Midterm 1 – 201, Fall 2016
Instructor: Wenjing Liao

- Please keep your own work covered up as much as possible during the exam so that others will not be tempted or distracted.
- No notes, books or calculators are allowed.
- Read each problem carefully. Show all work for full credit.
- Make sure you have 10 pages, including the cover page (Page 1) and the score page (Page 2).

Name: ________________ Section: _______________

I would not assist anybody else in the completion of this exam. I would not copy answers from others. I would not have another student take the exam for me.

Signature: _______________
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1: (20 points):

Write down T if the following statement is true and F if the statement is false. (2 points each)

Example: F 10 vectors in \(\mathbb{R}^9 \) can be linearly independent.

(1) ______ The transformation \(T(A) = A^T \) from \(\mathbb{R}^{5 \times 5} \) to \(\mathbb{R}^{5 \times 5} \) is an isomorphism.

(2) ______ Consider the linear transformation:

\[
T(\vec{x}) = \det \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_{n-1} & \vec{x} \end{bmatrix}
\]

from \(\mathbb{R}^n \) to \(\mathbb{R} \), where \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{n-1} \) are linearly independent vectors in \(\mathbb{R}^n \). The nullity of \(T \) is equal to \(n \).

(3) ______ Determinant of the following matrix is necessarily 0.

\[
\begin{bmatrix}
 a_1 b_1 & a_1 b_2 & a_1 b_3 & a_1 b_4 \\
 a_2 b_1 & a_2 b_2 & a_2 b_3 & a_2 b_4 \\
 a_3 b_1 & a_3 b_2 & a_3 b_3 & a_3 b_4 \\
 a_4 b_1 & a_4 b_2 & a_4 b_3 & a_4 b_4
\end{bmatrix}
\]

(4) ______ The dimension of \(W^\perp \) is equal to 2, where

\[
W = \text{span} \begin{pmatrix} 1 & -1 \\ 2 & -2 \\ 3 & -3 \\ 4 & -4 \end{pmatrix}
\]

(5) ______ The following matrix is an orthogonal matrix.

\[
\begin{bmatrix}
 2 & -2 & 1 \\
 1 & 2 & 2 \\
 2 & 1 & -2
\end{bmatrix}
\]
(6) _____ If the $n \times n$ matrices A and B are orthogonal matrices, $A + B$ must be orthogonal as well.

(7) _____ Consider an orthonormal basis $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ in \mathbb{R}^n. The least-squares solution of the system $A\vec{x} = \vec{u}_n$ where $A = [\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_{n-1}]$ is $\vec{x} = \vec{0}$.

(8) _____ $(f, g) = f(1)g(1) + f(2)g(2)$ is an inner product in P_1.

(9) _____ Let A be an $n \times n$ matrix. If λ is an eigenvalue of A, then $\lambda^2 + \lambda + 1$ is an eigenvalue of the matrix $A^2 + A + I_n$.

(10) _____ There is an orthogonal transformation T from \mathbb{R}^3 to \mathbb{R}^3 such that

\[
T \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} \quad \text{and} \quad T \begin{bmatrix} -3 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}.
\]
Problem 2 (12 points):

Let

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

(1) Find the eigenvalues of A. (5 points)

(2) Find the eigenvectors of A. (7 points)
Problem 3 (16 points):

Let

\[A = \begin{bmatrix} -1 & 1 \\ 1 & 3 \\ -1 & 1 \end{bmatrix} \]

(1) Find the QR factorization of \(A \). (10 points)

(2) Let \(V = \text{image}(A) \). Compute \(\text{Proj}_V \begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \end{bmatrix} \). (6 points)
Problem 4 (20 points, 5 points each):

Let \(A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) and \(B = \begin{pmatrix} a & d & g \\ b & e & h \\ 1 & 2 & 3 \end{pmatrix} \) such that \(\det A = 2 \) and \(\det B = 3 \).

(1) Compute \(\det \begin{pmatrix} 0 & 0 & 1 & -2 \\ a & b & c & 1 \\ d & e & f & 2 \\ g & h & i & 3 \end{pmatrix} \).

(2) Suppose \(\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \) is the solution of \(A\vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \). Evaluate \(x_3 \).

(3) Let \(C = (ABA^{-1})^{2019} \). Compute \(\det C \).

(4) Compute \(\det E \), where \(E \) is the reduced row echelon form of \(B \).
Problem 5 (20 points):

Consider the linear transformation \(T : P_3 \to P_3 \) such that
\[
T(a + bt + ct^2 + dt^3) = a + dt + (b + c)t^2 + (a + d)t^3.
\]

(1) Given the basis \(\mathcal{B} = \{1, t, t^2, t^3\} \) in \(P_3 \). Find the \(\mathcal{B} \)-matrix of \(T \) with respect to the basis \(\mathcal{B} \). (8 points)
(2) Find a basis of the kernel of T. (6 points)

(3) Find a basis of the image of T. (6 points)
Problem 6 (12 points):

Let \(\vec{e} \) be a unit vector in \(\mathbb{R}^3 \). Consider the linear transformation \(T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) such that \(T(\vec{x}) = 2(\vec{e} \cdot \vec{x})\vec{e} - \vec{x} \).

1. Given a geometric interpretation of \(T \). In other words, express \(T \) in terms of reflections, projections, or rotations. (4 points)

2. Is \(T \) an isomorphism? Why? (4 points)

3. Is \(T \) an orthogonal transformation? Why? (4 points)