5a. [2 marks] Find the eigenvalues of \(A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \).

5b. [3 marks] Give a factorization \(A = QDQ^T \) where \(Q \) has orthonormal columns and \(D \) is a diagonal matrix.

5d. [1 marks] Is \(A \) a positive definite matrix? Why? Give the quadratic form \(q(x, y) \) associated to \(A \).

Sol.

5a. Solve \(\det(A - \lambda I) = 0 \). We get the equation \(\lambda(\lambda - 5) = 0 \). Hence \(\lambda_1 = 5 \) and \(\lambda_2 = 0 \).

5b. \(A = QDQ^T \) is an “eigenvalue-eigenvector” factorization of a symmetric matrix. \(D \) is a diagonal matrix containing the eigenvalues of \(A \) and \(Q \) is a \(2 \times 2 \)-matrix whose orthonormal columns are eigenvectors of \(A \). For example

\[
D = \begin{bmatrix} 5 & 0 \\ 0 & 0 \end{bmatrix}, \quad \text{and} \quad \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}.
\]

5d. \(A \) is not a positive definite matrix as \(\lambda_2 = 0 \). The quadratic form (singular) associated to \(A \) is \(q(x, y) = x^2 + 4xy + 4y^2 \).

6a. [3 marks] If possible, find an invertible matrix \(M \) such that

\[
M^{-1} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} M = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 2 \end{bmatrix}.
\]

If it is not possible, state why \(M \) cannot exist.

6b. [3 marks] For what real values of \(c \) (if any) is \(A = \begin{bmatrix} -1 & c & 2 \\ c & -4 & -3 \\ 2 & -3 & 4 \end{bmatrix} \) a symmetric positive definite matrix?

6c. [4 marks] Let \(A = \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix} \). Is the quadratic form \(q(x, y) \) associated to \(A \) positive definite? Find its principal axes.

Sol.

6a. Not possible. The condition means that \(B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix} \) is similar to \(A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \).

Similar matrices have equal traces and rank. But \(\text{trace}(A) = 3 \neq \text{trace}(B) = 5 \) and \(\text{rk}(A) = 1 \neq \text{rk}(B) = 2 \).

6b. Not possible. For symmetric positive-definite matrices all upper-left determinants are greater than zero. Note that the 1 by 1 upper-left determinant is \(-1\).

6c. \(\det(A) < 0 \), hence \(A \) (or equivalently its associated quadratic form \(q(x, y) = 3x^2 + 8xy + 3y^2 \)) is not positive definite. The eigenvalues of \(A \) are: \(\lambda_1 = -1 \) and \(\lambda_2 = 7 \). The principal axes are the eigenspaces of \(A \), namely \(E_1 = \text{span}\{\begin{bmatrix} -1 \\ 0 \end{bmatrix}\} \) and \(E_2 = \text{span}\{\begin{bmatrix} 1 \\ 1 \end{bmatrix}\} \).
7a. [6 marks] Let $A_1 = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. Is A_1 diagonalizable? Why? Is A_1 invertible? Why? Determine the spectral decomposition of A_1 into projection matrices.

7b. [3 marks] Let $A_2 = \begin{bmatrix} -3 & 3 \\ 1 & -1 \end{bmatrix}$. Is A_2 invertible? Why? Is A_2 diagonalizable? Why? Determine (if exists) a matrix S and a diagonal matrix D such that $S^{-1}A_2S = D$.

7c. [6 marks] Describe the linear transformation $T_{A_2} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ associated to A_2. Does such A_2 have a decomposition into projection matrices? If yes, give it.

Sol.

7a. A_1 is symmetric, hence A_1 is diagonalizable. A_1 is invertible as $\det(A_1) = \prod \lambda_i = 2 \cdot 1 \cdot (-1) = -2 \neq 0$. The spectral decomposition of A_1 is given by

$$A_1 = \sum_{i=1}^{3} \lambda_i x_i x_i^T$$

where x_i are eigenvectors associated to the eigenvalues λ_i. We can choose $x_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ as eigenvector associated to $\lambda_1 = 2$, $x_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ as eigenvector associated to $\lambda_2 = 1$ and $x_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ as eigenvector associated to $\lambda_3 = -1$. It follows that the spectral decomposition of A_1 is

$$A_1 = 2P_1 + P_2 - P_3 = 2 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

7b. $\det(A_2) = 0$ hence A_2 is not invertible. The eigenvalues of A_2 are $\mu_1 = 0$ and $\mu_2 = -4$. They are distinct, hence A_2 is diagonalizable. The columns of the matrix S are made by 2 eigenvectors of A i.e. $S = \begin{bmatrix} 1 & -3 \\ 1 & 1 \end{bmatrix}$, whereas $D = \begin{bmatrix} 0 & 0 \\ 0 & -4 \end{bmatrix}$ is the eigenvalues matrix.

7c. The linear transformation $T_{A_2} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is determined by a projection P_2 onto the line spanned by $\begin{bmatrix} -3 \\ 1 \end{bmatrix}$

$$A_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 0, \quad A_2 \begin{bmatrix} -3 \\ 1 \end{bmatrix} = -4 \begin{bmatrix} -3 \\ 1 \end{bmatrix}.$$

It follows that

$$A_2 = -4 \begin{bmatrix} 3/4 & -3/4 \\ -1/4 & 1/4 \end{bmatrix} = -4P_2$$

is the required decomposition, where P_2 is a projection matrix.
8a. [3 marks] Find the lengths and the inner product $\vec{x} \cdot \vec{y}$ of the following complex vectors

$$\vec{x} = \begin{bmatrix} 2 - 4i \\ 4i \end{bmatrix}, \quad \vec{y} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \quad (i^2 = -1).$$

8b. [3 marks] Let $A = \begin{bmatrix} 1 & 1 - i \\ 1 + i & 2 \end{bmatrix}$. Let \vec{x}_1, \vec{x}_2 be two (linearly independent) eigenvectors of A. Compute $\vec{x}_1 \cdot \vec{x}_2$ and show that $\det(A) \in \mathbb{R}$.

8c. [4 marks] Prove that for any complex vector \vec{x}

$$\vec{x}^H A \vec{x} \in \mathbb{R}. \quad (H = \text{Hermitian})$$

Sol.

8a. length(\vec{x}) = $(\vec{x}^H \vec{x})^{1/2} = (2 + 4i \cdot 4i)^{1/2} = 6$; length($\vec{y}$) = $(\vec{y}^T \vec{y})^{1/2} = \sqrt{20}$

and $\vec{x} \cdot \vec{y} := \vec{x}^H \vec{y} = 4(1 - 2i)$.

8b. Notice that $A = A^H$, furthermore let λ_i be the 2 eigenvalues of A: $0 = \lambda_1 \neq \lambda_2 = 3$, then $\vec{x}_1 \cdot \vec{x}_2 = 0$. Also, one knows that every eigenvalue of a Hermitian matrix is real and so will be its determinant ($\det(A) = \lambda_1 \lambda_2 = 0$).

8c. We have $(\vec{x}^H A \vec{x})^H = \vec{x}^H A \vec{x}$, as $A = A^H$. It follows that $\vec{x}^H A \vec{x} \in \mathbb{R}$.