
POLYNOMIALS WITH SURJECTIVE ARBOREAL GALOIS

REPRESENTATIONS EXIST IN EVERY DEGREE

JOEL SPECTER

Abstract. Let E be a Hilbertian field of characteristic 0. R.W.K. Odoni conjectured that
for every positive integer n there exists a polynomial f ∈ E[X] of degree n such that each
iterate f◦k of f is irreducible and the Galois group of the splitting field of f◦k is isomorphic to
the automorphism group of a regular, n-branching tree of height k. We prove this conjecture
when E is a number field.

1. Introduction

Given a polynomial f ∈ Q[X], the roots of f are the most evident set on which the absolute
Galois group acts. This note concerns the Galois action on the second most evident set: the
set of roots of all compositional iterates of f.

We begin by establishing some notation. All fields considered in this note have character-
istic 0. If F is a field and f ∈ F [X] is a polynomial, for each positive integer k, we denote
the k-th iterate of f under composition by f◦k. The set of all pre-images of 0 under the
iterates of f is denoted

Tf :=

∞∐
k=0

{r ∈ F : f◦k(r) = 0}.

To organize Tf , we give it the structure of a rooted tree: a zero rk of f◦k is connected to

a zero rk−1 of f◦(k−1) by an edge if f(rk) = rk−1. We call Tf the pre-image tree of 0. The
absolute Galois group GF of F acts on Tf by tree automorphisms. The resulting map

ρf : GF → Aut(Tf )

is called the arboreal Galois representation associated to f. We will say ρf is regular if Tf is
a regular, rooted tree of degree equal to the degree of f.

Interest in arboreal Galois representations originates from the study of prime divisors ap-
pearing in the numerators of certain polynomially-defined recursive sequences. Explicitly,
given a polynomial f ∈ Q[X] and an element c0 ∈ Q, one wishes to understand the density
of the set of primes

Sf,c0 := {p : vp(f
◦n(c0)) > 0 for some value of n}

inside the set of all prime integers. An observation, first made by Odoni in [Odo85b], is that
one may bound this density from above using Galois theory. Specifically, if one excludes the
primes p for which c0 and f are not p-integral, a prime p is contained in Sf,c0 if and only if c0

is a root of some iterate of f mod p. By the Chebotarev Density Theorem, the proportion
of primes p for which f◦k mod p has a root is determined by the image of ρf . As a general
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principle, if a polynomial has an arboreal Galois representation with large image, then few
primes appear in Sf,c0 . For specific results, we refer the reader to [Odo85b] or [Jon08].

In [Odo85a], Odoni showed that for any field F of characteristic 0, the arboreal Galois
representation associated to the generic monic, degree n polynomial

fgen(X) := Xn + an−1X
n−1 + . . .+ a1X + a0 ∈ F (an−1, . . . , a0)[X]

is regular and surjective.1 When F is Hilbertian, for example when F = Q, one expects that
most monic, degree n polynomials behave like fgen. Indeed, this expectation holds true for any
finite number of iterates: for each k > 0, the set of monic, degree n polynomials f such that
the Galois group of f◦k over F is smaller than the Galois group of f◦kgen over F (an−1, . . . , a0)
is thin. Alas, in general, the intersection of the complement of countably many thin sets may
be empty; therefore, Odoni’s theorem does not imply the existence of any specialization with
surjective arboreal Galois representation. He conjectures that such specializations exist.

Conjecture 1.1 ([Odo85a], Conjecture 7.5). Let E be a Hilbertian field of characteristic 0.
For each positive integer n, there exists a monic, degree n polynomial f ∈ E[X] such that
every iterate of f is irreducible and the associated arboreal Galois representation

ρf : GE → Aut(Tf )

is surjective.

In this note, we prove Odoni’s conjecture when E is a number field. More generally, we
prove Conjecture 1.1 for extensions of Q that are unramified outside of finitely many primes
of Z.

