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THERE EXIST NON-CM HILBERT MODULAR FORMS OF PARTIAL

WEIGHT ONE

RICHARD MOY AND JOEL SPECTER

Abstract. In this note we prove that there exists a conjugate pair of classical Hilbert
modular cuspidal eigenforms over Q(

√

5) of partial weight one which do not arise from the

induction of a Grössencharacter from a CM extension of Q(
√

5).

1. Introduction

A Hilbert modular form is said to be of partial weight one if some, but not all, of its
weights are one. It is a well-established “folklore question”1 whether there exists a totally
real field F and a classical Hilbert modular form f of partial weight one which does not
arise from the induction of a Grössencharacter from some CM extension of F . This note
answers the question in the affirmative (see Theorem 1.1). If, in addition, all the weights of f
have the same parity (which our conjugate pair of examples do), then, assuming local-global
compatibility, there exists a compatible family of representations (L, {ρλ}) with the following
intriguing property:

Let ℓ be a prime in OF not dividing the level of f and totally split in F . If λ
is a prime in OL above ℓ, then the corresponding representation,

ρλ : GF → GL2(Oλ)

will be geometric, have Zariski dense image, and yet be unramified for at least
one v|ℓ.

Many cases of local-global compatibility are now known. See, e.g., [8, §3.2], [9, Theorem 1.4].
Although such a beast seems somewhat peculiar, there is no obvious a priori reason why
it should not exist. On the other hand, there does not seem to be any obvious way (even
conjecturally) to produce such a modular form, either by automorphic or motivic methods.
To answer the question we find an explict form. Although (in principle) the method of
computation used in this paper applies to general totally real fields, we shall restrict to
real quadratic fields F with narrow class number one for convenience. Indeed, all of our
computations took place with Hilbert modular forms for the field F = Q(

√
5).
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1We originally learnt of this problem through Fred Diamond. In conversations with Kevin Buzzard, Don

Blasius, and Fred Diamond, it became clear that the question of whether such forms existed was apparent to
the authors of [1] in the ’80s (and may well have occurred to others before then). The question gained some
urgency with the advent of Fraser Jarvis’ construction of Galois representations for partial weight one forms
[7] in the mid-’90s, since, if the only such forms were CM, then [7] would be a trivial consequence of Class field
theory. We have heard several reports of the question being raised again at this time. In light of these stories,
we feel safe in calling the problem a “well-known folklore question.”
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1.1. The Computation. Our search for partial weight one Hilbert modular forms is premised
on the philosophy that finite-dimensional spaces of meromorphic modular forms which are sta-
ble under the action of the Hecke algebra ought to be modular. In the case of classical modular
forms, this idea has been formalized by George Schaeffer. Let V be a finite-dimensional space
of meromorphic modular forms on Γ0(N) of weight k and nebentypus χ which are holomorphic
at infinity. In his thesis [10, Theorem 6.2.1] and in [11, Theorem 1.1], Schaeffer proves that
if V is stable under the action of a Hecke operator Tp for p ∤ N, then V ⊆ Mk(Γ0(N), χ,C).
As a corollary, one observes that for any such V containing Mk(Γ0(N), χ,C), the chain (for
p 6 |N)

V ⊇ V ∩ TpV ⊇ V ∩ TpV ∩ T 2
p V ⊇ ...

stabilizes to Mk(Γ0(N), χ,C) in less than dimC V steps [10, Algorithm 7.2.6].

Schaeffer’s principal application of this theorem is the effective computation of the space
M1(Γ0(N), χ,C) of classical weight one modular forms. Suppose one wishes to compute this
space. To begin, simply take any Eisenstein series E ∈ M1(Γ0(N), χ−1,C) and let V be the
space of ratios of forms in M2(Γ0(N),C) with E. Then V ⊇M1(Γ0(N), χ,C). It then suffices
to compute the intersection of V with its Hecke translates. One can reduce this computation
to one in linear algebra by passing to Fourier expansions. The Fourier expansions of forms
in M2(Γ0(N),C) are easily calculated to any bound via modular symbols and the Fourier
expansion of E has a simple formula. Hence, the Fourier expansion of any form in V is easily
calculated to any bound. The operator Tp acts on Fourier expansions formally via a well-
known formula. What makes the method effective is that it requires only an explict finite
number of Fourier coefficients for a basis of the space V to calculate M1(Γ0(N), χ,C). The
number of coefficients required is determined by the Sturm bounds.

