1. How many solutions are there to the system of linear equation
\[
\begin{align*}
&x_1 - 3x_2 = 0 \\
&3x_1 - 2x_2 = 7 \\
&2x_1 + x_2 = 7
\end{align*}
\]

Sol. The second equation is the sum of the first and third so it is not needed. The remaining 2x2 system
\[
\begin{bmatrix}
1 & -3 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= \begin{bmatrix}
0 \\
7
\end{bmatrix}
\]
has an invertible coefficient matrix so it is uniquely solvable.

2. The vectors \(v_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \) and \(v_2 = \begin{bmatrix} 5 \\ 3 \end{bmatrix} \) form a basis for \(\mathbb{R}^2 \). Express the vector \(e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) as a linear combination of \(v_1 \) and \(v_2 \).

Sol. Since \(e_1 = c_1v_1 + c_2v_2 \) gives the system \(2c_1 + 5c_2 = 1 \) and \(c_1 + 3c_2 = 0 \). The second equation gives \(c_1 = -3c_2 \) which if we substitute into the first gives \(-c_2 = 1 \) so \(c_2 = -1 \) and \(c_1 = 3 \).

3. Suppose a linear transformation \(T \) has the property that \(T(v_1) = v_1 + v_2 \) and \(T(v_2) = 2v_1 + 3v_2 \). Use your answer to problem 2 to find the value of \(T(e_1) \).

Sol. \(T(e_1) = T(3v_1 - v_2) = 3(v_1 + v_2) - (2v_1 + 3v_2) = v_1 \).

4. Are the vectors \(v_1 = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \), \(v_2 = \begin{bmatrix} 4 \\ -2 \\ 2 \end{bmatrix} \), \(v_3 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \), and \(v_4 = \begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix} \) all linearly independent?

If not, identify which of these vectors are redundant.

Sol. They are linearly dependent since it is four vectors in a three dimensional space. The rest of the problem is most easily solved as in Problem 5.

5. Consider the matrix \(A = \begin{bmatrix} 2 & 4 & 3 & 1 \\ -1 & -2 & 1 & 3 \\ 1 & 2 & 2 & 0 \end{bmatrix} \). Choose a basis for the image of \(A \).

Sol. Row reduction gives
\[
\begin{bmatrix}
2 & 4 & 3 & 1 \\
-1 & -2 & 1 & 3 \\
1 & 2 & 2 & 0
\end{bmatrix}
\Leftrightarrow
\begin{bmatrix}
0 & 0 & -1 & 1 \\
0 & 0 & 3 & -3 \\
1 & 2 & 2 & 0
\end{bmatrix}
\Leftrightarrow
\begin{bmatrix}
1 & 2 & 2 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\Leftrightarrow
\begin{bmatrix}
1 & 2 & 0 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\Leftrightarrow
\begin{bmatrix}
1 & 2 & 0 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix} - (2) \begin{bmatrix}
1 & 2 & 0 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 0 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix} - (1) \begin{bmatrix}
1 & 2 & 0 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\]

The first and third column of \(B = \text{RREF}(A) \) corresponds to the leading variables and as a consequence the first and third column of \(A \) form a basis for the image of \(A \), see section 3.2-3.

Rem. This is because any linear relation amongst the columns of \(B \) corresponds to the same relation amongst the columns of \(A \) since \(Bx = 0 \) has the same solution set as \(Ax = 0 \), i.e. if \(A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix}, \ B = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \end{bmatrix} \) then \(x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 = 0 \) if and only if \(x_1b_1 + x_2b_2 + x_3b_3 + x_4b_4 = 0 \). We have \(b_4 = 2b_1 - b_3 \) so \(a_4 = 2a_1 - a_3 \) and \(b_2 = 2b_1 \) so \(a_2 = 2a_1 \).

6. Chose a basis for the kernel of \(A \).

Sol. By the solution to problem 5, \(x_2 \) and \(x_4 \) are free variables so the and \(x_1 + 2x_2 + x_4 = 0 \) and \(x_3 - x_4 = 0 \) so the solution set is
\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} = x_2 \begin{bmatrix}
-2 \\
1 \\
0 \\
0
\end{bmatrix} + x_4 \begin{bmatrix}
-1 \\
0 \\
1 \\
1
\end{bmatrix}
\]
and these vectors form a basis for the kernel.
7. Let \(Tf(x) = \frac{f(x) - f(0)}{x} \), acting on functions \(f \).
If a domain of \(T \) is \(\mathcal{P}_n = \{ \text{polynomials } f(x) = a_0 + a_1 x + \cdots = a_n x^n \} \),
then what is the image of \(T \)?
Sol. The image is polynomial of degree one less \(Tf = a_1 + 2a_2 x + \cdots + na_n x^{n-1} \).