Theorem 1.2. If E/Q is an algebraic extension that is unramified outside finitely many
primes, then for each positive integer n there exists a positive integer a < n and infinitely
many A ∈ Q such that the polynomial

fa,A(X) := Xa(X −A)n−a +A

and all of its iterates are irreducible over E and the arboreal GE-representation associated
to fa,A is surjective.

Our choice to consider the polynomial families in Theorem 1.2 was inspired by exam-
ples of surjective arboreal Galois representations over Q constructed by Robert Odoni and
Nicole Looper. In [Odo85b], Odoni shows that the arboreal GQ-representation associated
to X(X − 1) + 1 is regular and surjective. In [Loo16], Looper proves Conjecture 1.1 for poly-
nomials over Q of prime degree by analyzing the arboreal Galois representations associated to
certain integer specializations of the trinomial family Xn−ntXn−1 +nt = Xn−1(X−nt)+nt.

In addition to our note, there have been a series of recent, independent works concern-
ing Odoni’s conjecture. Borys Kadets [Kad18] has proved Conjecture 1.1 when n is even
and greater than 19, and E = Q. Robert Benedetto and Jamie Juul [BJ18] have proved
Conjecture 1.1 when E a number field, and n is even or Q(

√
n,
√
n− 2) 6⊆ E.

The organization of this paper is as follows. Section 2 provides a criterion with which
to check if an arboreal Galois representation contains a congruence subgroup Γ(N). This

1Jamie Juul has shown that the arboreal Galois representation associated to the generic monic, degree n
polynomial over a field F of any characteristic is regular and surjective under the assumption that the charac-
teristic of F and the degree n do not both equal 2 [Juu14].
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criterion is that the image of the arboreal Galois representation contains, up to conjugation,
some set of preferred elements

{σ0} ∪ {σk : k > N} ∪ {σ∞,N}
which topologically generate a subgroup containing Γ(N). In Section 3, we show that for
various explicit choices of A and a there are prime integers

{p0} ∪ {pk : k > 0} ∪ {p∞}
such that the image of the inertia group Ipk 6 GQpk

under ρfa,A contains an element conjugate
to σk if k < ∞, and conjugate to either σ∞,1 or σ∞,0 if k = ∞. By choosing A well, one
can force pk to lie outside any fixed, finite set of primes; hence if E/Q is unramified outside
finitely many primes, then there is a choice of a and A such that the image of GE under ρfa,A
contains Γ(1). Given such a polynomial, its arboreal Galois representation is surjective if and
only if its splitting field is an Sn-extension. In Section 4, we prove there are infinitely many
values of A and a for which the representation ρfa,A : GE → Aut(Tfa,A) is surjective by means
of a Hilbert Irreducibility argument.

2. Recognizing Surjective Representations

Fix a field F of characteristic 0 and let f ∈ F [X] be a polynomial. For every non-negative
integer N, let

Tf,N :=

N∐
k=0

{r ∈ F : f◦k(r) = 0} ⊆ Tf

denote the full subtree of Tf whose vertices have at most height N. The subtree Tf,N is
stable under the action of Aut(Tf ). Let Γ(N) 6 Aut(Tf ) be the vertex-wise stabilizer of Tf,N
in Aut(Tf ). In this section, we describe a condition under which the image of ρf contains Γ(N).
Since Γ(0) equals Aut(Tf ), the case when N = 0 is of primary interest.

To state our criterion, we introduce some terminology. For each non-negative integer k, we
denote the splitting field of f◦k over F by Fk. If k is negative, we define Fk := F. By a branch
of the tree Tf , we mean a sequence of vertices (ri)

∞
i=0 such that r0 = 0 and f(ri) = ri−1

for i > 0. The group GF acts on the branches of Tf . If X is some set of branches and σ ∈ GF ,
we say that σ acts transitively on X if the closed, pro-cyclic subgroup 〈σ〉 ⊂ GF stabilizes X
and acts transitively in the usual sense.

The following is a sufficient condition for the image of a regular aboreal Galois representa-
tion to contain Γ(N).

