ETHICS PLEDGE: I agree to complete this exam without unauthorized assistance from any person or person’s work, materials or device.

Your name (print): ____________________________ Section: ________

Signature: ________________________________ Date: ________
No books, no notes, no calculators or other electronic devices. Write legibly, and show all relevant work—or risk losing credit. Answer what is asked, and only what is asked.

[30] 1. Let \(A = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 2 & 2 \\ 0 & -1 & -2 \end{bmatrix} \).

a) Give the definition of \(\{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k \} \) is a *linearly independent set* in terms of linear combinations or linear relations. Use this definition to show that \(\mathcal{B} = \{ \vec{e}_3, \vec{e}_1 + \vec{e}_2, \vec{e}_1 - \vec{e}_2 \} \) is a basis of \(\mathbb{R}^3 \).

b) Determine the \(\mathcal{B} \)-matrix of \(A \), where \(\mathcal{B} \) is the basis in part a).

c) Determine all real numbers \(c \) for which the equation (for \(\vec{x} \in \mathbb{R}^3 \)) \(A\vec{x} = c\vec{x} \) has a non-trivial solution.
[20] 2. Let \(A = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & -1 & -2 \end{bmatrix} \).

a) Determine all vectors \(\vec{x} \) that satisfy the linear system \(A\vec{x} = \vec{0} \).

b) Explain why \(W = \{ \vec{b} \in \mathbb{R}^4 : A\vec{x} = \vec{b} \text{ is consistent} \} \) is a subspace of \(\mathbb{R}^4 \).

c) Let \(W \) be as in part b). Show that \(\vec{b}_1 = 3\vec{e}_1 + 2\vec{e}_2 + \vec{e}_3 - \vec{e}_4 \in W \).

d) Let \(\vec{b}_1 \) be as in part c). Let \(\vec{x}_1 \) be one vector that satisfies \(A\vec{x}_1 = \vec{b}_1 \). Explain why the solution set of \(A\vec{x} = \vec{b}_1 \) equals the set of all vectors of the following form: \(\vec{x}_1 \) plus a solution of the equation in part a).
3. a) Let $A = \begin{bmatrix} 4 & -3 \\ -3 & -4 \end{bmatrix}$. Determine a diagonal matrix D with real entries, and an orthogonal matrix S for which $A = SDS^{-1}$. \textbf{Multiply out} SDS^{-1} to check that your answer is correct.

b) Let $B = \begin{bmatrix} 4 & 3 \\ -3 & -4 \end{bmatrix}$. Determine whether B is similar to the matrix A (from part a) in $\mathbb{R}^{2 \times 2}$.
4. Let P_4 be, as usual, the linear space of polynomials of degree ≤ 4.

 a) Specify an isomorphism $\Phi : P_4 \to \mathbb{R}^n$ for some n. Explain why it is an isomorphism.

 b) True or false: Every linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism. Explain.

 c) True or false: There exists an inner product on P_4 with the property that $\{1, t, t^2, t^3, t^4\}$ is an orthonormal set. Explain.

 d) (Convince yourself that $\mathfrak{A} = \{2, 3 - t, 4t - t^2, 5 - t^3, 6 - t^4\}$ is a basis of P_4.) Determine the \mathfrak{A}-coordinate vector of $t^4 + t$.

5. a) Let V be a linear space. Suppose that λ is an eigenvalue of the linear transformation $T : V \to V$. Derive the fact that λ^2 is an eigenvalue of T^2.

 b) Determine all matrices in $\mathbb{R}^{3 \times 3}$ that are both symmetric and orthogonal, and describe them geometrically. [Suggestion: Express the two conditions in terms of “transpose.”]
6. Determine the matrix (for the standard basis of \(\mathbb{R}^5 \)) of the orthogonal projection of \(\mathbb{R}^5 \) onto the “plane” with equations \(x_1 - x_5 = 0, \ x_1 + x_2 + x_3 + x_4 = 0 \).

7. For which \(a \in \mathbb{R}, \ b \in \mathbb{R} \) does the matrix \(A = \begin{bmatrix} 2 & 0 & 0 \\ b & 1 & 0 \\ 0 & a & 1 \end{bmatrix} \) have an eigenbasis (for \(\mathbb{R}^3 \))? When it does, specify an eigenbasis (depending on \(a \) and \(b \)).
8. Let V be $\text{Span}\{1, \sin x, \cos x\}$. The dimension of V is 3. We define a linear transformation $T : V \rightarrow \mathbb{R}^3$ by $T(f) = 2f(0)e_1 + f(\pi)e_2 - f(2\pi)e_3$.

a) Determine the rank of T.

b) Determine a basis for the kernel of T.

c) Let D denote the linear operator on V given by $D(f) = f'$. Determine the complex eigenvalues of D—that includes the real ones!—and the corresponding eigenspaces.

9. Let $A = \begin{bmatrix} 1 & b \\ c & 1 \end{bmatrix}$, where b and c are real scalars. Determine the set of values of b and c for which the dynamical system $\vec{x}(t+1) = A\vec{x}(t)$ is asymptotically stable (meaning: for all initial states, the state vector tends to $\vec{0}$ as $t \to \infty$).
[10] 10. Determine whether \(x_1^2 + 3x_1x_2 + 2x_2^2 = 1 \) is the equation of an ellipse.

[10] 11. a) Give an example of two \(2 \times 2 \) real matrices that have the same characteristic polynomial yet they are not similar. \textbf{Explain.} \\

b) \textit{True or False:} If a matrix fails to diagonalize over \(\mathbb{R} \), it will diagonalize over \(\mathbb{C} \). \textbf{Explain.}