?):

Vx(fF)=(VxF)f-FxVf. (18)

Formula (18) is equivalent to

FxVf=(VxF)f—-VXx(fF).

Therefore,
1 1 J
%) XV, (—) — (Ve x J(%) _ v, x 2
lr —x|| lr —x|| [r — x|
J(x)
- r X T
[r —x]|

since J(x) is independent of r. Hence,

B = o f// IrJg()XIId //fD ||rJg()x|| ’

as r does not contain any of the variables of integration. Consequently,

B(r) = V X A(r),
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Figure 7.57 The
closed loop C is
oriented so that it
has a right-hand
relationship with
the direction of
current flow it
encloses.

where

/f/p III‘Jg‘)XII ' (1

Thus, VB = V - (V x A) and so, by Theorem 4.4 in Chapter 3, we conclude that

V.B=0. (20)

The intuitive content of equation (20) is often expressed by saying that “magnetic
monopoles” do not exist.

The vector field A in equation (19) furnishes an example of a vector potential
of the field B. (See Exercises 33—38 in the Miscellaneous Exercises for more about
vector potentials.)

Ampeére’s circuital law If C is a closed loop enclosing a current /, then
Ampere’s law says that, up to a constant, the current through the loop is equal to
the circulation of the magnetic field around C. To be precise,

fB.dsz 1ol 1)
C

In equation (21), we assume that C is oriented so that C and / are related by a
right-hand rule, that is, that they are related in the same way that the orientation of
C and the normal to any surface S that C bounds are related in Stokes’s theorem.
(See Figure 7.57.)

From equation (16) for the total current, equation (21) may be rewritten as

foas—n [[a-as
c N

where S is any (piecewise smooth, oriented) surface bounded by C. Applying
Stokes’s theorem to the line integral, we obtain

/fVXB-dS:MO//J.dS.
s s

Since the loop C and surface § are arbitrary, we conclude that

V x B = uod. (22)

Equation (22) is the differential form of Ampére’s law in the static case
(i.e., in the case where B and E are constant in time). In the event that the magnetic
and electric fields are time varying, we need to make some modifications. The so-
called equation of continuity, established in Exercise 5 in this section, states that

Vel=——. 23
” (23)

The difficulty is that if V x B = uJ as in equation (22), then equation (23)
implies that

ap
V(VXB)=V-(pod) = —po-



>

S

Figure 7.58 The
rate of change of
magnetic flux across
S determines the
electromotive force
around the
boundary C.
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However, assuming B is of class C?, we must have V - (V x B) = 0, even in the
case where p is not constant in time.

The simplest solution to this difficulty is to modify equation (22) by adding
an extra term. From Gauss’s law, equation (12), we must have

ap oE
— =¢V.—.
ot ot
Thus, if we replace J by J + €o(0E/dt) in equation (22), then we can verify that

V- (V x B) = 0. (See Exercise 16 in this section.) Hence, Ampere’s law can be
generalized as

oE
V xB=pued+ [,L()EOE. (24)

Theterm €y(0E/dt) in equation (24), known as the displacement current density,
was first postulated by James Clerk Maxwell in order to generalize Ampere’s law
to the nonstatic case. (In this context, the original current density field J is known
as the conduction current density.)

Equation (24) is not the only possible generalization of equation (22), but
it is the simplest one and is consistent with observation. See Exercise 17 in this
section for other ways to generalize equation (22) to the nonstatic case.

Faraday’s law of induction Michael Faraday observed empirically that the
change in magnetic flux across a surface S equals the electromotive force around
the boundary C of the surface. This relation can be written as

do
—=—7§E.ds, (25)
dt -

where ®(r) = [/;B-dS, and C and S are oriented consistently. (See Figure 7.58.)
If we apply Stokes’s theorem to the line integral, we find that

fE.ds://VxE-dS.