Schaeffer’s method generalizes nicely to the case of Hilbert modular forms. Let n be a
modulus of Q(

√
5) and χ a totally odd ray class character of conductor n. Fix an odd integer

m > 1. We are interested in calculating the space S[m,1](Γ0(n), χ,C) of Hilbert cusp forms of
partial weight one. As in the case of classical modular forms, there exists an Eisenstein series
E1,χ−1 ∈M[1,1](Γ0(n), χ

−1,C) and one can consider the space V of ratios with numerators in
S[m+1,2](Γ0(n),C) and denominator E1,χ−1 . This is a finite-dimensional space of meromorphic
forms which contains S[m,1](Γ0(n), χ,C) as its maximal holomorphic subspace. Assuming n is
square-free, one can use Dembélé’s algorithm [4, 5] as implemented in magma [2], to produce
the Fourier expansions of a basis for the space S[m+1,2](Γ0(n),Q(

√
5)) to any desired degree

of accuracy. The Fourier expansion of E1,χ−1 is given by an explicit formula. Hence, the
Fourier expansion of the meromorphic forms in V can be calculated to any desired degree of
accuracy. For a prime p of OF , the Hecke operator Tp acts on the Fourier expansions of the
meromorphic forms in V formally via an explicit formula. So, as in the case of classical forms,
one may hope to calculate the Tp-stable subspace of V via techniques in linear algebra.

Unfortunately, this direct generalization of Schaeffer’s method is impractical from a com-
putational perspective. In comparison with the case of classical modular forms, the number
of Fourier coefficients needed to prove equality of two modular forms and the amount of com-
putation needed to calculate those Fourier coefficients is much greater. For this reason, we
structure our search method so that it requires as few Fourier coefficients as possible.

For the details of our search, we refer the reader to Section 2.6. But the idea is as follows; we
calculate the Fourier expansions of the forms in S[m+1,2](Γ0(n), 1)/E1,χ−1 truncated to some
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chosen bound. We calculate the intersection of these spaces of truncated formal Fourier ex-
pansions using linear algebra. If the dimension of the intersection coincides with the number of
eigenforms with complex multiplication (CM), then every eigenform in S[n,1](Γ0(n), χ,Q(

√
5))

has CM. (Using class field theory, we can compute the dimension of the CM subspace in ad-
vance.) In practice, using a modest bound, we were able to restrict the existence of a non-CM
weight one Hilbert modular form of small level and norm to a handful of candidate spaces
where the intersection is larger than expected. One can then check if a form f ∈ V in such a
candidate space is holomorphic by checking if there exists a form g ∈ S[dn,d](Γ0(n), χ

d,Q(
√
5))

such that the fd = g. Our search yielded the existence of a nonparallel weight one Hilbert
modular form without CM.

Main Theorem. Let n = (14) ⊂ O
Q(

√
5) and let χ be the order 6 ray class character of

conductor (7) · ∞1∞2 such that χ(2) = −1+
√−3
2 . The space of cusp forms S[5,1](Γ0(n), χ,C)

is 2-dimensional, and has a basis with coefficients in Q(
√
5, χ). This space has a basis over

Q(
√
5, χ,

√
−19) consisting of two conjugate eigenforms, neither of which admit complex mul-

tiplication.

Remark 1.1. Let π be the automorphic representation of GL2(A
∞
F ) associated to either

of these newforms. Implimenting Schaeffer’s algorithm for a second time, one finds that the
space of forms S[5,1](Γ0(7), χ) is empty. Hence the level of π at 2 is Γ0(2). Since the character χ
has conductor prime to 2 and the level at 2 is Γ0(2), the local component π2 is Steinberg (up
to an unramified quadratic twist). In particular, this implies that local-global compatibility
results of [8, 9] could not be proved directly using congruence methods to higher weight, which
would only be sufficient for proving compatibility up to N -semi-simplification.

