MATH 201, MIDTERM #2

Directions: This is a pencil-and-paper exam. You are asked to put away all books, notes, calculators, cell phones, and other computing and/or telecommunications equipment. The last page of this booklet is blank and is intended for use as scrap paper. Additional sheets of paper are available upon request.

Grading: There are fifteen questions on the exam, typically worth 4 points, for a total of 60 points.

Special Note: Many of the problems in this exam may be interrelated. If the answer to one question appears to require the answer to a previous question which you have not solved, you may instead explain how this missing information would be used to solve the problem.

Problems 1-4 will involve the linear space \(V = \left\{ 2 \times 2 \text{ matrices} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right\} \).

1. [6 points] Find a basis for \(V \).

2. [2 points] What is the dimension of \(V \)?

3. Given any \(2 \times 2 \) matrix \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), we can “rotate” the entries to form a new matrix \(T(A) = \begin{bmatrix} c & a \\ d & b \end{bmatrix} \).

Find a matrix \(A \) which solves \(T(A) = -A \).
We continue examining the linear transformation \(T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} c & a \\ d & b \end{bmatrix} \)

4. Suppose we know that \(T^4(A) = A \) for every \(2 \times 2 \) matrix \(A \).
 Explain why every eigenvalue of \(T \) must satisfy \(\lambda^4 = 1 \).

In Problems 5 and 6, we consider the linear transformation \(Tf(x) = xf(x) - 3 \int_0^x f(t) \, dt \),
acting on the space \(P_2 = \left\{ \text{All quadratic polynomials } f(x) = ax^2 + bx + c \right\} \).

5. If \(g \) represents the function \(g(x) = 1 \) for all \(x \), what is the function \(Tg \)?

6. Show that if \(f \) is any function in \(P_2 \), then the resulting function \(Tf \) is also in \(P_2 \).
7. What is the determinant of the matrix \(A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 5 & 6 \\ 0 & 0 & 5 & 7 \\ 0 & 0 & 0 & 10 \end{bmatrix} \)?

8. Now consider \(B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 4 & 6 \\ 0 & 0 & 5 & 7 \\ 0 & 0 & 0 & 10 \end{bmatrix} \). How is the determinant of \(B \) related to the determinant of \(A \)?

Hint: Use row operations to turn matrix \(B \) into matrix \(A \).

9. Now consider \(C = \begin{bmatrix} 0 & 0 & 0 & 10 \\ 0 & 0 & 5 & 7 \\ 0 & 2 & 5 & 6 \\ 1 & 2 & 3 & 4 \end{bmatrix} \). How is the determinant of \(C \) related to the determinant of \(A \)?
10. What are the eigenvalues of the matrix \(M = \begin{bmatrix} -1 & -3 \\ 4 & 6 \end{bmatrix} \)? Call them \(\lambda_1 \) and \(\lambda_2 \).

 Your answer may include complex numbers, if the eigenvalues are complex.

 Check your work carefully! You will have trouble with the next few questions if there is a mistake here.

11. Write down a matrix whose kernel tells you the eigenvectors of \(M \) associated to the eigenvalue \(\lambda_1 \).

 Again, your answer may have some complex numbers in it.

12. Find an eigenvector \(\vec{v}_1 \) of \(M \) with eigenvalue \(\lambda_1 \).
On the previous page we found that the matrix \(M = \begin{bmatrix} -1 & -3 \\ 4 & 5 \end{bmatrix} \) has the eigenvalues \(\lambda_1 = \quad \) and \(\lambda_2 = \quad \).

13. How large are the entries of the matrix \(M^{50} \)?
 First give an approximate answer in terms of the eigenvalues of \(M \).

Then circle the most accurate description from the list below:
 a) Larger than 1,000,000
 b) Between 1 and 1,000,000
 c) Between 0.000001 and 1
 d) Smaller than 0.000001
 e) It depends which entry of the matrix \(M^{50} \) we're looking at.

14. What are the eigenvalues of the matrix \(A = 2 \begin{bmatrix} \cos 72^\circ & -\sin 72^\circ \\ \sin 72^\circ & \cos 72^\circ \end{bmatrix} \)?
 Your answer may be expressed in terms of trigonometric functions.

15. Fill in the blanks: \(A^5 = \begin{bmatrix} \quad & \quad \\ \quad & \quad \end{bmatrix} \).
 [Here, \(A \) is the same matrix as in Problem 14.]