C S

dd d oB

—_— = — B.dS = — - dS,
dt dtffg /Sar

B
—f —-dS=f/VxE-dS. (26)
s 0t s

Because equation (26) holds for arbitrary surfaces, we conclude that

Since

we have

VXE=——. (27)
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N

Figure 7.59 Ifx
is any point on the
surface of the
sphere of radius b
centered at r, then
[r—x| =b.

Summary Equations (12), (20), (24), and (27) together are known as Maxwell’s
equations:

V-E = £ (Gauss’s law);
€0
V-B=0 (No magnetic monopoles);
oB
VXE=-— m (Faraday’s law);
oE .
V xB=puyd+ ,u,(,e()g (Ampere’s law).

Maxwell’s equations allow us to reconstruct the electric and magnetic fields from
the charge and current densities. They are fundamental to the subject of electricity
and magnetism and provide a fitting tribute to the power of the theorems of Stokes
and Gauss.

Addendum: Proof of Theorem 4.2

The most obvious idea is to use Green’s second formula with
1

Ir — x|

g(x) =

However, this function fails to be continuous when x = r, so Gauss’s theorem
(and hence Green’s formula) cannot be applied so readily. Instead, we need to
examine the integrals more carefully.

Throughout the discussion that follows, let S, denote the sphere of radius b
centered at r. First, we establish some subsidiary results.

B Lemma 1 Ifh is a continuous function, then

h
lim ﬁ{ ™ s—o.
b—0 Jfs, [Ir — x|

PROOF The average value of h on S}, is defined to be

i, h(x)ds 1
hlave = b h(x)dS.
e ﬁi )

surface area of S), = 4nb?

(See Exercise 9 of the Miscellaneous Exercises.) Thus,
# h(x)dS = 47 b*[7] .
Sp

As x varies over the surface Sj,, we have ||r — x|| = b. (See Figure 7.59.) Hence,

h I
lim # 45 = lim # “h(x)dS = lim 4nb [hlag =0.  m
b—0 JJs, [Ir — x| b—0 JJs, b b—0

To clarify the variables with respect to which we differentiate, let Vy denote
the del operator with respect to x, y, and z, and V, the del operator with respect
tor = (ry,r,13).




Figure 7.60 The region

D — B denotes the solid D
with a small ball centered at r
removed.
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B Lemma 2 Withhand Sy, asin Lemma 1,

lim h(x)Vy (

+dS = —4mh(r).

Ir — x|

PROOF Let n = (x — r)/|[r — x||, the normalization of x — r. Straightforward

calculations yield
Vv, <;) — _X—_r’
[r — x| Ir — x|}
and

Vx< 1 )=_(X_r)-(x—r)__llx—l‘||2_ 1 1

Ir — x|

- - — T 75
e —x|I* e —x]I* lIr — x]|2 b?

for x on S;,. Then

1 1
lim h(x)Vy ( ) dS = lim (h(x)Vx ( ) . n) ds
b=0 JJs, lIr — x| b=0 JJs, l[r — x|

= ;i_% — : %h(x)dS
— lim - — (47 D% [M]ave)
b—0 b2
= —4mh(r).
(See the proof of Lemma 1.) [ |

Returning to the proof of Green’s third formula, we look at a region to which
we can apply Green’s second formula, namely, the region D — B, where B is a
small ball of radius b centered at r. (See Figure 7.60.) By Green’s second formula
(since 1/|lr — x]|| is not singular on D — B), we have

I e R
D-B [r — x| lr — x|l
- f / < f(x)Vx( : >— VS (X)> . dS. (28)
5—5) lr —x]| flr — x|

By direct calculation V2(1/|lr — x||) = 0, so equation (28) becomes
[ - Vi
p-g lr—x|
1 Vx
= # (f(X)Vx ( ) L TAL) ) -dS. (29)
S-S, lIr — x| [Ir — x|

We may evaluate the right-hand side of equation (29) by replacing the surface
integral over S — S, by separate integrals over S and Sj,. Now, we take limits as
b — 0. By Lemma 1 with h(x) = Vy f(x) - n,

# m.ds=# VS o
s I x| 5 Ir—x]

F(x)Vy (
Sy

By Lemma 2,

) «dS — —4nf(r).