2. Hilbert Modular Forms

In this section, we state some basic definitions and results on classical Hilbert modular
forms. Let F be a real quadratic field of narrow class number one and OF its ring of integers.
We fix an ordering on the two embeddings of F into R and denote, for a ∈ F, the image of a
under the i-th embedding by ai. We say an element a ∈ OF (resp. a ∈ F ) is totally positive if
ai > 0 for all i and denote the set of all such elements by O+

F (resp. F+). Similarly, we have
two natural embeddings of the matrix ring M2(F ) into the matrix ring M2(R). If γ ∈ M2(F ),
let γ1 and γ2 denote the image of γ under the i-th embedding. Let dF = (δ) be the different
of F/Q where δ ∈ O+

F . For an integral ideal n of F, we define

Γ0(n) :=

{(

a b
c d

)

∈ GL+
2 (F ) : a, d ∈ OF , c ∈ nd, b ∈ d−1, ad− bc ∈ O×

F

}

where GL+
2 (F ) is the subgroup of GL2(F ) composed of matrices with totally positive deter-

minant. If H is the complex upper half-plane, the group Γ0(n) acts on H×H via fractional
linear transformations by the rule

(

a b
c d

)

.(z1, z2) =

(

a1z1 + b1
c1z1 + d1

,
a2z2 + b2
c2z2 + d2

)

.
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Let k := [k1, k2] be an ordered pair of nonnegative integers. For γ =

(

a b
c d

)

∈ GL+
2 (F )

and z ∈ H×H set

j(γ, z)k := det(γ1)
−k1
2 det(γ2)

−k2
2 (c1z1 + d1)

k1(c2z2 + d2)
k2 .

If f : H×H → C and γ ∈ GL+
2 (F ), we write f |γ to mean the function f |γ : H×H → C

given by

(2.1) f |γ(z) = j(γ, z)−kf(γz).

Consider a character χ : (OF /n)
× → C× which satisfies χ(u) =

(

u1
|u1|

)−k1 ( u2
|u2|

)−k2
for

all u ∈ O×
F . A Hilbert modular form of weight k, level n, and character χ is a holomorphic

function f : H×H → C such that for all γ ∈ Γ0(n),

(2.2) f |γ(z) = χ(d)f(z).

We denote theC-vector space of all such functions byMk(Γ0(n), χ,C) and byMk(Γ0(n),C)
when χ is the trivial character. As in the case of classical modular forms, we can compute
Fourier expansions of Hilbert modular forms.

2.1. Fourier Expansions. If f ∈Mk(Γ0(n), χ,C), then for all d ∈ d−1
F

f(z) = f(z + d)

by the transformation rule (2.2) since
(

1 d
0 1

)

∈ Γ0(n). It follows from Fourier analysis that the
form f is given by the series

f(z) =
∑

α∈OF

cα(f)e
2πi(α1z1+α2z2)

in a neighborhood of the cusp (∞,∞). The Koecher Principle [6, p. 18] states that cα(f) = 0
unless α is totally positive or α = 0. If the constant term of the Fourier expansion of f |γ
is zero for all γ ∈ GL+

2 (F ), then we call f a cusp form and denote the space of such forms
Sk(Γ0(n), χ,C). We denote the space of cusp forms of level n, weight k, and trivial character
by Sk(Γ0(n),C).

Besides the Koecher Principle, the Fourier expansions of Hilbert modular forms have ad-
ditional structure. Let f ∈ Sk(Γ0(n), χ,C). For any totally positive unit η in OF , one can
check that the coefficient cα(f) satisfies the identity:

(2.3) cηα(f) = η
k1/2
1 · ηk2/22 · cα(f) = η

(k2−k1)/2
2 · cα(f)

by using the transformation rule (2.2) with
(

η 0
0 1

)

∈ Γ0(n) and equating Fourier expansions. If
desired, one can create a Fourier expansion indexed over the ideals of F rather than indexed
over elements of OF . In particular, for an ideal a = (α), we can set

(2.4) c(a, f) := N(a)(k1−k2)/2 · cα(f)/α(k1−k2)/2
1 = cα(f) · α2

(k1−k2)/2,

and one can easily check that this is independent of the choice of totally positive generator
α of a by using (2.3) above. We will call the cα(f) the unnormalized Fourier coefficient of f
and we will call the c(a, f) the normalized Fourier coefficients of f as in [3, p. 458]. Observe
that c(a, f) = cα(f) if k1 = k2.
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2.2. Hecke Operators. For an integral ideal n of OF , let

Γ1(n) =

{(

a b
c d

)

∈ GL+
2 (F ) : a ∈ OF , b ∈ d−1, c ∈ nd, d− 1 ∈ n

}

.

