May 7, 2009

Name
Section/ Name of your TA

Final Exam 200pts.
Math 201 Ver ****

• There are 12 pages in the exam excluding this page.
• Write all your answers clearly. You have to show work to get points for your answers.
• Read all the questions carefully and make sure you answer all the parts.
• Questions 1-8 have parts in them which are inter-related.
• You can write on both sides of the paper. Indicate that the answer follows on the back of the page.
• Use of Calculators is not allowed during the exam.

(1) /20
(2) /20
(3) /20
(4) /15
(5) /15
(6) /15
(7) /20
(8) /15
(9) /32
(10) /28

Total /200
20pts. Let $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$.

(a) Find the eigenvalues of A.

(b) Is A diagonalizable? explain why or why not?
Let A be a 2×2 matrix with eigenvalues $\frac{1}{2}$ and $-\frac{1}{2}$. Let

$$\text{Ker } (A - \frac{1}{2}I) = \text{Span}\{\begin{bmatrix} 2 \\ 1 \end{bmatrix}\}$$

and

$$\text{Ker } (A + \frac{1}{2}I) = \text{Span}\{\begin{bmatrix} 1 \\ 1 \end{bmatrix}\}.$$

(a) Let

$$\vec{x}(t + 1) = \begin{bmatrix} x_1(t + 1) \\ x_2(t + 1) \end{bmatrix} = A\vec{x}(t).$$

Given that $\vec{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, find $\vec{x}(3)$.

(b) Draw the phase portrait for the discrete system in part (a).
3 20pts. Let $A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$.

(a) Given that $\lambda = 0$ and 2 are the only eigenvalues of A. Find an orthonormal basis of \mathbb{R}^3 denoted by \mathcal{B} consisting of eigenvectors of A.

(b) Given the following quadratic form $q(x_1, x_2) = 3x_1^2 + 4x_1x_2 + 3x_2^2$. Describe q in terms of \mathcal{B} coordinates. Show work.
4 15pts. Let f denote a infinitely differentiable function on \mathbb{R}. Find all real solutions to the following differential equation.

$$\frac{d^2 f}{dt^2} - f(t) = 0.$$
(a) Find the inverse of A, if it exists.

\[
A = \begin{bmatrix}
1 & 0 & 1 \\
2 & 1 & -2 \\
3 & 1 & 0
\end{bmatrix}
\]

(b) Give a basis of the Image of the transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined as $T(\vec{x}) = A\vec{x}$.
(a) Given that the above is the augmented matrix of a system of equations, find h such that it is consistent.

(b) For $h = 0$ find the least squares solution to the system.
Let \[\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \] and \[\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} \] be two different bases of a subspace \(W \) in \(\mathbb{R}^3 \).

(a) Which of the two sets are orthogonal? Show work.

(b) Let \(\vec{y} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \). Is \(\vec{y} \in W \)?

(c) Find \(\text{proj}_W \vec{y} \), that is, the orthogonal projection of \(\vec{y} \) onto \(W \).
Let A be a 2×2 matrix with eigenvalues 1 and 3, such that $\text{Ker}(A - I) = \text{Span}\left\{\begin{bmatrix} -1 \\ 1 \end{bmatrix}\right\}$ and $\text{Ker}(A - 3I) = \text{Span}\left\{\begin{bmatrix} 1 \\ -3 \end{bmatrix}\right\}$.

(a) Find A. Show work.

(b) Let T denote the transformation $T\vec{x} = A\vec{x}$. Write down the matrix of the transformation T with respect to the basis $\left\{\begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \end{bmatrix}\right\}$. Show work.
9 32pts. Answer the following in short. **Give justification for your answers.**

(i) Let \mathcal{D} denote the space of differentiable functions from $\mathbb{R} \to \mathbb{R}$. Is the function $<,>: \mathcal{D} \times \mathcal{D} \to \mathbb{R}$ defined as

$$< f, g > = f(0)g'(0) + f'(0)g(0)$$

an inner product on \mathcal{D}?

(ii) Let $V = \text{Span}\{ \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix}\}$. Find the dimension of V. Explain your answer.
9(iii) Let A be a 2×2 matrix with eigenvalues $-1 \pm 2i$. Then consider the system of differential equations,

$$\begin{bmatrix}
\frac{dx_1}{dt} \\
\frac{dx_2}{dt}
\end{bmatrix} = A \begin{bmatrix} x_1 \\
 x_2
\end{bmatrix}.$$

What happens to $x(t)$ as $t \to \infty$? Show work.

9(iv) Let A be an 2×2 matrix such that $A^3 = \begin{bmatrix} 1 & 0 \\
0 & 1
\end{bmatrix}$. Then find Ker A.
10 28pts. State true or false with justification.

10(i) If A is a orthogonal 3×3 matrix then $\det A > 0$.

10(ii) Let $W = \text{Span}\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ and $\vec{w}_2 \in \text{Span}\{\vec{w}_1, \vec{w}_3\}$. Then $W = \text{Span}\{\vec{w}_1, \vec{w}_3\}$.
10(iii) Let $T : V \rightarrow W$ be an invertible linear transformation from a vector space V to another vector space W. If \{v_1, v_2, v_3\} is a linearly independent subset of V, then $\{Tv_1, Tv_2, Tv_3\}$ is a linearly independent set in W.

10(iv) If A is a 2×2 symmetric matrix then all its eigenvalues are positive real numbers.