11. Find all eigenvalues of the matrix \(A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 4 \\ 0 & 0 & 2 \end{bmatrix} \).

Sol. Since \(A \) is triangular the eigenvalues are the diagonal entries \(\lambda_1 = \lambda_2 = 0 \) and \(\lambda_3 = 2 \).

12. For each of the eigenvalues of \(A \), find the associated eigenspace.

Sol. For \(\lambda_1 = \lambda_2 = 0 \) we get the system \((A - 0I)x = 0\), which is equivalent to \(x_3 = 0\) and \(x_2 = 0\) and hence the eigenspace is one dimensional \(\text{Span}\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \} \).

For \(\lambda_3 = 2 \) we get the system \((A - 2I)x = 0\), which is equivalent to \(-2x_1 + x_2 + 2x_2 = 0\) and \(-x_2 + 2x_3 = 0\) and hence the eigenspace is one dimensional \(\text{Span}\{ \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \} \).

13. Is it possible to diagonalize the matrix \(A \)?

Sol. \(A \) is not diagonalizable since it does not have three linearly independent eigenvectors.

19. True or False: If \(A \) and \(B \) are both symmetric matrices, then their product \(AB \) must also be symmetric. Explain the reasoning behind your answer.

Sol. False, take e.g. \(A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) and \(B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \).

20. True or False: If \(A \) and \(B \) are both orthogonal matrices, then their product \(AB \) must also be orthogonal. Explain the reasoning behind your answer.

Sol. True, since \(A \) and \(B \) are orthogonal \(A^T A = I \) and \(B^T B = I \), and it follows that \((AB)^T AB = B^T A^T AB = B^T IB = B^T B = I \) so \(AB \) is orthogonal.

21. How many complex eigenvalues does the matrix \(M = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 2 & 2 \\ 1 & 2 & 0 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix} \) have?

Sol. Since \(M \) is symmetric all the eigenvalues are real.
22. Express the quadratic form \(q(x_1, x_2) = x_1^2 + 6x_1x_2 + 8x_2^2\) as an inner product \(q(x) = \langle x, Ax \rangle\), where \(A\) is a symmetric matrix.

Sol. \(A = \begin{bmatrix} 1 & 3 \\ 3 & 8 \end{bmatrix}\).

23. Is there a choice of numbers \((x_1, x_2)\) for which \(q(x_1, x_2)\) is negative? What does the set of points where \(q(x_1, x_2) = 1\) look like? [Please describe the overall shape of the set - it is not necessary to give exact specifications.]

Sol. The characteristic polynomial is \((1 - \lambda)(8 - \lambda) - 9 = \lambda^2 - 9\lambda - 1\) which has roots \(\lambda_{\pm} = 9/2 \pm \sqrt{(9/2)^2 + 1}\) so \(\lambda_{\pm} < 0\) and \(\lambda_{\pm} > 0\). Since \(A\) is symmetric it can be diagonalized \(A = QDQ^T\) and if we set \(y = Q^T x\) we get

\[q(x) = \langle x, Ax \rangle = \langle x, QDQ^T x \rangle = \langle Q^T x, DQ^T x \rangle = \langle y, Dy \rangle = \lambda_1 y_1^2 + \lambda_2 y_2^2 = \tilde{q}(y).\]

Hence \(\tilde{q}(1, 0) = \lambda_1 < 0\). Now, \(y_0 = (y_1, y_2) = (1, 0)\) corresponds to some \(x_0 = Qy_0\) such that \(q(x_0) = \tilde{q}(y_0) = \lambda_1 < 0\). The set \(\tilde{q}(y) = \lambda_1 y_1^2 + \lambda_2 y_2^2 < 1\) is a hyperbola.

24. What are the singular values of matrix \(A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & -1 \end{bmatrix}\)?

Sol. The singular values are the square root of the eigenvalues of \(A^TA = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix}\).

The characteristic polynomial is \((6-\lambda)(3-\lambda) - 4 = \lambda^2 - 9\lambda + 14 = (\lambda-9/2)^2 - 25/4\), so the eigenvalues are \(9/2 \pm 5/2\) so \(\lambda_1 = 7\) and \(\lambda_2 = 2\) and the singular values are \(\sigma_1 = \sqrt{\pi}\) and \(\sigma_2 = \sqrt{2}\).

25. Find a set of perpendicular vectors \(v_1\) and \(v_2\) in \(\mathbb{R}^2\) which have the additional property that \(Av_1\) and \(Av_2\) are also perpendicular to each other?

Sol. Let \(v_1\) and \(v_2\) be the normalized eigenvectors of \(A^TA\):

\[(A^T A - 7I)v_1 = 0 \text{ gives } v_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \text{ and } (A^T A - 2I)v_2 = 0 \text{ gives } v_2 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ -2 \end{bmatrix}.\]

We claim that \(Av_1\) and \(Av_2\) are perpendicular. In fact,

\[\langle Av_i, Av_j \rangle = \langle A^T A v_i, v_j \rangle = \langle \lambda_i v_i, v_j \rangle = \lambda_i \langle v_i, v_j \rangle,\]

and if \(i \neq j\) then \(\langle v_i, v_j \rangle = 0\).

Remark If \(i = j\) the above equation reads \(\|Av_i\|^2 = \lambda_i \|Av_i\|^2\), so the vectors \(u_i = Av_i/\sigma_i\), \(i = 1, 2\), are orthonormal. We have \(u_1 = \frac{1}{\sqrt{35}} \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}, u_2 = \frac{1}{\sqrt{10}} \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix}\) and \(u_3 = u_1 \times u_2 = \frac{1}{\sqrt{11}} \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}\).

The vectors can be used to obtain the singular value decomposition \(A = USV^T\), where

\[V = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix}, U = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} = \begin{bmatrix} \frac{3}{\sqrt{35}} & \frac{-1}{\sqrt{10}} & \frac{3}{\sqrt{11}} \\ \frac{5}{\sqrt{35}} & 0 & \frac{-2}{\sqrt{11}} \\ \frac{1}{\sqrt{35}} & \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{11}} \end{bmatrix}, \text{ and } \Sigma = \begin{bmatrix} \sqrt{7} & 0 \\ 0 & \sqrt{2} \end{bmatrix}.\]