If q is an integral ideal of OF , we may choose a totally positive generator π of q and write
the disjoint union

Γ1(n)

(

1 0
0 π

)

Γ1(n) =
∐

j

Γ1(n)γj

where the γj are a finite set of right coset representatives. We define the qth Hecke operator
by

(2.5) Tqf :=
∑

j

f |γj .

The action of Tq on spaces of modular forms is independent of our choice of totally positive
generator for q. To see this let η ∈ (O+

F )
× and observe that

Γ1(n)

(

1 0
0 ηπ

)

Γ1(n) = Γ1(n)

(

η−1 0
0 1

)(

1 0
0 π

)(

η 0
0 η

)

Γ1(n) =
∐

j

Γ1(n)γj

(

η 0
0 η

)

.

Let γ̃j = γj

(

η 0
0 η

)

. Using (2.1), it is easy to verify that f |γj = f |γ̃j . Hence, the action of Tq

does not depend on our choice of a totally positive generator π of q.
If q = (π) is a prime ideal relatively prime to n, then we may choose the following coset

representatives for the γj:

γβ :=

(

1 ǫδ−1

0 π

)

and γ∞ :=

(

α βδ−1

δν π

)(

π 0
0 1

)

.

where ǫ runs through a complete set of representatives for OF /n, δ is a totally positive
generator for the different d, ν is a totally positive generator for n, and α, β ∈ OF such that
απ − νβ = 1. Let f ∈ Mk(Γ0(n), χ,C) have Fourier expansion f =

∑

α∈OF
cαe

2πi(α1z1+α2z2),
then Tq has the following effect on the Fourier expansion of the modular form f :

cα(Tqf) = π
−k1
2

+1

1 π
−k2
2

+1

2 cαπ+π
k1
2

1 π
k2
2

2 χ(q)cα/π = π
k1
2
− k2

2

2 N(q)−
k1
2
+1cαπ+π

k2
2
− k1

2

2 N(q)
k1
2 χ(q)cα/π

where N(q) denotes the numerical norm of the ideal q and cα/π = 0 if α/π 6∈ OF . On the
other hand, if q is prime and divides n, then

cα(Tqf) = π
−k1
2

+1
1 π

−k2
2

+1
2 cαπ(f).

2.3. Basis For Sk(Γ0(n), χ,C). In general, there will not be a basis of eigenforms for Sk(Γ0(n), χ,C).
Rather, there will be a newspace Snew

k (Γ0(n), χ,C) which will be generated by eigenforms

which we now describe.

Let m be a divisor of n, and let b be a divisor of n/m. Then there is a map

Vm,b : Sk(Γ0(m), χ,C) → Sk(Γ0(n), χ,C)

given by
∑

α∈OF

cαq
α 7→

∑

α∈OF

cαq
bα
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where b = (b) and b ∈ O+
F . This map only depends on b up to a scalar which one can

easily verify from (2.3). Let Sold
k (Γ0(n), χ,C) be the subspace of Sk(Γ0(n), χ,C) spanned by

Vm,b(f) for all f ∈ Sk(Γ0(m), χ,C) and all (m, b) with m|n where m 6= n and b|(n/m). The

orthogonal complement of Sold
k (Γ0(n),C), under the Petersson inner product, is the space

Snew
k (Γ0(n), χ,C); it has a basis of eigenforms which we will refer to as newforms.

For weights k such that all ki ∈ k are positive even integers, Dembélé’s algorithm computes
the space of newforms Snew

k (Γ0(n), χ,C) by using the fact that they are in bijection, via the

Jacquet-Langlands correspondence, with a certain space of automorphic forms on a quaternion
algebra. We then exploit the fact, special to GL(2), that the Fourier expansion of a newform
can be recovered from its Hecke eigenvalues.

