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Given a point p of the topos Δ̂ of simplicial sets and the corresponding flat covariant 
functor F : Δ −→ Sets, we determine the extensions of F to the cyclic category 
Λ ⊃ Δ. We show that to each such cyclic structure on a point p of Δ̂ corresponds a 
group Gp, that such groups can be noncommutative and that each Gp is described as 
the quotient of a left-ordered group by the subgroup generated by a central element. 
Moreover for any cyclic set X the fiber (or geometric realization) of the underlying 
simplicial set of X at p inherits canonically the structure of a Gp-space. This 
gives a far reaching generalization of the well-known circle action on the geometric 
realization of cyclic sets.
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1. Introduction

This paper aims to illustrate the unifying power of the notion of topos, due to Grothendieck, in the context 
of cyclic homology. Our main motivation originates from the recent discovery (cf. [5]) of the role of cyclic 
homology of schemes for the cohomological interpretation of the archimedean local factors of L-functions 
of arithmetic varieties. This result raises naturally the question of a conceptual interpretation of cyclic 
homology of schemes. In [3] it was shown that cyclic cohomology can be interpreted as Ext-functor in 
the category of cyclic modules. These modules are defined as contravariant functors from the (small) cyclic 
category Λ to the category of abelian groups. This development brings at the forefront the crucial role played 
by the cyclic category as an extension of the simplicial category Δ by finite cyclic groups. Moreover, in [3] it 
was also shown that the classifying space BΛ is equal to the classifying space of the topological group U(1), 
and later it was discovered (cf. [2,8,9]) that the geometric realization of the simplicial set underlying a cyclic 
set (this latter understood as a contravariant functor Λ −→ Sets to the category of sets) inherits naturally 
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an action of U(1). The equality BΛ = BU(1) then leads to a deep analogy between cyclic cohomology and 
U(1)-equivariant cohomology.

In this article we show that one obtains a conceptual understanding of the above U(1)-action on the 
geometric realization of cyclic sets by extending that result to the framework of topos theory. The transition 
from a small category to its classifying space produces in general a substantial loss of information: the 
classifying space of Δ is, for instance, a singleton. It is exactly at this point that the implementation of 
topos theory turns out to be useful to provide the correct environment that encloses both schemes and small 
categories while also furnishing the tools for the development of cohomology. In the words of Grothendieck:

L’idée du topos englobe, dans une intuition topologique commune, aussi bien les traditionnels espaces 
(topologiques), incarnant le monde de la grandeur continue, que les (soi-disant) «espaces » (ou « variétés ») 
des géomètres algébristes abstraits impénitents, ainsi que d’innombrables autres types de structures, qui 
jusque-là avaient semblé rivées irrémédiablement au «monde arithmétique» des agrégats «discontinus » ou 
«discrets ».

The category Sh(X) of sheaves of sets on a topological space X is a topos that captures all the relevant 
information on X. For a small category C, the associated category Ĉ = Sets

Cop
of contravariant functors 

C −→ Sets is a topos. What is more, the notion of point is meaningful for any topos T : a point is simply 
a geometric morphism f : Sets −→ T from the topos of sets to T . To each point of T corresponds 
a contravariant functor T −→ Sets which is the inverse image part of the geometric morphism f and that 
preserves finite limits and arbitrary colimits. This picture generalizes the functor that associates to a sheaf 
of sets on a topological space X the stalk at a point of X. In particular, for the topos Ĉ = Sets

Cop
(C a small 

category), the points are described by flat, covariant functors F : C −→ Sets. Then the inverse image part 
of the geometric morphism associated to a point of Ĉ determines a natural generalization of the notion of 
the geometric realization of a simplicial set. This latter notion is obtained, in the case C = Δ, by considering 
the flat functor F = Δ : Δ −→ Sets that associates to an integer n ≥ 0 the standard n-simplex. In general, 
the flatness of F implies that the geometric realization functor

| | : Sets
Cop

−→ Sets, R �→ |R| := R⊗C F

is left exact thus transforming finite products in Sets
Cop

into finite products in Sets. This property combines 
with the fact that F = Δ extends to the larger cyclic category Λ to yield the natural action of the group 
U(1) on the geometric realization of a cyclic set.

In this paper we provide a far reaching generalization of this construction for the points of the topos of 
simplicial sets. Given a point p of the topos Δ̂ with associated flat functor F : Δ −→ Sets, a cyclic structure
on p is defined to be an extension of F from Δ to Λ. Our main result states that cyclic structures are 
classified by the datum provided by a totally left-ordered group G (not necessarily abelian) endowed with 
a central element z > 1 such that the interval [1, z] ⊂ G generates G. It is well known (cf. [11]) that the 
points of the topos Δ̂ = Sets

Δop
correspond to intervals I i.e. totally ordered sets with a minimal element 

b and a maximal element t > b. Proposition 4.2 shows that if (G, z) is a left-ordered group with a fixed 
central element z > 1, one obtains a natural cyclic structure on the point pI of Δ̂ associated to the interval 
I = [1, z]. The converse of this statement constitutes the main result of this paper. More precisely one shows 
(cf. Theorem 5.1) the following

Theorem. Let p be a point of the topos of simplicial sets and let I be the associated interval. Let G =
(Z × I)/ ∼ be endowed with the lexicographic ordering, where the equivalence relation identifies (n, b) ∼
(n − 1, t), ∀n ∈ Z. Then, a cyclic structure on p corresponds to a group law on G such that

(a) the order relation on G is left invariant
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(b) the following equalities hold

(n, b)(m,u) = (m,u)(n, b) = (n + m,u), ∀n,m ∈ Z, u ∈ I.

The proof of the above theorem is rather involved and is developed in Section 5.2. As an immediate 
corollary one obtains examples (Corollaries 5.2 and 5.3) of points p = pI of the topos Δ̂ with a prescribed 
number of cyclic structures. Moreover, Theorem 4.4 shows that under the hypothesis of the above theorem, 
there exists, for any cyclic set S, a canonical right action of the quotient group G/Z, of G by the central 
subgroup {(n, b) | n ∈ Z} ∼ Z, on the “geometric realization” |S|p = p∗S corresponding to the point p of 
the topos Δ̂.

In the last part of the paper (cf. Section 5.3) we discuss the subtlety that distinguishes the notion of 
cyclic structure on a point of Δ̂ as given here, from the definition of a point of the topos of cyclic sets 
(called “abstract circle”) as in the unpublished note [12]. By using [12] we prove that the category of points 
of the topos of cyclic sets is equivalent to the category Arc of archimedean sets whose objects are pairs 
(X, θ) made by a totally ordered set X together with an automorphism θ of X such that θ(x) > x, ∀x ∈ X

and fulfilling the following archimedean property: for any given pair x, y ∈ X there exists n ∈ N such that 
y < θn(x). Modulo the identification f = θm ◦ f (f morphism in Arc: see Definition 5.11), one obtains the 
equivalence of Arc with the category of abstract circles: cf. Proposition 5.12. To the inclusion of categories 
Δ ⊂ Λ corresponds a geometric morphism of topoi and a related map between the corresponding points 
that associates to an interval I the archimedean set X = (Z × I)/ ∼ as in Theorem 5.1, endowed with the 
translation θ(n, u) = (n + 1, u). In this way, one derives a reformulation of Theorem 5.1 by stating that 
the cyclic structures on a point of Δ̂ are classified by (order compatible) group structures on the associated 
point of the topos of cyclic sets.

Thus the notion of cyclic structure on a point of the topos of simplicial sets is a very subtle concept 
involving both groups and linear orders, not be confused with the definition of point of the topos of cyclic 
sets, that only involves linear order.

2. The simplicial and the cyclic categories. The cyclic structures

In this section we recall the definitions of the simplicial and the cyclic categories together with the 
definition of points of the related topoi. Then, in Section 2.5 we introduce the new notion of cyclic structure 
on the points of the topos of simplicial sets.

2.1. The simplicial category Δ

We recall the classical presentation of the simplicial category Δ. Let Δ be the small category with one 
object [n] = {0, . . . , n} for each non-negative integer n ≥ 0: the object [n] is viewed as a totally ordered set. 
The morphisms in Δ are non-decreasing maps of sets

HomΔ
(
[n], [m]

)
=

{
f : {0, . . . , n} → {0, . . . ,m}

∣∣ x ≥ y =⇒ f(x) ≥ f(y)
}
.

The following well-known result (cf. [4] III.A.α, Proposition 2) implies a presentation of Δ by generators 
and relations

Proposition 2.1.

(i) For j ∈ {0, . . . , n}, there are n + 1 surjective morphisms

σj ∈ HomΔ
(
[n + 1], [n]

)
, σj(i) =

{
i if i ≤ j
i− 1 if i > j.
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(ii) For j ∈ {0, . . . , n}, there are n + 1 injective morphisms

δj ∈ HomΔ
(
[n− 1], [n]

)
, δj(i) =

{
i if i < j

i + 1 if i ≥ j.

(iii) The following relations hold in Δ

σj ◦ σi = σi ◦ σj+1 for i ≤ j, δj ◦ δi = δi ◦ δj−1 for i < j,

σj ◦ δi =

⎧⎨
⎩

δi ◦ σj−1 if i < j

id if i = j or i = j + 1
δi−1 ◦ σj if i > j + 1.

(1)

Any morphism in Δ can be written as a composite (
∏

j δj ◦
∏

k σk) of a (finite) product of δ’s with a 
(finite) product of σ’s. Moreover, by implementing the relations (1), one can also re-order these products 
so that the indices for the σ’s are increasing while they are non-decreasing for the δ’s.