Lemma 2.1. Let N be a non-negative integer, f ∈ F [X] be a monic polynomial of degree n,
and a < n be a positive integer such that either a = 1, or a < n/2 and n−a is prime. Assume
that all iterates of f are separable. Furthermore, assume that:

(1) there is an element σ0 ∈ GF which acts transitively on the branches of Tf ,
(2) there is an element σ∞,N ∈ GF and a regular, (n− a)-branching subtree T ⊆ Tf such

that σ∞,N acts transitively on the branches of T, and
(3) for every positive integer k > N, there is an element σk ∈ Gal(Fk/Fk−1) which acts

on the roots of f◦k in Fk as a transposition,

then all iterates of f are irreducible, and the image of the arboreal Galois representation
associated to f contains Γ(N).
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Proof. Since all iterates of f are separable, Hypothesis 1 implies that all iterates of f are
irreducible. We show that Γ(N) is contained in the image of ρf .

For all integers k > N, the subgroup Γ(k) 6 Γ(N) is finite index, and Γ(N) is isomorphic to
the inverse limit lim←−k>N Γ(N)/Γ(k).We regard Γ(N) as a topological group with respect to the

topology induced by the system of neighborhoods {Γ(k)}k>N . The map ρf : GF → Aut(Tf )
is continuous in this topology. Since GF is compact, the image, ρf (GF ), is closed.

To show that the closed subgroup ρf (GF ) contains Γ(N), it suffices to show that for all k
greater than N

(2.1) (ρf (GF ) ∩ Γ(k − 1))/(ρf (GF ) ∩ Γ(k)) = Γ(k − 1)/Γ(k).

Fix an integer k > N. Concretely, Γ(k − 1)/Γ(k) is the group of permutations σ of the roots

of f◦k which satisfy the relation f(σ(rk)) = f(rk). For each root π of f◦(k−1), let Xπ denote
the set of roots of f(X) − π in F . The group Γ(k − 1)/Γ(k) stabilizes Xπ, and there is an
isomorphism

(2.2) Γ(k − 1)/Γ(k) ∼=
⊕
π∈F

f◦(k−1)(π)=0

SXπ

given by the direct sum of the restriction maps. Note that Gal(Fk/Fk−1) is the subquotient
of GF which is mapped isomorphically to (ρf (GF ) ∩ Γ(k − 1))/(ρf (GF ) ∩ Γ(k)) via the map
induced by ρf .

To show Equation (2.1) holds (and therefore prove the lemma), it suffices by Equation (2.2)
to show that:

(?) If (r r′) is a transposition in the symmetric group on the roots f◦k and f(r) = f(r′),
then (r r′) is realized by an element of the Galois group Gal(Fk/Fk−1).

We will say a transposition (r r′) on the set of roots of f◦k lies above a root π of f◦(k−1) if

f(r) = f(r′) = π.

We conclude the proof by demonstrating that (?) holds.
First, we show that Gal(Fk/Fk−1) contains at least one transposition above each root

of f◦(k−1). Fix a root π of f◦(k−1). By Assumption 3, the automorphism σk ∈ Gal(Fk/Fk−1)
acts on roots of f◦k as a transposition. Since σk is an element of Gal(Fk/Fk−1), it necessarily

lies above a root π′ of f◦(k−1). By Assumption 1, there is some τ ∈ 〈σ0〉 such that τ(π′) = π.
The conjugate στk acts on the roots of f◦k as a transposition above π.

To conclude the proof, we show that Gal(Fk/Fk−1) contains every transposition above π.
Observe that elements of Gal(Fk/Fk−1) which are Gal(Fk/Fk−1)-conjugate to a transposition
above π are also transpositions and lie above π. We know Gal(Fk/Fk−1) contains some
transposition above π. To show Gal(Fk/Fk−1) contains all transpositions above π, it suffices
to show GF (π) acts doubly transitively on Xπ.

