Midterm Exam # 2
Time: 50 minutes

No books, notes, calculators. Please explain carefully all steps leading to your solutions, or risk losing credit.

Problem 1: (6 points=2+1+1+2) Consider the plane E in \mathbb{R}^3 with equation $x_1 + 2x_2 + x_3 = 0$, and let p denote the orthogonal projection onto E.

1. If (u_1, u_2) is an orthonormal basis of E, write the formula for $p(v)$ in terms of u_1 and u_2 (where v is any vector in \mathbb{R}^3).

2. Find a basis of E.

3. Find an orthonormal basis of E.

4. Find the matrix for p in the standard basis of \mathbb{R}^3.
Problem 2: (9 points=3+2+1+1+2) Consider the linear space P of polynomials with real coefficients.

1. Are the following subsets of P linear subspaces? Explain why.
 - the set E_0 of polynomials p such that $p(0) = 0$
 - the set E_1 of polynomials p such that $p(1) = 1$
 - the set P_2 of polynomials of degree 2 or less

 Consider the linear map f from P_2 to P_2 defined by $f(p(x)) = p''(x) + 3p'(x)$.

2. Find the kernel of f. Is f an isomorphism?

3. Find the matrix for f in the standard basis $(1, x, x^2)$ of P_2.

4. Prove that the vectors $p_1 = 2 + x$, $p_2 = 3$, $p_3 = 1 + 2x + 3x^2$ are linearly independent.

5. Find the matrix for f in the basis (p_1, p_2, p_3).
Problem 3: (5 points=1+2+2)
Consider the matrix:

\[M = \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 2 & 1
\end{pmatrix} \]

and let \(v_1, v_2, v_3 \) denote its column vectors.

1. **Prove that** \(v_1, v_2, v_3 \) **are linearly independant.**

2. **Perform the Gram-Schmidt process on** \(\{v_1, v_2, v_3\} \).

3. **Write the QR-factorization of** \(M \).