2.2. The cyclic category Λ

The cyclic category Λ was introduced in [3] using classes of degree-one maps of the circle. In this paper we 
use a reformulation of Λ that implements the lift of these maps to the universal cover (cf. [6]). The advantage 
of this description is to involve only periodic non-decreasing maps Z → Z. For each pair of integers a > 0, 
b > 0, consider the set

I(a, b) =
{
f : Z → Z

∣∣ f(x) ≥ f(y), ∀x ≥ y; f(x + a) = f(x) + b, ∀x ∈ Z
}
.

The following relation is an equivalence relation on I(a, b)

f ∼ g ⇐⇒ ∃k ∈ Z, g(x) = f(x) + kb ∀x ∈ Z. (2)

Denote by C(a, b) the set of the equivalence classes of maps in I(a, b).

Proposition 2.2.

(i) The set C(a, b) is finite.
(ii) The equivalence relation (2) is compatible with the composition of maps.

Proof. (i) In any given equivalence class in C(a, b) there is a unique map f : Z → Z such that f(0) ∈
{0, . . . , b − 1}, since {0, . . . , b − 1} is a fundamental domain for the subgroup bZ ⊂ Z. It follows that 
f(a) = f(0) + b ∈ {b, . . . , 2b − 1}, thus there are only finitely many possibilities for f(x) ∈ [f(0), f(a)] as 
x ∈ {0, . . . , a −1}. One concludes, by applying the periodicity property, that there can be only finitely many 
equivalence classes in each C(a, b).

(ii) Let j ∈ {1, 2} be an index and let fj ∈ I(a, b) and gj ∈ I(b, c). One has g1 ∼ g2 ⇔ g2(x) = g1(x) +kc, 
for some k ∈ Z and ∀x ∈ Z. Then it follows that g2 ◦ fj ∼ g1 ◦ fj . Similarly one has f1 ∼ f2 ⇔ f2(x) =
f1(x) +k1b, for some k1 ∈ Z and ∀x ∈ Z. It follows that gj◦f2(x) = gj(f1(x) +k1b) = gj(f1(x)) +k1c, ∀x ∈ Z, 
thus gj ◦ f2 ∼ gj ◦ f1. �
Definition 2.3. The cyclic category Λ has one object [n] for each non-negative integer n ≥ 0. The morphisms 
in Λ are given by

HomΛ

(
[n], [m]

)
= C(n + 1,m + 1).
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By construction one derives a natural functor (not faithful)

μ : Λ −→ Fin

to the category Fin of finite sets. μ is the identity on the objects of Λ and to a morphism f ∈ HomΛ([n], [m])
it associates the map of finite sets μ(f) : {0, . . . , n} → {0, . . . , m} given by

μ(f)(x) = f(x) mod. m + 1, ∀x ∈ Z/(n + 1)Z. (3)

There is an inclusion functor j : Δ ↪→ Λ that is the identity on the objects of the simplicial category Δ and 
on the morphisms f ∈ HomΔ([n], [m]) is defined as follows

j(f)
(
x + k(n + 1)

)
= f(x) + k(m + 1), ∀x ∈ [n], k ∈ Z. (4)

One easily checks that j(f)−1([0, m]) = [0, n], since by construction one has j(f)([0, n] + k(n + 1)) ⊂
[0, m] + k(m + 1), ∀k ∈ Z. A similar result holds for all morphisms in Λ as the following proposition (cf.
part (i)) shows

Proposition 2.4. Let f ∈ HomΛ([n], [m]), then

(i) For any interval I = [y, y + m], f−1(I) is an interval of the form [x, x + n].
(ii) There is a unique decomposition of the form

f = j(h) ◦ t, h ∈ HomΔ
(
[n], [m]

)
, t ∈ AutΛ

(
[n]

)
.

Proof. (i) f−1(I) is a finite interval J because f is increasing and f(x) → ±∞ when x → ±∞. Moreover 
since for any fixed interval I as in (i) and for k ∈ Z (varying) the translates I + k(m + 1) form a partition 
of Z, the same statement holds for their inverse images which are, in view of the periodicity property of the 
maps in Λ, of the form J + k(n + 1).

(ii) It follows from the last sentence in the proof of (i) that there exists a unique t ∈ AutΛ([n]) such that 
f−1([0, m]) = t−1([0, n]). Thus (f ◦ t−1)−1([0, m]) = [0, n] and by implementing the functor j as in (4) one 
concludes that there exists h ∈ HomΔ([n], [m]) such that f ◦ t−1 = j(h). �

One derives the following presentation of the cyclic category Λ that in applications is usually referred to 
as the decomposition Λ = ΔC, where C is the category with the same objects as Λ and whose morphisms 
are automorphisms (cf. [3]).

Proposition 2.5. The cyclic category Λ admits the following presentation as an extension of the small category 
Δ by means of a new generator τn ∈ Cn+1 := AutΛ([n]) for each n ≥ 0 and the relations

τn+1
n = id,

τn ◦ σ0 = σn ◦ τ2
n+1 τn ◦ σj = σj−1 ◦ τn+1, ∀j ∈ {1, . . . , n} (5)

τn ◦ δ0 = δn τn ◦ δj = δj−1 ◦ τn−1, ∀j ∈ {1, . . . , n} (6)

Proof. We introduce the cyclic permutation τ :

τ : Z → Z τ(x) = x− 1, ∀x ∈ Z.
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Note that, for each n ≥ 0, τ yields an element τn ∈ Cn+1 = AutΛ([n]) (the index n will be dropped when 
the context is clear). The relation τn+1

n = id follows from the definition of the equivalence relation (2). To 
prove (5) and (6) one first determines, using Proposition 2.4 and for f ∈ HomΔ([m], [n]), an integer a such 
that

(
τn ◦ j(f)

)−1([0, n]
)

= τa
(
[0,m]

)
.

Then it follows that τn◦j(f) ◦τa ∈ j(Δ), thus there exists h ∈ HomΔ([m], [n]) such that τn◦j(f) = j(h) ◦τ−a. 
Since the powers of τ are automorphisms, the surjectivity resp. the injectivity properties of f are inherited 
from those of the associated h. Proposition 2.1 implies that the commutation relations (5) and (6) stay 
within the σ’s and δ’s. Then one easily checks directly these relations. Conversely, these relations allow one 
to write any morphism in Λ as a product (j(f) ◦ t) for some automorphism t and this suffices to present the 
small category Λ. �

We refer to [10] (cf. §6.1) for a detailed proof of the above proposition and for the general notion of 
crossed simplicial group that is beneath and generalizes the above decomposition Λ = ΔC.

2.3. The points of the topos Sets
Cop

Let C be a small category. We recall that a point of the topos Ĉ = Sets
Cop

is completely determined by 
a covariant functor F : C −→ Sets that has the further property to be flat (cf. [11], VII.5, Definition 1 and 
Theorem 2). More generally, a point of a topos T is defined as a geometric morphism f : Sets −→ T . To 
such f corresponds naturally the pullback functor f∗ : T −→ Sets which is the inverse image part of the 
geometric morphism ([11], VII.1, Definition 1). Besides being a left adjoint functor (to f∗, the direct image 
part of f) and hence (right exact and) commuting with arbitrary direct limits (i.e. colimits), the pull-back 
f∗ is also left exact thus it commutes with finite inverse limits. In the specific case of the topos T = Ĉ
associated to a small category C, f∗ : Ĉ −→ Sets pulls back contravariant functors F : C −→ Sets, hence 
the inverse image f∗F is a set. In this way f∗ is understood as a covariant functor

f∗ : Sets
Cop

−→ Sets.

To describe the covariant functor F : C −→ Sets associated to a point f : Sets −→ C of Ĉ, one uses the 
Yoneda embedding

y : C −→ Sets
Cop

C �→ HomC(· , C) (7)

and defines F as the composite:

F = f∗ ◦ y. (8)

The obtained F : C −→ Sets is a filtering functor ([11], VII.6, Definition 2). This means that the category 
I =

∫
C F, whose objects are pairs (x, C) where C is an object of C and x ∈ F(C), is a filtering category i.e.

I fulfills the following properties

(i) I is non-empty; i.e., F(C) �= ∅ for at least one object C of C.
(ii) For any two objects i, j in I there is a diagram i ← k → j, for some object k in I.
(iii) For any two arrows i ⇒ j in I there exists an object k in I and a commutative diagram of the form 

k → i ⇒ j.
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Conversely, one can show that given a filtering functor F : C −→ Sets, the associated point f : Sets −→ C
of Ĉ is described by the pair of adjoint functors

f∗(R) = R⊗C F, f∗(S) = HomC(F, S). (9)

We refer to VII.6, Theorem 3 of [11] for a complete proof.

2.4. The points of the topos Δ̂

The points of the topos Δ̂ of simplicial sets are constructed from intervals, i.e. totally ordered sets I
with a smallest element bI ∈ I (bI ≤ a, ∀a ∈ I) and a largest element tI ∈ I: [11], VIII.8. The intervals I
and the morphisms

Hom≥(I, J) =
{
f : I → J

∣∣ x ≤ y =⇒ f(x) ≤ f(y), f(bI) = bJ , f(tI) = tJ
}

given by non-decreasing maps preserving the two end points form a category J . One identifies the opposite 
category Δop with the full subcategory of J defined by the intervals of the form n∗ := {0, 1, . . . , n + 1}, for 
n ≥ 0. The morphisms sj = σ∗

j and dj = δ∗j in the full subcategory are given, for j ∈ {0, . . . , n}, by the 
following formulas

sj : n∗ → (n + 1)∗ sj(i) =
{
i if i ≤ j

i + 1 if i > j

dj : n∗ → (n− 1)∗ dj(i) =
{
i if i ≤ j

i− 1 if i > j.