Ir — x|
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Since B shrinks to a point as » — 0, we see that equation (29) becomes

\& 1 Vy

f]/ I, ﬁf (f(x)V ( )— f(x)) -dS + 47 £ (1),
IIr—XII [[r — x| lIr — x|

from which Green’s third formula follows immediately. |

7.4 Exercises

1. Prove Green’s first formula, stated in Theorem 4.1.

A function g(x,y,z) is said to be harmonic at a point
(X0, Y0, 20) if g is of class C? and satisfies Laplace s equation
0? 02 02
vig=-8,28,28
0x2  0yr  09z2
on some neighborhood of (xg, Yo, 20). We say that g is har-
monic on a closed region D C R if it is harmonic at all in-
terior points of D (i.e., not necessarily on the boundary of
D). Exercises 2—4 concern some elementary vector analysis of
harmonic functions.

2. Assume that D is closed and bounded and that d D is a
piecewise smooth surface oriented by outward unit nor-
mal fieldn. Let dg/dn denote Vg - n. (The term dg /on
is called the normal derivative of g.) Use Green’s first
formula with f(x, y, z) =1 to show that, if g is har-
monic on D, then

p)
# %8 4s =o0.
ap On

3. Let f be harmonic on a region D that satisfies the
assumptions of Exercise 2.

(a) Show that

/[/DVf~Vde= de%dS

(b) Suppose f(x,y,z) =0 for all (x,y,z)e€ dD.
Use part (a) to show that then we must have
f(x,y,z) = 0 throughout all of D. (Hint: Think
about the sign of V.f < V f.)

4. Let D be a region that satisfies the assumptions of
Exercise 2. Use the result of Exercise 3(b) to show
that if f; and f, are harmonic on D and fi(x, vy, z) =
fo(x, y,z) on dD, then, in fact, f; = f> on all of D.
Thus, we see that harmonic functions are determined
by their boundary values on a region. (Hint: Consider

Si—12)

5. (a) Suppose a fluid of density p(x, vy, z, t) flows with
velocity field F(x, y, z, t) in a solid region W in
space enclosed by a smooth surface S. Use Gauss’s
theorem to show that, if there are no sources or
sinks,

This equation is called the continuity equa-
tion in fluid dynamics. (Hint: The triple integral
[ffy %2aV is the rate of fluid flowing into W,
and the flux of pF across S gives the rate of fluid

flowing out of W.)

(b) Use the argument in part (a) to establish the equa-
tion of continuity for current densities given in

equation (23):

VJ= —a—p.
ot

Let T(x, v, z,t) denote the temperature at the point (x, y, z)
of a solid object D at time t. We define the heat flux density H
by H = —kVT. (The constant k is the thermal conductivity.
Note that the symbol V denotes differentiation with respect to
X, V, z, not with respect to t.) The vector field H represents the
velocity of heat flow in D. It is a fact from physics that the total
heat contained in a solid body D having density p and specific

heat o is
/// opT dV.
D

Hence, the total amount of heat leaving D per unit time is

(Here we assume that o and p do not depend on t.) We also
know that the heat flux may be calculated as

/fwn.ds.

Exercises 6—10 concern these notions of temperature, heat, and
heat flux density.

6. Use Gauss’s theorem to derive the heat equation,
aT
op— =kV°T.
P at
7. In Exercise 6, suppose that k varies with the points in
D; that is, k = k(x, y, z). Show that then we have

aT
0P = kV2T + Vk «VT.

8. In the heat equation of Exercise 6, suppose that o, p,
and k are all constant and the temperature 7' of the
solid D does not vary with time. Show that then T
must be harmonic, that is, that V2T = 0 at all points
in the interior of D.