8. Show that the kernel of \(T \) is the space \(\mathcal{P}_0 \) of constant functions.
Sol. \(Tf = 0 \) is equivalent to \(f = a_0 \).

9. What is the determinant of the matrix \(M = \begin{bmatrix} 1 & 2 & 1 & 0 \\ -1 & 3 & 3 & 1 \\ 0 & 0 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{bmatrix} \)?
Sol. Subtracting a multiple of the first row from the second and third rows gives
\[
\begin{vmatrix} 1 & 2 & 1 & 0 \\ -1 & 3 & 3 & 1 \\ 0 & 0 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 1 & 0 \\ 0 & 5 & 4 & 1 \\ 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & 2 \end{vmatrix} = 1 \cdot 5 \cdot 3 \cdot 2 = 30,
\]
since the determinant of a triangular matrix is the product of the diagonal elements.
Rem. Note that we only used the row operators that subtract off a multiple of another row from the row we change and these don’t change the determinant.
Note also that alternatively as a second step one could have expanded along the first column.

10. Give an example of \(2 \times 2 \) matrices \(A \) and \(B \) where \(\det(A) + \det(B) \) is not equal to \(\det(A + B) \).
Sol. If \(A = I \) and \(B = -I \).

11. Find all eigenvalues of the matrix \(A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 4 \\ 0 & 0 & 2 \end{bmatrix} \).
Sol. Since \(A \) is triangular the eigenvalues are the diagonal entries \(\lambda_1 = \lambda_2 = 0 \) and \(\lambda_3 = 2 \).

12. For each of the eigenvalues of \(A \), find the associated eigenspace.
Sol. For \(\lambda_1 = \lambda_2 = 0 \) we get the system \((A - 0I)x = 0 \), which is equivalent to \(x_3 = 0 \) and \(x_2 = 0 \) and hence the eigenspace is one dimensional \(\text{Span}\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \} \).
For \(\lambda_3 = 2 \) we get the system \((A - 2I)x = 0 \), which is equivalent to \(-2x_1 + x_2 + 2x_2 = 0 \) and \(-x_2 + 2x_3 = 0 \) and hence the eigenspace is one dimensional \(\text{Span}\{ \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \} \).

13. Is it possible to diagonalize the matrix \(A \)?
Sol. \(A \) is not diagonalizable since it does not have three linearly independent eigenvectors.

14. What is the length of the vector \(v = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \)?
15. What is the angle between the vectors \(\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix} \) and \(\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \)?

Sol. \(\|\mathbf{v}\| \|\mathbf{e}_1\| \cos \theta = \mathbf{v} \cdot \mathbf{e}_2 = 1 \) so \(\cos \theta = \frac{1}{\sqrt{4}} \).

16. What is the projection of \(\mathbf{e}_2 \) onto the line spanned by \(\mathbf{v} \)?

Sol. Let \(\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} \). Then the projection is \((\mathbf{e}_2 \cdot \mathbf{u}) \mathbf{u} = \frac{\mathbf{e}_2 \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v} = \frac{1}{4} \begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix} \).

17. The system of equations \(\begin{cases} x_1 = 5 \\ x_1 = 1 \text{ (equivalently, } \begin{bmatrix} 1 \\ 1 \end{bmatrix} x_1 = \begin{bmatrix} 5 \\ 1 \end{bmatrix}) \end{cases} \) is hopelessly inconsistent. What values of \(x_1 \) provides the least-squares approximate solution?

18. Decide whether the function \(\langle f, g \rangle = \int_{-1}^{1} f(x)g(-x)dx \) is a valid inner product, where \(f \) and \(g \) are allowed to be any pair of continuous functions on the interval \([-1, 1]\).

Sol. It is not since we can take \(f(t) = 0 \) when \(t < 0 \) but \(f(t) = t \) for \(t > 0 \) in which case \(\langle f, f \rangle = 0 \) but \(f \neq 0 \).

19. True or False: If \(A \) and \(B \) are both symmetric matrices, then their product \(AB \) must also be symmetric. Explain the reasoning behind your answer.

Sol. False, take e.g. \(A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) and \(B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \).

20. True or False: If \(A \) and \(B \) are both orthogonal matrices, then their product \(AB \) must also be orthogonal. Explain the reasoning behind your answer.

Sol. True, since \(A \) and \(B \) are orthogonal \(A^T A = I \) and \(B^T B = I \), and it follows that \((AB)^T AB = B^T A^T A B = B^T I B = B^T B = I \) so \(AB \) is orthogonal.