The point pI of Δ̂ associated to an interval I is defined as in (8) by a covariant functor FI : Δ −→ Sets. 
This functor is described as the following contravariant functor

FI : Δop −→ Sets, FI

(
n∗) := Hom≥

(
n∗, I

)
. (10)

Notice that an element β ∈ FI(n∗) is encoded by an increasing sequence (βj)0≤j≤n+1, βj ∈ I, β0 = bI , 
βn+1 = tI . The covariant action of Δ is expressed by the following maps

σj : FI

(
(n + 1)∗

)
→ FI

(
n∗) σj(β)i =

{
βi if i ≤ j

βi+1 if i > j

and

δj : FI

(
(n− 1)∗

)
→ FI

(
n∗) δj(β)i =

{
βi if i ≤ j

βi−1 if i > j.

Notice that σj removes βj+1 from the list whereas δj repeats βj .

2.5. The cyclic structures on points of Δ̂

We are now ready to introduce the central notion of cyclic structure that will be further developed in 
the remaining sections of this paper.

Definition 2.6. Let p be a point of the topos Δ̂ of simplicial sets and let F = p∗ ◦ y : Δ −→ Sets be the 
associated (filtering) functor. We call a cyclic structure on p the datum provided by an extension of F to 
a functor F̃ : Λ −→ Sets.
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Note that the same point of Δ̂ can have different cyclic structures and that there are points without any 
cyclic structure: we refer to Section 5, Corollaries 5.2 and 5.3.

Example 2.7. As a basic example of cyclic structure we consider the point p[0,1] of Δ̂ associated to the 
interval [0, 1] ⊂ R. First we describe the functor F[0,1] as in (10) in an equivalent way by encoding the 
datum of the increasing sequence (βj)0≤j≤n+1, βj ∈ [0, 1], β0 = 0, βn+1 = 1, by means of the point of the 
standard n-simplex

σ(β) =
n∑

j=0
(βj+1 − βj)vj ∈ Δn (11)

where the vj ’s are linearly independent chosen vectors of a fixed, real vector space V and Δn denotes the 
standard n-simplex in V . In this way we obtain an equivalence of the functor F[0,1] with the covariant 
functor Δ : Δ −→ Sets that associates to the object [n] of Δ the n-simplex Δn and to the morphism f ∈
HomΔ([n], [m]) its unique extension as an affine map f̃ : Δn → Δm such that f̃(vj) = vf(j), ∀j ∈ {0, . . . n}. 
The functor μ : Λ −→ Fin of (3) restricts, on the simplicial subcategory Δ ⊂ Λ, to the natural action of 
Δ on finite sets that is implemented in the definition of the simplicial structure of Δ. This shows that the 
latter structure extends to a cyclic structure such that the action is affine and on the vertices is given by

f̃(vj) = vμ(f)(j), ∀f ∈ HomΛ

(
[n], [m]

)
. (12)

Note that by construction the cyclic structure (12) extends to the category Fin.

3. The geometric realization of a simplicial set and its cyclic structure

This section reviews and develops on the concept of geometric realization of a simplicial and a cyclic set.

3.1. The essential geometric morphism Δ̂ −→ Λ̂

The geometric morphism of topoi Δ̂ −→ Λ̂ associated to the inclusion functor j : Δ ↪→ Λ as in (4), is 
an essential geometric morphism (cf. [11], VII.2 Theorem 2). The pullback functor j∗ takes a contravariant 
functor F : Λ −→ Sets to its restriction F ◦ j : Δ −→ Sets. The functor j∗ has a left adjoint j! which is 
defined by inducing from Δ to Λ

j! : Δ̂ −→ Λ̂ j!(S) = S ⊗Δ Λ, ∀S ∈ obj
(
Sets

Δop)
.

Here, S denotes a simplicial set and the contravariant action of Δ is viewed as a right action. Next, we 
use Proposition 2.4 and the decomposition Λ = ΔC we referred to in Section 2.2, Proposition 2.5. For 
γ ∈ AutΛ([n]) and ϕ ∈ HomΔ([m], [n]), the composite map γ ◦ ϕ has a unique decomposition

γ ◦ ϕ = γ∗(ϕ) ◦ ϕ∗(γ), γ∗(ϕ) ∈ HomΔ
(
[m], [n]

)
, ϕ∗(γ) ∈ AutΛ

(
[m]

)
(13)

that encodes the structure of crossed simplicial group of the cyclic category ([10], 6.1, Lemma 6.1.5). 
Moreover, the maps γ∗ : HomΔ([m], [n]) → HomΔ([m], [n]) and ϕ∗ : AutΛ([n]) → AutΛ([m]) satisfy the 
following rules ([10], 6.1, Proposition 6.1.6)

(
γγ′)

∗(ϕ) = γ∗
(
γ′
∗(ϕ)

)
,

(
ϕϕ′)∗(γ) = ϕ′ ∗(ϕ∗(γ)

)
.

The decomposition Λ = ΔC also provides the following description of the simplicial structure of j!(S)
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j!(S)n = Sn × AutΛ
(
[n]

)
, (x, γ)ϕ =

(
xγ∗(ϕ), ϕ∗(γ)

)
(14)

where we encode in the simplicial structure the right action of Δ. The cyclic structure of j!(S) is given by

(x, γ)γ′ =
(
x, γγ′) ∀γ, γ′ ∈ AutΛ

(
[n]

)
. (15)

The following identities follow from the crossed simplicial structure and can be derived directly using the 
uniqueness of the decomposition Λ = ΔC

γ∗
(
ϕϕ′) = γ∗(ϕ)

(
ϕ∗(γ)

)
∗
(
ϕ′)

ϕ∗(γγ′) =
(
γ′
∗(ϕ)

)∗(γ)ϕ∗(γ′).
These equalities are used to check the compatibility of the cyclic action (15) with the simplicial struc-
ture (14). By applying the description of j!(S) as in (14) to the trivial simplicial set S = {pt} one obtains 
the following

Proposition 3.1. The following formula defines an isomorphism of the cyclic set C = j!({pt}) with the cyclic 
set y([0]) associated to the object [0] of Λ by means of the Yoneda functor y : Λ −→ Λ̂ of (7)

i : C ∼−→ y
(
[0]

)
,

(
j!
(
{pt}

))
n

= AutΛ
(
[n]

)
� γ �→ i(γ) := fn ◦ γ ∈ HomΛ

(
[n], [0]

)

where fn is the unique element of HomΔ([n], [0]).

Proof. One sees that for ϕ ∈ HomΔ([m], [n]) the following equalities hold

i
(
ϕ∗(γ)

)
= fm ◦ ϕ∗(γ) = fn ◦ γ∗(ϕ) ◦ ϕ∗(γ) = fn ◦ γ ◦ ϕ = i(γ) ◦ ϕ

The compatibility with the cyclic structure is easily checked. �
3.2. The geometric realization of a simplicial set

The geometric realization of a simplicial set S is defined as the quotient space

|S| :=
(∐

n≥0

(
Sn × Δn))/ ∼

for the equivalence relation

(xϕ, t) ∼ (x, ϕ∗t) for x ∈ Sn, t ∈ Δm, ϕ ∈ HomΔ
(
[m], [n]

)
. (16)

|S| is endowed with the quotient topology and as a set is given by the tensor product

|S| = S ⊗Δ Δ = S ⊗Δ p[0,1] = (p[0,1])∗(S)

where p[0,1] is the point of the topos Δ̂ associated to the interval [0, 1] and (p[0,1])∗ is the pullback part of 
the corresponding geometric morphism Sets −→ Δ̂ as described in (9).

The geometric realization of the underlying simplicial set of the cyclic set C = j!({pt}) is the circle: 
|C| = R/Z obtained by gluing together the two endpoints of the interval I = [0, 1]. More generally one has 
the following result
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Proposition 3.2. Let I = [b, t] be an interval and let pI be the associated point of the topos Δ̂. Then the map

ιI : C ⊗Δ pI → I/ ∼
(
τa, w

)
�→ ιI

(
τa, w

)
:= w(a) ∈ I, ∀a ∈ {0, . . . , n} (17)

is a bijection of sets where C = j!({pt}) and ∼ is the equivalence relation which identifies the end points b
and t of I.

Proof. One has C = y([0]). The maps α ∈ HomΛ([n], [0]) are parameterized by the cosets a ∈ Z/(n + 1)Z
and are described, for fn ∈ HomΔ([n], [0]), by

αa = fn ◦ τa, αa(x) = E

(
x− a

n + 1

)
x ∈ Z

where E(y) denotes the integral part of y ∈ R. Let α = f1 ◦ τ be the map in HomΛ([1], [0]) distinct from 
f1. Then, for n > 1 and j ∈ {0, . . . , n − 1} one has

αj+1 = α ◦ σ0 ◦ · · · ◦ σj−1 ◦ σj+1 ◦ · · · ◦ σn−1. (18)

Notice that σj is the only omitted term in (18) where the σi’s appear following the increasing indexing order. 
By implementing the equivalence relation (16), this shows that in C ⊗Δ pI , and for any w ∈ Hom≥(n∗, I), 
one has

(αj+1, w) ∼
(
α, (σ0 ◦ · · · ◦ σj−1 ◦ σj+1 ◦ · · · ◦ σn−1)∗w

)
= (α,w ◦ sn−1 ◦ · · · sj+1 ◦ sj−1 ◦ · · · ◦ s0)

where (w ◦ sn−1 ◦ · · · sj+1 ◦ sj−1 ◦ · · · ◦ s0) ∈ Hom≥(1∗, I) = I. Moreover one also sees that

(sn−1 ◦ · · · sj+1 ◦ sj−1 ◦ · · · ◦ s0)(1) = j + 1 ∈ n∗, ∀j ∈ {0, . . . , n− 1}

so that

(αj+1, w) ∼
(
α,w(j + 1)

)
∀w ∈ Hom≥

(
n∗, I

)
.