9.

10.

11.

(a) If o, p, and k are constant and the temperature T
of the solid D is independent of time, show that
the (net) heat flux of H across the boundary of D
must be zero.

(b) Let D be the solid region between two concentric
spheres of radii 1 and 2. Suppose that the inner
sphere is heated to 120° C and the outer sphere to
20° C. Use the result of part (a) to describe the rate
of heat flow across the spheres.

Consider the three-dimensional heat equation

_ u
Y

for functions u(x,y,z,t). (Here V?u denotes the
Laplacian 8%u/0x% 4 3%u/dy?> + 0%u/0z>.) In this ex-
ercise, show that any solution 7'(x, y, z, t) to the heat
equation is unique in the following sense: Let D be a
bounded solid region in R? and suppose that the func-
tions «(x, y, z) and ¢(x, y, z, t) are given. Then there
exists a unique solution 7'(x, y, z, t) to equation (30)
that satisfies the conditions

Viu (30)

T(x,y,z2,0)=a(x,y,z) for(x,y,z)€ D,
(B

and

for (x, y,z) € 0D
andt > 0.

T(x,y z,1) = ¢(x.y,2,1)

To establish uniqueness, let 77 and 75 be two solutions

to equation (30) satisfying the conditions in (31) and

setw =T, —T5.

(a) Show that w must also satisfy equation (30), plus
the conditions that

w(x,y,z,0) =0 forall(x,y,z)e D,
and
w(x,y,z,t)=0 forall (x,y,z)€dDandt > 0.
(b) Fort > 0, define the “energy function”

1
E(t)= = .y, 2, D]*dV.
0 =3 [[[ e vz

Use Green’s first formula in Theorem 4.1 to show
that E’(¢t) < 0 (i.e., that E does not increase with
time).

(c) Show that E(¢t) = 0 forall ¢+ > 0. (Hint: Show that
E(0) = 0 and use part (b).)

(d) Show that w(x,y,z,t)=0 for all >0 and
(x,v,z) € D, and thereby conclude the unique-
ness of solutions to equation (30) that satisfy the
conditions in (31).

Show that Ampere’s law and Gauss’s law imply the
continuity equation for J. (Note: In the text, we use the
continuity equation to derive Ampere’s law.)

12.

13.

14.

15.
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Suppose that E is an electric field, in particular, a vector
field that satisfies the equation V « E = p/¢(. A region
D in space is said to be charge-free if p is zero at
all points of D. Describe the charge-free regions of
E=0—n)i+ 1y i+ (328 -22) k

By considering the derivation of Gauss’s law for elec-
tric fields, show that, for any inverse square vector

field F(x) = kx/||x|]%, the flux of F across a piecewise
smooth, closed, oriented surface S is

#F ds = 0
S | 4nk

Letapoint charge of ¢ coulombs be placed at the origin.
Recover the formula

if S does not enclose the origin,
if § encloses the origin.

_ 49 X
 dme |x)°

by using Gauss’s law in the following way:

(a) First, explain that in spherical coordinates, E(x) =
E(x)e,, that is, that E has no components in either
the e,- or ey-direction. Next, note that £(x) may
be written as E(p)—that is, that || E|| has the same
magnitude at all points on a sphere centered at the
origin.

(b) Show, using Gauss’s law and Gauss’s theorem, that

# E(p)e,-dS = L,
s €0

where S is any smooth, closed surface enclosing
the origin.

(c) Now let S be the sphere of radius a centered at
the origin. Then the outward unit normal n to S at
(p, ¢, 0)is e,. Show that

# E(p)ds =L
s €0

(d) Use part (c) to show that E(p) = q/(4meop?).
Conclude the result desired.