21. How many complex eigenvalues does the matrix \(M = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 2 & 2 \\ 1 & 2 & 0 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix} \) have?

Sol. Since \(M \) is symmetric all the eigenvalues are real.

22. Express the quadratic form \(q(x_1, x_2) = x_1^2 + 6x_1x_2 + 8x_2^2 \) as an inner product \(q(\mathbf{x}) = \langle \mathbf{x}, A\mathbf{x} \rangle \), where \(A \) is a symmetric matrix.

Sol. \(A = \begin{bmatrix} 1 & 3 \\ 3 & 8 \end{bmatrix} \).

23. Is there a choice of numbers \((x_1, x_2) \) for which \(q(x_1, x_2) \) is negative? What does the set of points where \(q(x_1, x_2) = 1 \) look like? [Please describe the overall shape of the set - it is not necessary to give exact specifications.]
The characteristic polynomial is \((1-\lambda)(8-\lambda) - 9 = \lambda^2 - 9\lambda - 1\) which has roots
\(\lambda_\pm = 9/2 \pm \sqrt{(9/2)^2 + 1}\) so \(\lambda_- < 0\) and \(\lambda_+ > 0\). Since \(A\) is symmetric it can be diagonalized
\(A = QDQ^T\) and if we set \(y = Q^T x\) we get
\[q(x) = \langle x, Ax \rangle = \langle x, QDQ^T x \rangle = \langle Q^T x, DQ^T x \rangle = \langle y, Dy \rangle = \lambda_- y_1^2 + \lambda_+ y_2^2 = \tilde{q}(y). \]
Hence \(\tilde{q}(1,0) = \lambda_- \leq 0\). Now, \(y_0 = (y_1, y_2) = (1, 0)\) corresponds to some \(x_0 = Qy_0\) such that
\[q(x_0) = \tilde{q}(y_0) = \lambda_- < 0. \] The set \(\tilde{q}(y) = \lambda_- y_1^2 + \lambda_+ y_2^2 = 1\) is a hyperbola.

24. What are the singular values of matrix
\(A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & -1 \end{bmatrix} \)?

Sol. The singular values are the square root of the eigenvalues of
\(A^T A = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix} \).

The characteristic polynomial is \((6-\lambda)(3-\lambda) - 4 = \lambda^2 - 9\lambda + 14 = (\lambda-9/2)^2 - 25/4\), so the eigenvalues are \(9/2 \pm 5/2\) so \(\lambda_1 = 7\) and \(\lambda_2 = 2\) and the singular values are
\(\sigma_1 = \sqrt{7}\) and \(\sigma_2 = \sqrt{2}\).

25. Find a set of perpendicular vectors \(v_1\) and \(v_2\) in \(\mathbb{R}^2\) which have the additional property that \(Av_1\) and \(Av_2\) are also perpendicular to each other?

Sol. Let \(v_1\) and \(v_2\) be the normalized eigenvectors of \(A^T A\):
\[(A^T A - 7I)v_1 = 0 \text{ gives } v_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \text{ and } (A^T A - 2I)v_2 = 0 \text{ gives } v_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ -2 \end{bmatrix}.\]

We claim that \(Av_1\) and \(Av_2\) are perpendicular. In fact,
\[\langle Av_i, Av_j \rangle = \langle A^T Av_i, v_j \rangle = \langle \lambda_i v_i, v_j \rangle = \lambda_i \langle v_i, v_j \rangle, \]
and if \(i \neq j\) then \(\langle v_i, v_j \rangle = 0\).

Remark If \(i = j\) the above equation reads \(\|Av_i\|^2 = \lambda_i \|Av_i\|^2\), so the vectors \(u_i = Av_i/\sigma_i\),
\(i = 1, 2\), are orthonormal. We have
\[u_1 = \frac{1}{\sqrt{35}} \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}, \quad u_2 = \frac{1}{\sqrt{14}} \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix} \] \(u_3 = u_1 \times u_2 = \frac{1}{\sqrt{14}} \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}.\)

The vectors can be used to obtain the singular value decomposition
\(A = U \Sigma V^T\), where
\[V = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix}, \quad U = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} = \begin{bmatrix} \frac{3}{\sqrt{35}} & \frac{-1}{\sqrt{14}} & \frac{3}{\sqrt{14}} \\ \frac{5}{\sqrt{35}} & 0 & \frac{-2}{\sqrt{14}} \\ \frac{1}{\sqrt{35}} & \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{14}} \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \sqrt{7} & 0 \\ 0 & \sqrt{2} \end{bmatrix}. \]