Thus the elements of C ⊗Δ pI are equivalent to elements either of the form (α, u) for some u ∈ I, or of the 
form (α0, w) for some w ∈ Hom≥(n∗, I). In this latter case one has

(α0, w) ∼ (f0, t0), t0 ∈ Hom≥
(
0∗, I

)
.

Then one concludes that C ⊗Δ pI is obtained by gluing the base point ∗ = (f0, t0) at the two endpoints of 
the interval I ∼ {(α, u) | u ∈ I} and that the map ιI of (17) gives the required bijection. �
3.3. The geometric realization of a cyclic set

Next, we re-state Theorem 7.1.4 in §7.1 of [10] in a form that is more suitable to be extended to arbitrary 
cyclic structures on points of the topos of simplicial sets: we refer to Section 4.3 and Section 5 for precise 
statements. The notations are the same as in the last (sub)section.

Theorem 3.3.

(i) For C = j!({pt}), there exists a unique group law on |C| such that

(γ, u) ·
(
γ′, γ∗u

)
=

(
γγ′, u

)
, ∀γ, γ′ ∈ AutΛ

(
[n]

)
, u ∈ Δn. (19)
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(ii) The map ι[0,1] : |C| → R/Z as in (17) is a group isomorphism.
(iii) Let S be a cyclic set. There exists a unique right action of the group |C| on |S| such that

(x, u) 
 (γ, u) =
(
xγ−1, γ∗u

)
, ∀γ ∈ AutΛ

(
[n]

)
, x ∈ Sn, u ∈ Δn.

Proof. We endow |C| with the group law induced on |C| by the bijection ι[0,1] of (ii) and show that it 
fulfills (19). Let u ∈ Δn be an element of the standard simplex, given (the notations as in (11)) by

u =
n∑

j=0
ujvj ∈ Δn, u = (u0, . . . , un), uj ≥ 0,

n∑
j=0

uj = 1.

Then the map σ−1(u) ∈ Hom≥(n∗, [0, 1]) associated to u by (11) is given by

σ−1(u) = β, βa =
a−1∑
�=0

u�, ∀a ∈ n∗.

Let γ ∈ AutΛ([n]) and u ∈ Δn: one has γ = τa for some a ∈ {0, . . . , n}, and by (17)

ι[0,1]
(
τa, u

)
= βa =

a−1∑
�=0

u� ∈ R/Z.

Thus one gets

ι[0,1]
(
τ b, τa∗ u

)
∼

b−1∑
�=0

ua+� =
a+b−1∑
�=a

u�.

Using the relation 
∑n

j=0 uj = 1 one concludes that the two sides of the following formula agree modulo 1:

ι[0,1](γ, u) + ι[0,1]
(
γ′, γ∗u

)
= ι[0,1]

(
γγ′, u

)
, ∀γ, γ′ ∈ AutΛ

(
[n]

)
, u ∈ Δn

and this proves (i) and (ii).
(iii) First notice that the equality |C × S| = |C| × |S| derives from the left exactness of the functor p∗I

for any interval I. Moreover we claim that the map

g : |C × S| −→ |S|, g(γ, x, u) =
(
xγ−1, γ∗u

)
, ∀γ ∈ AutΛ

(
[n]

)
, x ∈ Sn, u ∈ Δn

is well defined. This can be checked directly by verifying that, for ϕ ∈ HomΔ([n], [m])

g
(
(γ, x)ϕ, u

)
= g(γ, x, ϕ∗u), ∀γ ∈ AutΛ

(
[m]

)
, x ∈ Sm, u ∈ Δn.

One has (γ, x)ϕ = (ϕ∗(γ), xϕ) and using (13) one obtains

g
(
(γ, x)ϕ, u

)
=

(
(xϕ)ϕ∗(γ)−1, ϕ∗(γ)∗u

)
=

(
xγ−1γ∗(ϕ), ϕ∗(γ)∗u

)

since the equality γϕ = γ∗(ϕ)ϕ∗(γ) implies that ϕϕ∗(γ)−1 = γ−1γ∗(ϕ). Thus one gets

g
(
(γ, x)ϕ, u

)
=

(
xγ−1, γ∗(ϕ)ϕ∗(γ)∗u

)
=

(
xγ−1, (γϕ)∗u

)
= g(γ, x, ϕ∗u).
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It remains to check that the above map g : |C| × |S| → |S| is a right group action. Let γj ∈ AutΛ([n]), 
x ∈ Sn, and u ∈ Δn. One has by construction

(x, u) 
 (γ1, u) = g(γ1, x, u) =
(
xγ−1

1 , (γ1)∗u
)

(
(x, u) 
 (γ1, u)

)


(
γ2, (γ1)∗u

)
= g

(
γ2, xγ

−1
1 , (γ1)∗u

)
=

(
xγ−1

1 γ−1
2 , (γ2)∗(γ1)∗u

)
= (x, u) 
 (γ1γ2, u)

Together with (19) this shows that g defines a right group action of the group |C| on |S|. �
4. The cyclic structure associated to an ordered group and a central element

In this section we show how to associate a cyclic structure (cf. Definition 2.6) to a triple (G, P, z), where 
the pair (G, P ) is a left-ordered group G (cf. Definition 4.1 below) and z ∈ G is a central positive element.

4.1. Ordered groups

We first recall the definition of a left-ordered group as in [7] I, §1.

Definition 4.1. A left order on a group G is a semigroup P ⊂ G (i.e. PP ⊆ P ) such that P ∩ P−1 = {1}
and P ∪ P−1 = G.

The associated left order on G is the total order ≤ defined by the relation (a, b ∈ G)

a ≤ b ⇐⇒ a−1b ∈ P.

By construction the left order ≤ on G determined by P is invariant by left translations.

4.2. The cyclic structure associated to (G, P, z)

Next we show how to associate a cyclic structure to a left ordered group (G, P ) with a fixed central 
element z ∈ P . In the following we shall use the notations introduced in §2.

Proposition 4.2. Let (G, P, z) be a left ordered group with a fixed central element z ∈ P . The following 
equality defines a cyclic structure on the point pI ∈ Δ̂ (of the topos of simplicial sets) associated to the 
interval I = [1, z]

τ(β)j := β−1
1 βj+1, ∀j ∈ {0, . . . , n}, τ(β)n+1 := z, ∀β ∈ Hom≥

(
n∗, [1, z]

)
. (20)

Proof. To an element β ∈ Hom≥(n∗, [1, z]) one associates the sequence π(β) = {π(β)j} of elements of 
P ⊂ G given by

π(β)j = β−1
j βj+1, ∀j ∈ {0, . . . , n}. (21)

With gj = π(β)j , one has g0g1 · · · gn = z. The map π determines a bijection of F[1,z](n∗) = Hom≥(n∗, [1, z])
with

F (n) :=
{
(gi)0≤i≤n

∣∣ gi ∈ P, g0g1 · · · gn = z
}
. (22)

The inverse map is given by
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π−1((gi)) = β, βj := g0 · · · gj−1, ∀j ∈ {0, . . . , n + 1}. (23)

Under this change of variables, the covariant action of Δ is expressed as follows

F (σj) : F (n + 1) → F (n), F (σj)(g) = (g0, . . . , gj−1, gjgj+1, . . . , gn+1)

F (δj) : F (n− 1) → F (n), F (δj)(g) = (g0, . . . , gj−1, 1, gj , . . . , gn−1).

Moreover the action of τ given by (20) now reads as follows

F (τ)(g)j := gj+1, ∀j ∈ {0, . . . , n− 1}, F (τ)(g)n := g0, ∀g ∈ F (n). (24)

Indeed, one has

π
(
τ(β)

)
j

= τ(β)−1
j τ(β)j+1 = β−1

j+1βj+2 = π(β)j+1 ∀j ∈ {0, . . . , n− 1}.

For j = n: π(τ(β))n = τ(β)−1
n τ(β)n+1 = τ(β)−1

n z = z−1β1z = β1, while it follows from (21) that π(β)0 = β1. 
This shows (24). Note that the cyclic permutation (24) preserves the condition g0g1 · · · gn = z in (22) that 
defines F (n) because the element z ∈ G is central.

It follows from (24) that F (τ)n+1 = id. It remains to check the relations (5) and (6) of Proposition 2.5
which define the presentation of the cyclic category. One has

F (τ) ◦ F (σ0)(g) = (g2, . . . , gn+1, g0g1) = F (σn)(g2, . . . , gn+1, g0, g1) = F (σn) ◦ F (τ)2(g).

For j ∈ {1, . . . , n} one has:

F (τ) ◦ F (σj)(g) = (g1, . . . , gjgj+1, . . . , gn+1, g0) = F (σj−1) ◦ F (τ)(g).