2.4. Eisenstein Series of Weight One. In [12, Proposition 3.4], Shimura gives a prescrip-
tion which attaches to certains pairs of narrow ideal class characters of a number field F ,
with [F : Q] > 1, an Eisenstein series of parallel weight k. The Fourier expansions of these
Eisenstein series are calculated in [3, Proposition 2.1], and we recall this result here. As we
only make use of Eisenstein series of parallel weight k = [1, 1] associated to pairs consisting of
a trivial and nontrivial character, we include only the details which are relevant to this case.

In the classical setting, Eisenstein series of weight one are constructed via analytically con-
tinuating a two variable Eisenstein series defined via Hecke summation and then specializing
the continued variable at the origin. In general, this procedure produces a function on the
upper half plane with the correct monodromy under the apppropriate modular group but
which might fail to be holomorphic. In the setting of Hilbert modular varieties, the analogous
construction always defines a holomorphic Hilbert modular form. Explicitly, let ψ be a totally
odd character of the narrow ray class group modulo n and let

U = {u ∈ O×
F : Nm(u) = 1, u ≡ 1 mod n}.

For z ∈ H2, s ∈ C with Re(2s + 1) > 2, and eF (x) = exp(2πi · TrF/Q(x)), define

f(z, s) := C· 1

Nm(n)

∑

a∈OF , b∈d−1

(a,b) mod U, (a,b)6=(0,0)





1

(az + b)|az + b|2s ×
∑

c∈OF /n

sgn(c)[1,1]ψ(c)eF (−bc)





where

C :=

√
dF

[O×
F : U ]Nm(d)(−2πi)2

and sgn(c)r := sgn(c1)
r1sgn(c2)

r2 and r = [r1, r2] ∈ (Z/2Z)2.

Observe that the above sum for f(z, s) is over pairs (a, b) of nonzero elements of the
product Of × d−1 modulo the action of U (which is diagonal multiplication) as well as over
the representatives c for OF /n.

For fixed z, f(z, s) has meromorphic continuation in s to the entire complex plane. Set

E1,ψ(z) := f(z, 0).

In [3, Proposition 2.1], the authors compute the normalized Fourier coefficients of the above
Eisenstein series, E1,ψ. However, the normalized and unnormalized coefficients are equal here
since the Eisenstein series has parallel weight. Their result is summarized in the following
proposition.
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Proposition 2.1. Let n 6= OF be an integral ideal of F and let ψ be a totally odd character of
the narrow ray class group modulo n. Then there exists an element E1,ψ ∈M[1,1](Γ0(n), ψ,C)

such that cα(E1,ψ) =
∑

m|(α) ψ(m) for all totally positive integers α of O+
F and c0(E1,ψ) =

L(ψ,0)
4 . Explicitly,

E1,ψ =
L(ψ, 0)

4
+
∑

b∈O+

F





∑

m|(b)
ψ(m)



 · eF (bz)

2.5. CM Forms. While in general spaces of Hilbert modular forms of partial weight one
are mysterious, we do have one source to reliably produce such forms; we can obtain them
via automorphic induction from certain Grössencharacters. Specifically, let K be a totally
imaginary quadratic extension of F and AK be the adeles of K. Let ν1 : K → C be an
embedding extending the place ∞1. Consider a Grössencharacter

ψ : GL1(K)\GL1(AK) → C×

such that the local components of ψ at the infinite places are

ψ∞1
(z) = zk−1

ν1 and ψ∞2
(z) = |z|k−1

∞2
.

Then, by a theorem of Yoshida [13], there exists a unique Hilbert modular eigenform fψ of
weight [k, 1] such that the L-function of fψ is equal to the L-function of ψ. The form fψ is
independent of the choice of extension of ∞1.

A Hilbert modular eigenform f is said to have CM if its primitive form is equal to fψ
for some character ψ. From the equality of L-functions, one observes that if p is a prime of
F which is inert in K, then the normalized Hecke eigenvalue c(p, fψ) = 0. Conversely, this
property classifies CM Hilbert modular forms. That is, if f is a Hilbert modular form of level
c and K is a totally imaginary extension of F such that c(p, f) = 0 for all primes p ∤ c which
are inert in K, the primitive form of f is fψ for some Grössencharacter ψ of K. By class field
theory, one can restate this fact as follows.