(a) Establish the following identity for vector fields F
of class C2:
V X (V xF)=V(V.F)— V.
(Note: V2F = (V - V)F.)
(b) In free space (i.e., in the absence of all charges and

currents), use Maxwell’s equations to show that E
and B satisfy the wave equation

9%F
VF = k—-,
ot?
where k is a constant. What is k in each case?
(c) Use part (a), Faraday’s law, and Ampére’s law to
show that

V(VE) = (V-VIE = — i | 3 + ¢ 2F
= THOY, % |-
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17.
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(d) Show that, in the absence of any charges (i.e., if
p =0),
V’E = Moa—J + Moeoaz—E-
ot ar?
Verify that if the nonstatic version of Ampeére’s law
(equation (24)) holds, then V « (V X B) = 0.

When Maxwell postulated the existence of displace-
ment currents to arrive at a nonstatic version of
Ampere’s law, he was simply choosing the simplest
way to correct equation (22) so that it would be consis-
tent with the continuity equation (23). However, other
possibilities are also consistent with the continuity
equation.

(a) Show that in order to have equation (22) valid in
the static case, then, in general, we must have

oF,
ot
for some (time-varying) vector field F; of class C2.

V XB=puyd+

(b) By taking the divergence of both sides of the equa-
tion in part (a), show that
oF,; oE
“ar HooV - at
(c) Use part (b) to argue that, from an entirely math-
ematical perspective, Ampére’s law can also be
generalized as

E
VXB= M0J+M0€0§ + I,

where F; is any divergence-free vector field. Since
no one has observed any physical evidence for F,’s
being nonzero, it is assumed to be zero, as in equa-
tion (24).

Suppose that J = o E. (This is a version of Ohm’s law
that obtains in some electric conductors—here o is a
positive constant known as the conductivity.) [f p = 0,
show that E and B satisfy the so-called telegrapher’s
equation,

V’F oF + o€ O°F
= Uo0 — — -
Mo PP Mo€o 312
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Let E and B be steady-state electric and magnetic fields
(i.e., E and B are constant in time). The Poynting vec-
tor field P = E X B represents radiation flux density.
Use Maxwell’s equations to show that, for a smooth,
orientable, closed surface S bounding a solid region D,

#P-dS:—,uo/// E-JdV.
S D

Consider the electric field E(r) defined by equation

(10). Note that the integrals in equation (10) are im-

proper in the sense that they become infinite at points

r € D, where p(r) is nonzero. In this exercise, you will

show that, nonetheless, the integrals in equation (10)

converge when D is a bounded region in R* and p is a

continuous charge density function on D.

(a) Write E(r) in terms of triple integrals for the in-
dividual components. Let r = (ry, 1, r3) and x =
(x.y.2).

(b) Show that if each component of E is written in the

form [[f, f(x)dV, then |f(x)| < K/|lr — x|,
where K is a positive constant.

(c) Tt follows from part (b) that if

I =

converges, so must [[[, f(x)dV. Show that

I =

converges by considering an iterated integral in
spherical coordinates with origin at r. (Hint: Look
carefully at the integrand in spherical coordinates.)

Consider the magnetic field B(r) defined by equation
(15). As was the case with the electric field in equation
(10), it is not obvious that the integrals in (15) converge
at all r € D. Follow the ideas of Exercise 20 to show
that B(r) is, in fact, well-defined at all r, assuming a
continuous current density field J and bounded region
D inR3,

True/False Exercises for Chapter 7

1.

2.

The function X: R*> — R? given by X(s,1) = (25 +
3t+1,4s —t,s + 2t — 7) parametrizes the plane
9x —y— 14z = 107.

The function X:R?> — R? given by X(s,1) = (s* +
3t — 1, 5% + 3, —25% + 1) parametrizes the plane x —
7y —3z+22=0.

The function X:(—o0, 00) x (—%, %) — R* given
by X(s,t)= (s> +3tant — 1,s> 4+ 3, =2s° + tan¢)

parametrizes the plane x — 7y — 3z +22 = 0.

. The surface X(s, t) = (s°t, st?, st) is smooth.