Similarly one has

F (τ) ◦ F (δ0)(g) = F (τ)(1, g0, . . . , gn−1) = (g0, . . . , gn−1, 1) = F (δn)(g)

and for j ∈ {1, . . . , n} one has:

F (τ) ◦ F (δj)(g) = (g1, . . . , gj−1, 1, gj , . . . , gn−1, g0) = F (δj−1) ◦ F (τ)(g).

This proves that (20) gives a cyclic structure on the point pI of Δ̂. �
The above construction only involves the following subgroup of the group G,

G′ =
{
g ∈ G

∣∣ ∃n ∈ N, z−n ≤ g ≤ zn
}

(25)

For any g ∈ G′ there is a largest k ∈ Z such that g ≥ zk and one then has z−kg ∈ [1, z). Thus G′ is 
the subgroup of G generated by the interval I = [1, z] and any of its elements is uniquely of the form 
g = zkv = vzk, k ∈ Z, v ∈ [1, z). Moreover one has a canonical bijection

G′/zZ = [1, z]/ ∼ (26)

where ∼ is the equivalence relation which identifies the end points 1 and z of I = [1, z].
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Example 4.3. We give an example (cf. [1]) of left ordered group (G, P ) and central element z such that the 
group G′ is noncommutative. We let (xn), n ∈ N be a dense sequence of real numbers xn ∈ R and consider 
the left order on the group Homeo+(R) of order preserving homeomorphisms of R which is defined by the 
semigroup

P :=
{
φ ∈ Homeo+(R)

∣∣ ∃n ∈ N, φ(xn) > xn, φ(xj) = xj ∀j < n
}

Let then G be the subgroup of Homeo+(R) which is the centralizer of the translation by 1: z(x) := x +1, ∀x ∈
R. Thus G = {φ ∈ Homeo+(R) | φ(x + 1) = φ(x) + 1 ∀x ∈ R}. One checks that with the induced order, 
the group G is left ordered and is noncommutative, that z is a central element and that G′ = G with G′

defined by (25).

4.3. The action of G′/zZ on p∗S for a cyclic set S

Let (G, P, z) be a left-ordered group with a fixed central element z ∈ G. We denote by F the extension 
to the cyclic category (defined in Proposition 4.2) of the functor F[1,z] : Δop −→ Sets. For a simplicial set 
S the pullback functor p∗[1,z] applied to S defines by construction the set

|S|p = S ⊗Δ p[1,z] = (p[1,z])∗(S).

We let G′ be as in (25). We can now state the generalization of Theorem 3.3 in the presence of the cyclic 
structure of Proposition 4.2 on the point p[1,z].

Theorem 4.4.

(i) There exists a unique group law on |C|p (C = j!({pt})) which is given by

(γ, g) ·
(
γ′, γ∗g

)
=

(
γγ′, g

)
, ∀γ, γ′ ∈ AutΛ

(
[n]

)
, g ∈ F (n).

(ii) The map ι[1,z] : |C|p ∼→ G′/zZ is a group isomorphism.
(iii) Let S be a cyclic set. There exists a unique right action of the group |C|p on |S|p given by

(x, g) 
 (γ, g) =
(
xγ−1, γ∗g

)
, ∀γ ∈ AutΛ

(
[n]

)
, x ∈ Sn, g ∈ F (n).

Proof. By Proposition 3.2 applied to the interval I = [1, z] the map

ι[1,z] : |C|p = C ⊗Δ p[1,z] → [1, z]/ ∼
(
τa, w

)
�→ ι[1,z]

(
τa, w

)
:= w(a) ∈ I, ∀a ∈ {0, . . . , n}

is a bijection of sets where C = j!({pt}) and ∼ is the equivalence relation which identifies the end points 1
and z of I = [1, z]. As in the proof of Theorem 3.3, we use ι[1,z] and (26) to identify |C|p with the quotient 
group G′/zZ. Thus it is enough, in order to prove (i) and (ii) to show that

ι[1,z](γ, g).ι[1,z]
(
γ′, γ∗g

)
= ι[1,z]

(
γγ′, g

)
, ∀γ, γ′ ∈ AutΛ

(
[n]

)
, g ∈ F (n).

This follows from (17) and (23) which imply

ι[1,z]
(
τa, g

)
= βa = g0 · · · ga−1, ι[1,z]

(
τ b, τa∗ g

)
= ga · · · ga+b−1.

The proof of (iii) is the same as in Theorem 3.3. �
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Remark 4.5. An example to keep in mind in order to understand Theorem 4.4 is when G = (R, +) is the 
additive group of real numbers with P = R+ and z = 1. In this case G′ = G and G′/zZ is the circle group. 
All maps are compatible with the topology.

5. Classification of the cyclic structures

In this section we state and prove the main result of this paper that provides a precise description of 
cyclic structures. In Section 5.3 we relate the notion of cyclic structure with the notion of point of the topos 
of cyclic sets as in [12].

5.1. The variety of cyclic structures

In the following we show that given a point p = pI of the topos Δ̂ of simplicial sets, the cyclic structures 
on p are classified by the (not necessarily commutative) left-ordered group structures on the ordered set

G = (Z× I)/ ∼ (27)

Here Z × I is endowed with the following lexicographic order of the product (I has smallest element b and 
largest element t):

n > m =⇒ (n, u) > (m, v), (n, u) ≥ (n, v) ⇐⇒ u ≥ v u, v ∈ I. (28)

The equivalence relation in (27) identifies (n, t) ∼ (n +1, b) for all n ∈ Z. By construction there is a natural 
injection of sets

c : Z ↪→ G, c(n) = (n, b) n ∈ Z. (29)

The main result of this paper is the following

Theorem 5.1. Let I be an interval and let pI be the associated point of the topos Δ̂ of simplicial sets. Then 
a cyclic structure on pI corresponds to a group law on G = (Z × I)/ ∼ such that:

(i) The order relation on G is left invariant.
(ii) The restriction of the group law of G on c(Z) ×G is commutative and is given by

c(n)(m,u) = (m,u)c(n) = (n + m,u), ∀n,m ∈ Z, u ∈ I.

Note that (ii) implies that the map c : Z ↪→ G of (29) is a group homomorphism whose range is contained 
in the center of G. Before to start the proof of Theorem 5.1 we state some simple corollaries and provide 
some examples showing the variety of cyclic structures one can define on a point p = pI of Δ̂.

Corollary 5.2.

(i) Let I be an interval and let pI be the associated point of Δ̂. If pI admits a cyclic structure then the 
ordered set (27) is homogeneous.

(ii) There exist points of Δ̂ that cannot support any cyclic structure.
(iii) The points of Δ̂ associated to finite intervals have a unique cyclic structure.
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Proof. (i) follows from (i) of Theorem 5.1 since left translations by G respect the order and act transitively.
(ii) Let I be an interval with a unique non-isolated point u ∈ (b, t) for the order topology (i.e. the 

topology with a basis given by open subintervals); all the other points are isolated i.e. open. Then the 
ordered set (27) is not homogeneous thus (i) implies that the point pI cannot have any cyclic structure.

(iii) A point pI with I a finite interval corresponds to the interval n∗, for some n ≥ 0. The associated 
ordered set (27) is isomorphic to Z with the usual order, and the inclusion c : Z ↪→ Z of (29) is defined 
by multiplication by n + 1. Then, the existence of a group law fulfilling the conditions of Theorem 5.1
is immediate. Conversely, let e = (0, 0) be the neutral element of the group G and let f = (0, 1) be the 
subsequent element after e for the order relation (28). We write the group law of G multiplicatively. The 
sequence {fn} is increasing: in fact f > e, thus by applying the left invariance property (i) of Theorem 5.1
one gets fn+1 > fn. Moreover the open intervals (fn, fn+1) are empty since

fn < x < fn+1 =⇒ e < f−nx < f.

It follows that fn+1 = (1, 0) = c(1) with f generating the group G with positive part provided by the fn’s 
for n ≥ 0. This proves the required uniqueness. �
Corollary 5.3.

(i) Let I be an interval and let Γ = Aut(I) be the group of order automorphisms of I. Then Γ acts on the 
set of cyclic structures on the associated point pI of Δ̂.

(ii) Let I = [0, 1] ⊂ R, then the associated point p[0,1] of Δ̂ admits a continuum of cyclic structures.

Proof. (i) The two properties fulfilled by a cyclic structure on pI as in Theorem 5.1 remain true if one 
conjugates a group law (g, g′) �→ gg′ by an order automorphism ψ, i.e. if one replaces the group law by the 
following modified one

(
g, g′

)
�→ ψ

(
ψ−1(g)ψ−1(g′)).

(ii) The group Aut([0, 1]) of order automorphisms of the interval [0, 1] acts freely on the set of cyclic 
structures on p[0,1] which are obtained from the usual ordered group structure on R. �
5.2. Proof of Theorem 5.1

Let p be a point of Δ̂ and let F = p∗ ◦ y : Δ −→ Sets be the associated (filtering) functor. Let 
F̃ : Λ −→ Sets be an extension of F to the cyclic category that defines a cyclic structure on p. Let I be the 
interval associated to F so that F = FI (cf. (10)). The action of AutΛ([n]) arising from the extension F̃ is 
denoted as follows

F̃(γ)(u) = γ∗u ∈ F(n) = Hom≤
(
n∗, I

)
, ∀γ ∈ AutΛ

(
[n]

)
, u ∈ Hom≤

(
n∗, I

)
.

More generally we shall use the notation

F̃(φ)(u) = φ∗u ∈ F(m) = Hom≤
(
m∗, I

)
, ∀φ ∈ HomΛ

(
[n], [m]

)
, u ∈ Hom≤

(
n∗, I

)
.