Theorem 2.2. Let f be a Hilbert modular eigenform of level c. Then f has CM if and
only if there exists a totally odd quadratic Hecke character ǫ of F of conductor f such that
c(p, f)ǫ(p) = c(p, f) for all p ∤ cf. In this case, we say f has CM by ǫ.

If fψ is a newform arising from the character ψ, then the level of f is equal to ∆K/FNK/F (f(ψ))
where f(ψ) is the conductor of ψ. It follows that if f is a CM form of level Γ1(c), then f
has CM by some Hecke character of conductor dividing c. There are only finitely many such
Hecke characters, and so one can verify by calculating finitely many Hecke eigenvalues of f
that f does not have CM.

2.6. The Algorithm. In this section, we outline the algorithm used to search for non-CM
modular forms of weight [k, 1].

Recall from Section 2.1, that the nonzero coefficients appearing in the Fourier expansion of
a Hilbert modular form are indexed by the totally nonnegative elements of OF . Fix a field L
and consider the ring of formal Fourier expansions over L (coefficients indexed by the totally
nonnegative elements of OF ). For any pair of integers B := (b1, b2) there is an ideal of this
ring consisting of all formal Fourier series whose Fourier coefficient cα = 0 if |α|∞1

< b1 and
|α|∞2

< b2. The ring of formal Fourier expansions (over L) truncated to the bound B is
defined to be the quotient of the ring of formal Fourier expansions by this ideal.
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Algorithm 1. The following is a procedure to search for weight [k, 1] modular forms. Which
on input (k, n, χ,B, q) consisting of

(1) k = [k, 1] a pair of odd integers,
(2) n a square-free integral ideal of F,
(3) χ a totally odd ray class character of F of conductor dividing n · ∞1∞2,
(4) B = (b1, b2) a pair of positive integers,
(5) q a prime ideal of OF

outputs a pair, (δ, V q(B)), consisting of a natural number δ which bounds the number of
non-CM eigenforms from above and a finite dimensional space, V q(B), of formal Fourier
expansions truncated to the bound B which contains the image of S[k,1](Γ0(n), χ, F (χ)).

(1) Using Dembélé’s algorithm [4, 5] (see Section 2.3), compute, for each m|n, a basis for
the image of Snew

[k+1,2](Γ0(m), F ) in the ring of formal Fourier expansions over F (χ)

truncated to the bound NF/Q(q) ·B.
(2) Using the bases calculated in step 1 and following the procedure described in Section 2.3,

compute a basis S[k+1,2](NF/Q(q)·B,F ) (resp. S[k+1,2](B)) for the image of S[k+1,2](Γ0(n), F )
in the ring of formal Fourier expansions over F truncated to the bound NF/Q(q) · B
(resp. B). If the cardinality of |S[k+1,2](B)| < dim(S[k+1,2](Γ0(n), F )), then terminate
the algorithm and display the error message “Bound B is insufficient.”

(3) Divide the truncated Fourier expansions in S[k+1,2](NF/Q(q) ·B) (resp.S[k+1,2](B)) by
the Fourier expansion for E1,χ−1 described in Section 2.4. Call the resulting set of

truncated formal Fourier expansions S̃[k,1](NF/Q(q) · B) (resp. S̃[k,1](B)). Let V ∅(B)

be the space spanned by S̃[k,1](B).

(4) Compute Tqf for each element f of S̃[k,1](NF/Q(q) · B). The result is a set of formal

Fourier expansions truncated to the bound B. Let TqV
∅(B) be the space spanned by

this set.
(5) Compute bases for V ∅(B)∩TqV ∅(B) and ker

(

(Tq : V
∅(NF/Q(q) · B) → TqV

∅(B)
)

. Let
V q(B) be the space spanned by the union of these bases.

(6) Compute the dimension of the subspace in S[k,1](Γ0(n), χ,C) spanned by CM forms
using class field theory. Denote this dimension by h.

