Ex 1 In a certain town, 30% of the married men get divorced each year and 20% of the single men get married each year. Suppose that initially there are 8000 married men and 2000 single men. What is the proportion of married as \(k \to \infty \)?

Sol Let \(w_k = \begin{bmatrix} w_{k1} \\ w_{k2} \end{bmatrix} = \begin{bmatrix} \text{number of married men after } k \text{ years} \\ \text{number of single men after } k \text{ years} \end{bmatrix} \).

Let \(A \) be the \(2 \times 2 \) matrix such that \(w_{k+1} = Aw_k \).

\[
A = \begin{bmatrix} \text{proportion of married} & \text{proportion of single} \\ \text{proportion of married} & \text{proportion of single} \end{bmatrix} = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix}
\]

\(w_0 = \begin{bmatrix} 8000 \\ 2000 \end{bmatrix} \). After the first year we get \(w_1 = Aw_0 = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix} \begin{bmatrix} 8000 \\ 2000 \end{bmatrix} = \begin{bmatrix} 6000 \\ 4000 \end{bmatrix} \).

After the second year we get \(w_2 = Aw_1 = A^2w_0 \) and so on:

\[
w_k = A^k w_0
\]

It seems like as \(k \to \infty \), \(w_k \) converges: \(w_{10} = \begin{bmatrix} 4004 \\ 5996 \end{bmatrix}, w_{20} = \begin{bmatrix} 4000 \\ 6000 \end{bmatrix}, w_{30} = \begin{bmatrix} 4000 \\ 6000 \end{bmatrix} \).

In fact, any initial condition will converge to the steady state \((4000, 6000)^T\), for which the number of divorces \(0.3 \cdot 4000\) is equal to the number of marriages \(0.2 \cdot 6000\). If we start with \(x_1 = (2, 3)^T \) proportional to the steady state we get back \(x_1 \):

\[
A x_1 = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} = x_1
\]

There is another vector \(x_2 = (-1, 1)^T \) that \(A \) acts on by simply multiplying by \(1/2\):

\[
A x_2 = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1/2 \end{bmatrix} = \frac{1}{2} x_2
\]

The vectors \(x_1, x_2 \) form a basis so we can write our initial condition in terms of these:

\[
w_0 = \begin{bmatrix} 8000 \\ 2000 \end{bmatrix} = 2000 \begin{bmatrix} 2 \\ 3 \end{bmatrix} - 4000 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = 2000x_1 - 4000x_2.
\]

Then as \(k \to \infty \)

\[
w_k = A^k w_0 = 2000A^k x_1 - 4000A^k x_2 = 2000x_1 - 4000 \frac{1}{2^k} x_2 \to 2000x_1 = \begin{bmatrix} 4000 \\ 6000 \end{bmatrix}.
\]

A scalar \(\lambda \) such that \(Ax = \lambda x \) for some \(x \neq 0 \) is called an eigenvalue and a corresponding vector \(x \) is called an eigenvector.

We just calculated \(A^k x \) for large \(k \) using the eigenvalues and eigenvectors.

We express \(x = c_1 x_1 + c_2 x_2 \) in terms of the basis of eigenvectors \(Ax_i = \lambda_i x_i, i = 1, 2 \).

Change of coordinates \(x = P \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \), where \(P = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \), so \(\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = P^{-1} x \).

Then \(A^k x = c_1 \lambda_1^k x_1 + c_1 \lambda_2^k x_2 = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} ^k \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = PD^k P^{-1} x, \) where \(D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \).

Hence \(A = PD P^{-1} \) and \(A^k = (PD P^{-1})^k = PD P^{-1} PD P^{-1} \cdots PD P^{-1} = PD P^{-1} \).
Eigenvectors

A scalar \(\lambda \) such that \(A\mathbf{x} = \lambda \mathbf{x} \) for some \(\mathbf{x} \neq 0 \) is called an **eigenvalue** and a corresponding vector \(\mathbf{x} \) is called an **eigenvector**.

Ex 2 Let \(L \) be the line in \(\mathbb{R}^2 \) that is spanned by the vector \(\begin{bmatrix} 3 \\ 1 \end{bmatrix} \).

Let \(T \) be the linear transformation that projects any vector orthogonally onto \(L \).

The matrix for \(T \) in the standard coordinate system is \(A = \frac{1}{10} \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix} \).

Find the eigenvectors and eigenvalues.