The pullback functor p∗I associates to any simplicial set S the set (cf. (1))

(pI)∗(S) = |S|p = S ⊗Δ pI .
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By Proposition 3.2 and for C = j!({pt}) = y([0]), one has a bijection ιI : |C|p → I/ ∼ , where ∼ is the 
equivalence relation which identifies the end points b and t of I. The next statement defines a group law 
on |C|p.

Lemma 5.4. There exists a unique group law on |C|p such that

(γ, u) ·
(
γ′, γ∗u

)
=

(
γγ′, u

)
, ∀γ, γ′ ∈ AutΛ

(
[n]

)
, u ∈ Hom≤

(
n∗, I

)
. (30)

Proof. Let S be any cyclic set. There is an equality of geometric realizations |C × S|p = |C|p × |S|p that 
derives, from the left exactness of the functor p∗I . Moreover we claim that the map

gp : |C × S|p −→ |S|p, gp(γ, x, u) =
(
xγ−1, γ∗u

)
, ∀γ ∈ AutΛ

(
[n]

)
, x ∈ Sn, u ∈ Hom≤

(
n∗, I

)

is well defined. This can be checked directly by verifying that, for ϕ ∈ HomΔ([n], [m])

gp
(
(γ, x)ϕ, u

)
= gp(γ, x, ϕ∗u), ∀γ ∈ AutΛ

(
[m]

)
, x ∈ Sm, u ∈ Hom≤

(
n∗, I

)
.

One has (γ, x)ϕ = (ϕ∗(γ), xϕ), and using (13) one obtains

gp
(
(γ, x)ϕ, u

)
=

(
(xϕ)ϕ∗(γ)−1, ϕ∗(γ)∗u

)
=

(
xγ−1γ∗(ϕ), ϕ∗(γ)∗u

)

since the equality γϕ = γ∗(ϕ)ϕ∗(γ) implies ϕϕ∗(γ)−1 = γ−1γ∗(ϕ). Thus one gets

gp
(
(γ, x)ϕ, u

)
=

(
xγ−1, γ∗(ϕ)ϕ∗(γ)∗u

)
=

(
xγ−1, (γϕ)∗u

)
= gp(γ, x, ϕ∗u).

Applying this result to S = C one derives the map

hp : |C|p × |C|p → |C|p, hp

(
(γ, u),

(
γ′, u

))
=

(
γ′γ−1, γ∗u

)
, ∀γ, γ′ ∈ AutΛ

(
[n]

)
, u ∈ Hom≤

(
n∗, I

)
.

(31)

This implies

hp

((
γ, γ−1

∗ v
)
,
(
γ′, γ−1

∗ v
))

=
(
γ′γ−1, v

)
, ∀γ, γ′ ∈ AutΛ

(
[n]

)
, v ∈ Hom≤

(
n∗, I

)
.

Moreover by following the above construction one also shows that there exists a map

j : |C|p → |C|p, j(γ, v) =
(
γ−1, γ∗v

)
, ∀γ ∈ AutΛ

(
[n]

)
, v ∈ Hom≤

(
n∗, I

)
.

Thus the map k : |C|p × |C|p → |C|p, k(x, y) = hp(j(x), y) fulfills the rule

k
(
(γ, v),

(
γ′, γ∗v

))
=

(
γ′γ, v

)
, ∀γ, γ′ ∈ AutΛ

(
[n]

)
, v ∈ Hom≤

(
n∗, I

)
.

We set x.y = k(x, y) and show that this defines a group law on |C|p. For j ∈ {0, 1, 2}, let γj ∈ AutΛ([n]), 
and u ∈ Hom≤(n∗, I). We use the above map gp with S = C and set

(γ0, u) 
 (γ1, u) := hp

(
(γ1, u), (γ0, u)

)
=

(
γ0γ

−1
1 , (γ1)∗u

)
.

One also has
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(
(γ0, u) 
 (γ1, u)

)


(
γ2, (γ1)∗u

)
=

(
γ0γ

−1
1 , (γ1)∗u

)


(
γ2, (γ1)∗u

)
=

(
γ0γ

−1
1 γ−1

2 , (γ2)∗(γ1)∗u
)

= (γ0, u) 
 (γ1γ2, u).

With the above notations one derives

(x 
 y) 
 z = x 
 (y.z), ∀x, y, z ∈ |C|p.

The elements (1, u) all represent the same element 1 ∈ |C|p and one has

1 
 x = j(x), ∀x ∈ |C|p.

The associativity of the product x.y then follows from the following equalities

1 

(
(x.y).z

)
= 1 
 x 
 y 
 z = 1 


(
x.(y.z)

)
.

Finally, any x ∈ |C|p has an inverse j(x), using the fact that x 
 x = 1. �
In the next step we construct a 2-cocycle c on the group |C|p with values in the additive group Z. First 

we introduce the natural triangulation of |C|p × |C|p.

Lemma 5.5.

(i) The simplicial structure of C × C is given by degenerate simplices except for the two 2-dimensional 
simplices T1 = (τ2, τ2

2 ) and T2 = (τ2
2 , τ2), the three 1-dimensional simplices L1 = (1, τ1), L2 = (τ1, 1)

and L3 = (τ1, τ1) and the zero dimensional simplex (1, 1).
(ii) The face maps δj (j = 0, 1, 2) are given by the following table

T1δ0 = L1, T2δ0 = L2

T1δ1 = L3, T2δ1 = L3

T1δ2 = L2, T2δ2 = L1.

Proof. (i) There are a priori nine 2-dimensional simplices in C × C associated to the pairs (τa2 , τ b2), for 
a, b ∈ {0, 1, 2}. To show that with the exception of T1 = (τ2, τ2

2 ) and T2 = (τ2
2 , τ2) the other seven are 

degenerate we compute the degeneracy maps σi (i = 0, 1) from the lower dimensional simplices

(1, 1)σ0 = (1, 1), (1, τ1)σ0 =
(
1, τ2

2
)
, (τ1, 1)σ0 =

(
τ2
2 , 1

)
, (τ1, τ1)σ0 =

(
τ2
2 , τ

2
2
)

(1, 1)σ1 = (1, 1), (1, τ1)σ1 = (1, τ2), (τ1, 1)σ1 = (τ2, 1), (τ1, τ1)σ1 = (τ2, τ2).

(ii) One obtains the table of degeneracies by direct computation. �
Fig. 1 shows this natural triangulation on |C|p × |C|p.

Remark 5.6. One can compare the natural triangulation of |C|p × |C|p with the triangulation of j!(C) used 
in [10] Lemma 7.1.10, using the following fact. Let S be a cyclic set, then the following map gives an 
isomorphism of underlying simplicial sets

ϑS : j!(S) → C × S, ϑS(x, γ) := (γ, xγ), ∀γ ∈ AutΛ
(
[n]

)
, x ∈ Sn.
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Fig. 1. The natural triangulation on |C|p × |C|p.

To prove this statement it is enough to check that ϑS is compatible with the simplicial structure. One has

ϑS(x, γ)φ =
(
φ∗(γ), xγφ

)
=

(
φ∗(γ), xγ∗(φ)φ∗(γ)

)
= ϑS

(
xγ∗(φ), φ∗(γ)

)
= ϑS

(
(x, γ)φ

)
.

Next result uses the above natural triangulation on |C|p × |C|p to provide an explicit description of the 
group law on |C|p and to construct a 2-cocycle c on the group |C|p.

Lemma 5.7.

(i) The group law on |C|p = I/ ∼ is given as follows

x.y =
{

(τ2(1, τ1(x), y, z))(1) if τ1(x) ≤ y

(τ2
2 (1, y, τ1(x), z))(2) if τ1(x) > y

∀x, y ∈ I (32)

where τn is the cyclic action on FI(n) = Hom≥(n∗, I).
(ii) The following equality defines a 2-cocycle c ∈ Z2(|C|p, Z) normalized by the condition c(1, x) = c(x, 1) =

0, ∀x ∈ |C|p, where 1 ∈ |C|p is the class of b ∼ t and the neutral element of the group law (32)

c(x, y) =
{

0 if τ1(x) > y

1 if τ1(x) ≤ y
∀x, y ∈ I \ {b, t}. (33)

Proof. (i) On the simplex T1 = (τ2, τ2
2 ) the isomorphism ιI × ιI of (17) is given by

(
τ2, τ

2
2 , u

)
=

(
(τ2, u),

(
τ2
2 , u

)) ιI×ιI�−→
(
u(1), u(2)

)
, ∀u ∈ Hom≥

(
2∗, I

)
.

Similarly, on the simplex T2 = (τ2
2 , τ2) one has

(
τ2
2 , τ2, u

)
=

((
τ2
2 , u

)
, (τ2, u)

) ιI×ιI�−→
(
u(2), u(1)

)
, ∀u ∈ Hom≥

(
2∗, I

)
.

By applying in both cases the map hp : |C|p × |C|p → |C|p as in (31) we get on T1

(
τ2, τ

2
2 , u

)
=

(
(τ2, u),

(
τ2
2 , u

)) hp�→
(
τ2, τ2(u)

) ιI�→ τ2(u)(1), ∀u ∈ Hom≥
(
2∗, I

)

and on T2

(
τ2
2 , τ2, u

)
=

((
τ2
2 , u

)
, (τ2, u)

) hp�→
(
τ2
2 , τ

2
2 (u)

) ιI�→ τ2
2 (u)(2), ∀u ∈ Hom≥

(
2∗, I

)
.