(7) Let δ = dim(V q(B))− h. Return (δ, V q(B)). �

If the algorithm returns an output with δ = 0, then all the eigenforms in the space
Sk(Γ0(n), χ) are CM. If the algorithm returns an output with δ > 0, one increases the bound
B and reruns the algorithm. If δ stabilizes at some value greater 0 over several increases
in precision, this indicates there might exist a non-CM eigenform of weight k in the space
Sk(Γ0(n), χ).

All of our calculations were made for F = Q(
√
5). We first used the algorithm to calculate

the dimensions of the spaces M[3,1](Γ0(n), χ) where n is a square-free ideal of OF and χ is a
totally odd character modulo n. We restricted ourselves to the case where n is square-free,
because the magma package used only worked in this case. Our program searched through all
square-free n of norm less than 500 and quadratic χ, but we did not find any non-CM Hilbert
modular forms. (In fact, our calculations show that none exist in the spaces we computed).

We next used our algorithm to calculate dimensions of M[5,1](Γ0(n), χ) for all square-free
ideals n of norm less than 300. The only candidate space our algorithm found is described
below in Section 3. In all other spaces of modular forms, our algorithm found that all
eigenforms were CM.
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3. A non CM form

Let F = Q(
√
5). We order the infinite places of F such that |

√
5|∞1

> 0. The ray class
group of conductor (7) · ∞1∞2 is isomorphic to Z/6Z. Let χ be the order 6 character such

that χ(2) = −1+
√
−3

2 . The character χ is totally odd.

Theorem 3.1. The space of cusp forms S[5,1](Γ0(14), χ,C) is 2-dimensional and has a basis

with coefficients in F (χ). This space has a basis over F (χ,
√
−19) consisting of two conjugate

eigenforms, neither of which admit complex multiplication.

Proof. For n a positive integer, we define

b(n) :=

(

⌊5n−
√
5n

2

⌋

,
⌊5n+

√
5n

2

⌋

)

where ⌊·⌋ denotes the floor function. Applying Algorithm 1 with input (k, n, χ,B, (2)) =
([5, 1], 14O, χ,B, (2)) with B = b(24), b(26) and b(28), respectively, one finds that for each

value V (2)(B) is two-dimensional. Table 1 lists the initial normalized Fourier coefficients of
one of the truncated formal Fourier expansions in V (2)(B). Let f(q) be this formal Fourier ex-

pansion in V (2)(28). Let f ∈ S[6,2](Γ0(14), 1, F )/E1,χ−1 be a meromorphic modular form whose
Fourier expansion truncated to the bound b(28) is f(q). We show f ∈ S[5,1](Γ0(14), χ, F (χ)),

by showing f3 ∈ S[15,3](Γ0(14), χ
3, F ). This is done in two steps.

(1) First we show the truncation map taking a form in S[18,6](Γ0(14), F ) to its Fourier
expansion truncated to the bound b(28) is an injection.

(2) Next we find a form g ∈ S[15,3](Γ0(14), χ
3, F ) such that the Fourier expansions of g

and f are equivalent when truncated to the bound b(28).

Noting that (f3 − g)E3
1,χ ∈ S[18,6](Γ0(14), F ), it follows from (1) and (2) that f3 and g are

equal.
The proofs of facts (1) and (2) are both computational. Using the magma package, one com-

putes that the space of cusp forms S[18,6](Γ0(14), F ) has dimension 356. Then one computes
explicitly the Fourier expansions for a basis of S[18,6](Γ0(14), F ) truncated to the bound b(28)
and shows that the resulting set of truncated formal Fourier series span a space of the same
dimension. This proves (1).

To prove (2), one must construct an element S[15,3](Γ0(14), χ
3, F ) with a desired property.

Unfortunately, the creation of spaces of Hilbert modular forms with nontrivial nebentypus
and the computation of their Fourier expansions has not yet been implemented in the magma
package. To skirt this issue, we instead use the magma package to compute the Fourier
expansions of the 56-dimensional space S[14,2](Γ0(14), F ) truncated to the bound b(56). One
then obtains the Fourier expansions for the forms in the subspace

E1,χ3 .S[14,2](Γ0(14), F ) + T2(E1,χ3 .S[14,2](Γ0(14), F )) ⊆ S[15,3](Γ0(14), χ
3, F )

truncated to the bound b(28), in which, following a calculation in linear algebra, one finds a
form g as desired in (2). It follows S[5,1](Γ0(14), χ,C) is 2-dimensional and has a basis with
elements in F (χ).