Sol Since the projection leaves the line invariant the vector \(\mathbf{x}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \) must be an eigenvector with eigenvalue 1: \(A\mathbf{x}_1 = \mathbf{x}_1 \). Moreover, since the orthogonal vector \(\mathbf{x}_2 = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \) is mapped to 0 its also an eigenvector with eigenvalue 0: \(A\mathbf{x}_2 = 0 = 0 \cdot \mathbf{x}_2 \).

If we express \(\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 \), in terms of the basis of eigenvectors then \(A\mathbf{x} = c_1 \mathbf{x}_1 \).

Change of coordinates \(\mathbf{x} = P \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \), where \(P = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix} \), and \(\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = P^{-1} \mathbf{x} \),

where \(P^{-1} = \frac{1}{10} \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix} \).

Hence \(A\mathbf{x} = c_1 \mathbf{x}_1 = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = PD P^{-1} \), where \(D = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \).

The matrix \(D \) for \(T \) in the \(B = \{ \mathbf{x}_1, \mathbf{x}_2 \} \) coordinate system is hence very simple.

The matrix for \(A \) for \(T \) in the standard coordinates is more complicated. The following diagram commute

\[\begin{array}{ccc}
\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} &=& \begin{bmatrix} \mathbf{x} \end{bmatrix}_B \\
\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} &=& \begin{bmatrix} \mathbf{x} \end{bmatrix}_B
\end{array} \]

Ex 3 Let \(T \) be the linear transformation rotating a vector an angle \(\theta \). The matrix for \(T \) is

\[A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \]. Find the eigenvectors and eigenvalues of \(T \).

Sol Unless \(\theta \) is a multiple of \(\pi \) it does not have any real eigenvalues and eigenvectors. If \(\theta \) is a multiply of \(\pi \) the eigenvalues are \(\pm 1 \).
The vectors with eigenvalue 1:

Then as \(k \to \infty \) the vector \(\mathbf{w} \) is called a steady state solution. If \(\mathbf{x}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \) have

There is another vector \(\mathbf{x}_2 = (-1,1)^T \) that \(A \) acts on by simply multiplying by \(1/2 \):

The vectors \(\mathbf{x}_1, \mathbf{x}_2 \) form a basis so we can write our initial condition in terms of these:

Then as \(k \to \infty \)

A scalar \(\lambda \) such that \(A \mathbf{x} = \lambda \mathbf{x} \) for some \(\mathbf{x} \neq 0 \) is called an eigenvalue and a corresponding vector \(\mathbf{x} \) is called an eigenvector.

We just calculated \(A^k \mathbf{x} \) for large \(k \) using the eigenvalues and eigenvectors.

We express \(\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 \) in terms of the basis of eigenvectors \(A \mathbf{x}_i = \lambda_i \mathbf{x}_i, i=1,2 \).

Change of coordinates \(\mathbf{x} = P \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \), where \(P = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix} \), so \(\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = P^{-1} \mathbf{x} \).

Then \(A^k \mathbf{x} = c_1 \lambda_1^k \mathbf{x}_1 + c_2 \lambda_2^k \mathbf{x}_2 = P \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \begin{bmatrix} \lambda_1^k & 0 \\ 0 & \lambda_2^k \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = P D^k P^{-1} \mathbf{x} \), where \(D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \).

Hence \(A = P D P^{-1} \) and \(A^k = (P D P^{-1})^k = P D P^{-1} P D P^{-1} \cdots P D P^{-1} = P D^k P^{-1} \).

Ex 2 Let \(L \) be the line in \(\mathbb{R}^2 \) that is spanned by the vector \(\begin{bmatrix} 3 \\ 1 \end{bmatrix} \).

Let \(T \) be the linear transformation that projects any vector orthogonally onto \(L \).

The matrix for \(T \) in the standard coordinate system is \(A = \frac{1}{10} \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix} \).

Find the eigenvectors and eigenvalues.

Since the projection leaves the line invariant the vector \(\mathbf{x}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \) must be an eigenvector with eigenvalue 1: \(A \mathbf{x}_1 = \mathbf{x}_1 \). Moreover, since the orthogonal vector \(\mathbf{x}_2 = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \) is mapped to \(\mathbf{0} \) its also an eigenvector with eigenvalue 0: \(A \mathbf{x}_2 = \mathbf{0} = 0 \cdot \mathbf{x}_2 \).