Thus using the definition k(x, y) = hp(j(x), y) as in the proof of Lemma 5.4 one obtains (32).
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(ii) We first define a function ρ(x, y) on |C|p × |C|p with values in {0, 1} in terms of the triangulation of 
Lemma 5.5,

ρ = 1 on T1 \ (L1 ∪ L2), ρ = 0 elsewhere.

Thus ρ(x, y) = 0 if x or y is the base point 1 ∈ |C|p, and for x, y ∈ I \ {b, t} one has

ρ(x, y) =
{

0, if x > y

1, if x ≤ y
(34)

Thus comparing with (33) we get c(x, y) = ρ(j(x), y) for all x, y ∈ |C|p.
The cocycle equation for a function of two variables f(a, b) on a group G is equivalent to

3∑
j=0

(−1)j f̃(w0, . . . , ŵj , . . . , w3) = 0, ∀wi ∈ G,

where f̃ is the left invariant function of three variables

f̃(w0, w1, w2) := f
(
w−1

0 w1, w
−1
1 w2

)
, ∀wi ∈ G.

For the function c of (33) on the group |C|p we use (30) in the form (γ, u)−1.(γ′, u) = (γ−1γ′, γ∗u), and get 
the equality

c̃
(
(γ0, u), (γ1, u), (γ2, u)

)
= c

((
γ−1
0 γ1, (γ0)∗u

)
,
(
γ−1
1 γ2, (γ1)∗u

))

Then we use the equality c(x, y) = ρ(j(x), y) and obtain

c̃
(
(γ0, u), (γ1, u), (γ2, u)

)
= ρ

((
γ0γ

−1
1 , (γ1)∗u

)
,
(
γ−1
1 γ2, (γ1)∗u

))
(35)

It remains to show that this function of three variables c̃(w0, w1, w2) fulfills

3∑
j=0

(−1)j c̃(w0, . . . , ŵj , . . . , w3) = 0. (36)

Let ω be the function of three variables on |C|p � I \ {t} given by

ω(x, y, z) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if x = y or y = z

0 if x < z and y ∈ [x, z]
0 if z < x and y /∈ [z, x]
1 otherwise.

By construction ω depends only upon the order structure on I and not on the cyclic structure. To verify 
that it fulfills (36) it is enough to check it in the special case of I = [0, 1] since this interval is universal 
for finite order configurations in arbitrary intervals. In this case one finds that ω is the coboundary of the 
following function of two variables

�(x, y) :=
{
y − x if x ≤ y

1 − (x− y) if x > y

in other words in this special case one has
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ω(x, y, z) = �(y, z) − �(x, z) + �(x, y).

Next we turn back to the general case and show that ω(w0, w1, w2) = c̃(w0, w1, w2). More precisely we prove 
the equality on each of the simplices of the canonical triangulation of |C|p × |C|p × |C|p = |C × C × C|p. 
We start with the simplices of lowest dimension and parametrize their elements in the form (γ0, γ1, γ2, u), 
where for simplices of dimension n ∈ N one has γj ∈ AutΛ([n]) and u ∈ Hom≥(n∗, I). Since we proceed by 
considering first the lower dimensional simplices, we can assume that u is non-degenerate. Then it follows 
immediately that γ∗u is also non-degenerate ∀γ ∈ AutΛ([n]) since an equality such as γ∗u = φ∗v, for 
v ∈ Hom≥((n − 1)∗, I) and φ ∈ HomΔ([n − 1], [n]), implies u = ψ∗(w) for some w ∈ Hom≥((n − 1)∗, I) and 
ψ ∈ HomΔ([n −1], [n]). To compute c̃(w0, w1, w2) for wj = (γj , u), we use (35) and we can then assume that 
(γ1)∗u is non-degenerate. Both ω(w0, w1, w2) and c̃(w0, w1, w2) take a constant value on the non-degenerate 
elements of each simplex and we can then compare these values and check that they are the same. Both ω
and c̃ take the value 0 on the 0-dimensional simplex. We label the simplices of dimension n by the three 
indices aj ∈ {0, . . . , n} corresponding to γj = τaj and we only consider the non-degenerate simplices. Next 
tables list, for higher dimensional simplices, the values of the three indices aj ∈ {0, . . . , n}, the value of 
ω(w0, w1, w2) and of the two indices bj such that γ0γ

−1
1 = τ b0 , γ2γ

−1
1 = τ b1 and finally the corresponding 

value of ρ((γ0γ
−1
1 , (γ1)∗u), (γ−1

1 γ2, (γ1)∗u)). One has 7 non-degenerate simplices of dimension 1 obtained 
using permutations as the following simplices (wσ(0) = wσ(1) = wσ(2)), (wσ(0) = 0, wσ(1) = wσ(2)), (wσ(0) =
wσ(1) = 0). The corresponding table is

(1, 0, 0) → 0
(0, 1, 0) → 1
(0, 0, 1) → 0
(1, 1, 0) → 0
(1, 0, 1) → 1
(0, 1, 1) → 0
(1, 1, 1) → 0

,

(1, 0) → 0
(1, 1) → 1
(0, 1) → 0
(0, 1) → 0
(1, 1) → 1
(1, 0) → 0
(0, 0) → 0

One has 12 non-degenerate simplices of dimension 2 obtained using permutations as the following simplices 
(wσ(0) = wσ(1) < wσ(2)), (wσ(0) = 0, wσ(1) < wσ(2)). The corresponding table is

(0, 1, 2) → 0
(0, 2, 1) → 1
(1, 0, 2) → 1
(1, 1, 2) → 0
(1, 2, 0) → 0
(1, 2, 1) → 1
(1, 2, 2) → 0
(2, 0, 1) → 0
(2, 1, 0) → 1
(2, 1, 1) → 0
(2, 1, 2) → 1
(2, 2, 1) → 0

,

(2, 1) → 0
(1, 2) → 1
(1, 2) → 1
(0, 1) → 0
(2, 1) → 0
(2, 2) → 1
(2, 0) → 0
(2, 1) → 0
(1, 2) → 1
(1, 0) → 0
(1, 1) → 1
(0, 2) → 0

One has 6 non-degenerate simplices of dimension 3, corresponding to permutations σ by the ordering 
wσ(0) < wσ(1) < wσ(2). The corresponding table is
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(1, 2, 3) → 0
(1, 3, 2) → 1
(2, 1, 3) → 1
(2, 3, 1) → 0
(3, 1, 2) → 0
(3, 2, 1) → 1

,

(3, 1) → 0
(2, 3) → 1
(1, 2) → 1
(3, 2) → 0
(2, 1) → 0
(1, 3) → 1

This suffices to check the equality ω(w0, w1, w2) = c̃(w0, w1, w2). In fact the above verifications correspond 
to the special cases of the (unique) cyclic structures on the intervals n∗, for n ∈ {0, 1, 2, 3}. �

Using the 2-cocycle c defined in Lemma 5.7 one obtains a group extension of the form

0 → Z → G → |C|p → 1.

The elements of G are pairs (n, x), with n ∈ Z and x ∈ |C|p = I/ ∼. The group law on G is given by

(n, x).(m, y) =
(
n + m + c(x, y), x.y

)
.

The proof of Theorem 5.1 follows immediately from next statement.

Lemma 5.8.

(i) The subset P = {(n, x) | n ≥ 0} ⊂ G is a semigroup that satisfies the following properties: P ∩ P−1 =
{1}, P ∪ P−1 = G.

(ii) The map Z × I � (n, u) �→ (n, x) ∈ G, with x = (class of u) ∈ |C|p, defines an order isomorphism on 
the (ordered) set G = (Z × I)/ ∼, with the left invariant order on G associated to P ⊂ G.

Proof. (i) By construction of the 2-cocycle c one has c(x, y) ≥ 0 for all x, y ∈ |C|p thus the subset P is 
a semigroup. For x ∈ |C|p, x �= 1, c(x−1, x) = 1, thus the inverse of (n, x) ∈ P is (−n − 1, x−1). Then if 
n ≥ 0, (−n − 1, x−1) /∈ P . This shows that P ∩P−1 = {1}. One sees easily that P ∪P−1 = G, since for any 
n ∈ Z one has either n ≥ 0 or −n − 1 ≥ 0.

(ii) The left invariant order on G associated to P ⊂ G is defined as follows

(n, x) ≤ (m, y) ⇐⇒ (n, x)−1(m, y) ∈ P.

Assuming x �= 1, one has (n, x)−1 = (−n − 1, x−1), hence (n, x)−1(m, y) = (−1 + m − n + c(x−1, y), x−1y), 
so that (for x �= 1) the above order can be described as

(n, x) ≤ (m, y) ⇐⇒ −1 + m− n + c
(
x−1, y

)
≥ 0.

This corresponds to the lexicographic order since m > n implies −1 + m − n + c(x−1, y) ≥ 0 and if m = n

one derives using (34)

c
(
x−1, y

)
≥ 1 ⇐⇒ x ≤ y.

Finally, for x = 1 one has (n, 1)−1 = (−n, 1) and (n, 1)−1(m, y) = (m − n, y) so that

(n, 1) ≤ (m, y) ⇐⇒ m− n ≥ 0

which again corresponds to the lexicographic order. �
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5.3. Relation with the points of the topos of cyclic sets

In [12] it was shown that the topos of cyclic sets is the classifying topos of abstract circles. By definition 
an abstract circle C is given by the following structure

C = (P, S, ∂0, ∂1, 0, 1, ∗,∪)

where P and S are sets, ∂j : S → P are maps as well as P � x → 0x ∈ S and P � x → 1x ∈ S, ∗ : S → S

is an involution, and ∪ is a partially defined map from a subset of S × S to S. The model to keep in mind 
for such a structure is the one provided by a subset P ⊂ S1 of the oriented unit circle with S the set of all 
positively oriented segments with end points in P . The axioms fulfilled by abstract circles are the following:

1. Non-triviality. P �= ∅ and for any x, y ∈ P there exists at least one a ∈ S such that ∂0a = x, ∂1a = y. 
For any x ∈ P the segments 0x and 1x are distinct.

