April 1, 2009

Name
Section/ Name of your TA

Midterm Exam 2 100 pts.
Math 201 Ver ****

- There are 6 pages in the exam including this page.
- Write all your answers clearly. You have to show work to get points for your answers.
- Read all the questions carefully and make sure you answer all the parts.
- You can write on both sides of the paper. Indicate that the answer follows on the back of the page.
- Use of Calculators is not allowed during the exam.

(1) /22
(2) /20
(3) /22
(4) /36
Total /100
(1) 22 pts. Let \(A = \begin{bmatrix} 2 & 2 & -1 \\ 1 & 0 & 0 \\ 4 & 1 & 0 \end{bmatrix} \).

(a) Find the determinant of \(A \). Show work.

(b) Find the classical adjoint of \(A \). Show work.

(c) What is the inverse of \(A \)? Show work.
(2) 20 pts. Let \(P_1 \) be the set of polynomials with degree less than or equal to 1, that is, \(P_1 = \{f(t) = a_0 + a_1 t : a_0, a_1 \in \mathbb{R}\} \). Then both \(B_1 = \{1, t\} \) and \(B_2 = \{1, t - 1\} \) are bases of \(P_1 \).

(a) What is the \(S \) matrix that transforms a vector in \(B_2 \)-coordinates into \(B_1 \)-coordinates? Show work.

(b) Let \(T : P_1 \to P_1 \) be the transformation defined as \(T(a_0 + a_1 t) = a_0 + a_1 (2t - 1) \). Find the matrix \(B \) of the transformation \(T \) with respect to the basis \(B_2 \). Show work.

(c) Let \(f \in P_1 \) be written as \([f]_{B_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) in \(B_2 \)-coordinates. Let \(T \) be as in part (b), then find \([T(f)]_{B_1} \), that is, find \(T(f) \) in \(B_1 \)-coordinates. Show work.
(3) 22 pts. (a) Let \(\begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \) and \(\begin{bmatrix} 0 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ -1 \\ 0 \\ -1 \end{bmatrix} \) be two different sets in \(\mathbb{R}^4 \) spanning the same subspace. Which of these two sets are orthogonal? Show work.

(b) Let \(\begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \) be a basis of a subspace \(V \) of \(\mathbb{R}^4 \). Find an orthonormal basis of \(V \). Show work.
(4) 36 pts. These are all short answer questions. Explain your answer. Each of these problems is worth 12 points.

(a) Let $\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = 6$. Find $\det \begin{bmatrix} a - d & b - e & c - f \\ g & h & i \\ 4d & 4e & 4f \end{bmatrix}$. Explain your answer.

(b) The space of polynomials of degree less than or equal to 1, \mathcal{P}_1, is isomorphic to the space of complex numbers $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$. State true or false. Give reasons.
(c) Find the volume of the parallelepiped which has the vectors \[
\begin{bmatrix}
2 \\
-1 \\
1
\end{bmatrix},
\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix} \text{ and } \begin{bmatrix}
0 \\
2 \\
0
\end{bmatrix}
\] as three edges. Show work and explain your answer.