We now demonstrate the second claim of the proposition: that S[5,1](Γ0(14), χ,C) has a

basis over F (χ,
√
−19) consisting of two conjugate eigenforms, neither of which admit complex

multiplication. Utilizing Algorithm 1, one computes that V (2)([5, 1], 7O, χ, b(28), (2)) = 0
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and hence S[5,1](Γ0(14), χ,C) = Snew
[5,1](Γ0(14), χ,C). It follows S[5,1](Γ0(14), χ,C) has a basis

over C of simultaneous eigenforms for the Hecke algebra. As S[5,1](Γ0(14), χ,C) has a basis
defined over F (χ) and is two-dimensional, these eigenforms have as a field of definition either
F (χ) or a quadratic extension of F (χ). Calculating the characteristic polynomial of T5 on
S[5,1](Γ0(14), χ,C), we obtain that the field of definition is F (χ,

√
−19).

Finally, we see that neither of the forms in S[5,1](Γ0(14), χ,C) are CM. If this were not the
case, both forms of S[5,1](Γ0(14), χ,C) would have CM by a quadratic character of conductor

14. The unique such character is χ3. However, one observes that χ3(7+
√
5

2 ) = −1 and the 7+
√
5

2
normalized Hecke eigenvalue does not vanish for either eigenform in S[5,1](Γ0(14), χ,C). �

Remark 3.2. The Galois group Gal(F (χ,
√
−19)/Q) = (Z/2Z)3 acts on the Fourier expan-

sion as follows. The element with fixed field F (χ) permutes the two eigenforms. The element

with fixed field Q(
√
5,
√
−19) sends the eigenform to an eigenform in S[5,1](Γ0(14), χ

−1,C),

where χ−1 is the conjugate of χ. The element with fixed field Q(
√
−3,

√
−19) sends the eigen-

form to a form in S[1,5](Γ0(14), χ,C).

See Table 1 for the normalized coefficients c(p) for various prime ideals p = (π) of small
norm for one of the two normalized eigenforms in S[5,1](Γ0(14), χ,C). If c(π) is a coefficient
in the Fourier expansion of our eigenform for a prime π, then the normalized coefficient is
c(p) = c(π)π2 as seen in (2.4). The normalized coefficient does not depend on the choice of
totally positive generator π for the ideal p = (π).

Table 1. Table of Normalized Coefficients of Eigenform in S[5,1](Γ0(14), χ)

π N(π) c(p), p = (π)

2 4 −4 + 4
√
−3

5+
√
5

2 5
−45 + 15

√
−3 + 15

√
−19− 15

√
57

4

3 9 −18− 18
√
−3− 9

√
−19

(

3−
√
−3

2

)

7+
√
5

2 11
−87 + 87

√
−3 + 36

√
5− 36

√
−15 + 63

√
−19− 21

√
57 + 24

√
−95− 8

√
285

4
9+

√
5

2 19
−456 + 152

√
−3 + 171

√
5− 57

√
−15 + 66

√
−19− 66

√
57 − 39

√
−95 + 39

√
285

4
11+

√
5

2 29 −162 +
417

2

√
5 + 66

√
57 +

17

2

√
285

13+
√
5

2 41
(

49 + 12
√
5
)

·
(

9
√
−3 + 15

√
−19

2

)

7 49
−1715 + 1715

√
−3 + 1029

√
−19 + 1029

√
57

4

Remark 3.3. We checked that for N(p) < 1000 and gcd(N(p), 14) = 1 the Satake parameters
of π satisfy the Ramanujan Conjecture. Equivalently, the Hecke eigenvalues satisfy the bounds
|c(p)|∞1

≤ 2p2 and |c(p)|∞2
≤ 2p2. The Ramanujan conjecture would follow from Deligne’s

proof of the Riemann hypothesis if one knew that π was motivic, however, the construction
of the associated Galois representations proceeds via congruences.
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