2. Equational. a∗∗ = a, ∂0(a∗) = ∂1(a), ∂0(0x) = x = ∂1(0x), 0∗x = 1x, if ∂0a = ∂1a = x then a = 0x or 
a = 1x.

3. Concatenation.
(i) a ∪ b exists only if ∂1a = ∂0b and in that case ∂1(a ∪ b) = ∂1b and ∂0(a ∪ b) = ∂0a.
(ii) a ∪ b = c ⇐⇒ c∗ ∪ a = b∗.
(iii) If a ∪ b and (a ∪ b) ∪ c exist then so do b ∪ c and a ∪ (b ∪ c) and (a ∪ b) ∪ c = a ∪ (b ∪ c).
(iv) a ∪ b = 0x =⇒ a = 0x.
(v) If ∂0a = x then 0x ∪ a = a.
(vi) If ∂1a = ∂0b then at least one of a ∪ b and b∗ ∪ a∗ exist.

We introduce a closely related notion

Definition 5.9. An archimedean set is a pair (X, θ) where X is a non-empty totally ordered set and θ ∈ AutX
is an order automorphism, with θ(x) > x, ∀x ∈ X and fulfilling the following archimedean property

∀x, y ∈ X, ∃n ∈ N : y ≤ θn(x). (37)

To any archimedean set (X, θ) we associate an abstract circle C = X/θ as follows

• P = X/ ∼ is the orbit space for the action of Z on X given by powers of θ.
• S is the orbit space for the action of Z on the set of pairs (x, y) ∈ X2, with x ≤ y ≤ θ(x).
• ∂0(x, y) = x, ∂1(x, y) = y.
• 0x = (x, x), 1x = (x, θ(x)).
• (x, y)∗ = (y, θ(x)).
• (x, y) ∪ (y, z) = (x, z) provided that x ≤ y ≤ z ≤ θ(x).

Note that these definitions of (P, S, ∂0, ∂1, 0, 1, ∗, ∪) make sense because they are compatible with the 
equivalence relation. It is easy to see that one obtains in this way an abstract circle. In particular, the 
archimedean property (37) is used in order to prove the Non-triviality property 1 of an abstract circle.

The next lemma provides the converse association.

Lemma 5.10. Let C be an abstract circle then there exists an archimedean set (X, θ) such that C is isomorphic 
to X/θ.



1234 A. Connes, C. Consani / Journal of Pure and Applied Algebra 219 (2015) 1211–1235
Proof. It follows from [12] that given a point x ∈ P the subset Lx ⊂ S of a ∈ S such that ∂0a = x is an 
interval (with smallest element 0x and largest element 1x) for the following order:

a ≤ b ⇐⇒ ∃c, a ∪ c = b. (38)

Let then Xx be the quotient of Z × Lx by the equivalence relation which identifies (n + 1, 0x) ∼ (n, 1x). 
One endows Xx with the total order induced from the lexicographic ordering of Z × Lx. By construction, 
the order automorphism θx defined by θx(n, u) = (n +1, u) fulfills the archimedean property (37). The map 
p : Xx → P , p(n, a) = ∂1(a) is a bijection of the orbit space Xx/ ∼ (for the action of Z on Xx by powers 
of θ) with P . Let s be the map which associates to a pair (α, β) ∈ X2

x with α ≤ β < θ(α), the element 
s(α, β) ∈ S determined as follows. If α = (n, a), β = (n, b)), one lets s(α, β) = c where c ∈ S is determined 
by (38). If α = (n, a), β = (n + 1, b)) then s(α, β) = a∗ ∪ b. Then s determines a bijection of the orbit space 
for the diagonal action of Z on the set of pairs (α, β) ∈ X2

x with α ≤ β ≤ θ(α) onto S. It is straightforward 
to verify that the pair (p, s) provides an isomorphism Xx/θx

∼→ C of abstract circles. �
Let y ∈ P be another base point, then there is a natural isomorphism Xy → Xx that is described as 

follows. Let v ∈ S be the unique element such that ∂0v = x, ∂1v = y. Let b ∈ Ly, then one has ∂1v = ∂0b. 
One sets ψ((n, b)) = (n, v ∪ b) if v ∪ b exists, and ψ((n, b)) = (n + 1, (b∗ ∪ v∗)∗) otherwise. This defines an 
isomorphism ψxy : Xy

∼→ Xx of archimedean sets. However it is not true that ψzy ◦ ψyx = ψzx, in fact for 
x �= y one has ψxy ◦ ψyx = θx.

The above development suggests to introduce the following category.

Definition 5.11. The category Arc has as objects the archimedean sets (X, θ); the morphisms f : (X, θ) →
(X ′, θ′) of Arc are equivalence classes of maps

f : X → X ′, f(x) ≥ f(y) ∀x ≥ y; f
(
θ(x)

)
= θ′

(
f(x)

)
, ∀x ∈ X

modulo the relation which identifies two such maps f and g if there exists an integer m ∈ Z such that 
g(x) = θ′m(f(x)), ∀x ∈ X.

The full subcategory of Arc whose objects are the archimedean sets (Z, θ), where Z is endowed with its 
usual order, is canonically isomorphic to the cyclic category Λ (see Definition 2.3), since the archimedean 
automorphism θ is necessarily given by a translation x �→ θ(x) = x +n +1, for some n ≥ 0. In turn, the cyclic 
category Λ is isomorphic to its opposite Λop: this equivalence is established by the contravariant functor 
t : Λ −→ Λop which associates to f ∈ HomΛ([n], [m]) the transposed map f t ∈ HomΛ([m], [n]) verifying

f(x) ≥ y ⇐⇒ x ≥ f t(y), ∀x, y ∈ Z.

The square of t is equivalent to the identity by means of the natural transformation defined by the translation 
of 1. Thus to the inclusion Δ ⊂ Λ corresponds an inclusion of the opposite categories Δop ⊂ Λop ∼ Λ which 
is described as follows: to ϕ ∈ Hom≥(n∗, m∗) one associates the unique element ϕ ∈ HomΛ([n], [m]) which 
satisfies ϕ(x) = ϕ(x), ∀x ∈ {0, . . . , n +1} ⊂ Z. In particular, one has: f ∈ Δ ⊂ Λ if and only if f t ∈ Δop ⊂ Λ.

Proposition 5.12.

(i) The functor Q which associates to an object (X, θ) of the category Arc the abstract circle X/θ is 
an equivalence of categories.

(ii) The inclusion Δ ⊂ Λ induces at the level of the points of the corresponding topoi the functor which 
associates to an interval I the archimedean set (Z × I)/ ∼.
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Proof. (i) Lemma 5.10 shows that any abstract circle is isomorphic to an object in the image of Q, thus it 
is enough (using the definition of equivalence of categories as in [11], p. 13) to show that Q is fully faithful. 
Let (X, θ) and (X ′, θ′) be two archimedean sets and h : X/θ → X ′/θ′ a morphism of the associated abstract 
circles. Let x ∈ X and choose x′ ∈ X ′ so that the image h(x̃) of the class x̃ ∈ P = X/θ of x ∈ X is the 
class x̃′ ∈ P ′ = X ′/θ′. The map h determines an order preserving map from the interval Lx̃ (cf. the proof 
of Lemma 5.10) to the interval L′

x̃′ . This map lifts to a map f : X → X ′ such that Q(f) = h and whose 
class in HomQ(X, X ′) is uniquely determined. This shows that the functor Q is fully faithful.

(ii) The correspondence between points of the topos of cyclic sets and abstract circles [12] translates, 
implementing (i), into the following description of points of the topos of cyclic sets. To an object X of Arc
one associates the restriction to Λ ⊂ Arc of the contravariant functor HomArc(·, X) from Arc to sets. Using 
the contravariant functor t one thus obtains a covariant functor Λ −→ Sets, which is also filtering. Note 
that all filtering functors Λ −→ Sets are of this form. In order to understand the effect of the inclusion 
Δ ⊂ Λ at the level of the points of the corresponding topoi, it is enough to consider the special case of the 
points associated to the objects of the (small) categories, since the other points are obtained as filtering 
limits of these special points. Given an object [n] of Δ the associated point of the topos Δ̂ is given by 
the filtering (covariant) functor HomΔ([n], ·) : Δ −→ Sets. This is the composite of Hom≥(·, n∗) with the 
canonical contravariant functor Δ −→ Δop. Similarly, the associated point of the topos Λ̂ is given by the 
filtering (covariant) functor HomΛ([n], · ) : Λ −→ Sets and thus it corresponds to the archimedean set 
(Z, θ) where θ is the translation by n + 1. In this dual description, the inclusion Δ ⊂ Λ corresponds to 
the inclusion Δop ⊂ Λop ∼ Λ, where the latter is the restriction to finite intervals of the functor which 
associates to an interval I the archimedean set (Z × I)/ ∼ with lexicographic order and automorphism θ, 
θ(n, a) := (n + 1, a), ∀n ∈ Z, a ∈ I. �
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