Let Fπ be the splitting field of f(X)−π over F (π). We want to show that GF (π) acts doubly
transitively on Xπ, we will show Gal(Fπ/F (π)) is isomorphic to the symmetric group SXπ .
We use the following criterion for recognizing the symmetric group:

Lemma 2.2 (pg. 98 [Gal73], Lemma 4.4.3 [Ser92]). Let G be a transitive subgroup of Sn.
Assume G contains a transposition. If G either contains

(i) an (n− 1)-cycle, or
(ii) a p-cycle for some prime p > n/2,
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then G = Sn.

We show these conditions hold for Gal(Fπ/F (π)) 6 SXπ . First, by Assumption 1, the auto-

morphism σ0 acts on the roots of f◦k as an nk-cycle. It follows σn
k−1

0 is an element of GF (π)

which acts on Xπ as an n-cycle. Consequently, Gal(Fπ/F (π)) acts transitively on Xπ.

Next, consider the element σ := σ
(n−a)k−N−1

∞,N . If π2 is a root of f◦k−1 contained in T, then σ

fixes π1 and cyclically permutes the (n− a)-vertices of T which lie above π1. It follows that
the image of σ in Gal(Fπ1/F (π1)) is either a (n − 1)-cycle, or has an order divisible by a
prime p := n − a > n/2. Taking a further power of σ if necessary, we deduce that there is
a root π1 of f◦k such that the image of the permutation representation of Gal(Fπ1/F (π1))
on Xπ1 contains either an (n− 1)-cycle or a p-cycle for some prime p > n/2. By Hypothesis

1, there is some element τ ∈ 〈σ0〉 which maps π1 to π. Under such an element τ, the set Xπ1

is mapped to Xπ, and the actions of Gal(Fπ′/F (π′)) and Gal(Fπ/F (π)) are intertwined.
In particular, the cycle types occurring in Gal(Fπ1/F (π1)) are the same Gal(Fπ/F (π)). By
Lemma 2.2, we conclude Gal(Fπ/F (π)) ∼= SXπ . �

Remark 2.3. Hypothesis 1 of Lemma 2.1 can be replaced by the weaker assumption that Tf
is a regular, n-branching tree and GF acts transitively on the branches of Tf , i.e. that f◦k is
irreducible for all k. We have chosen to state Lemma 2.1 in this form, as it better indicates
our strategy for the proof of the main theorem of Section 3.

3. Almost Surjective Representations

Fix an integer n ≥ 2 and a field E ⊂ Q that is ramified outside of finitely many primes
in Z. In this section, we give explicit examples of polynomials of degree n whose arboreal GE-
representation contains Γ(1). In fact, many of our examples have surjective arboreal Galois
representation.

Given a non-zero rational number α, define α+ ∈ Z+ and α− ∈ Z to be the unique positive

integer and integer, respectively, such that (α+, α−) = 1 and α = α+

α− . Our main theorem in
this section is:

Theorem 3.1. Let E/Q be an extension which is unramified outside finitely many primes
of Z. Choose a < n to satisfy:

(a.1) if n ≤ 6, then a = 1,
(a.2) if n ≡ 7 mod 8, then a = 1,
(a.3) otherwise, n− a is a prime and a < n/2.

Assume A ∈ Q satisfies:

(A.1) if p is a prime which ramifies in E, then p-adic valuation vp(A) > 0,
(A.2) there is a prime p0 which is unramified in E and prime to n such that vp0(A) = 1,

(A.3) A > 2
1

n−1
(
a
n

)− a
n−1

∣∣ a
n − 1

∣∣−n−an−1 > 1,

(A.4) v2(A) ≥ 3
n−1 + n

n−1v2(n),

(A.5) (A+, n) = 2v2(n),
(A.6) (A−, a(a− n)) = 1,
(A.7) there is a prime p∞ > n which is unramified in E such that vp∞(A) = −1, and
(A.8) if n is even, then A− 6≡ ±1 mod 8,

then the polynomial
f(X) := Xa(X −A)n−a +A
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and all of its iterates are irreducible over E and the image of the arboreal GE-representation
associated to f :

(1) contains Γ(1) if a = 1 and n > 2, (i.e. n satisfies 2 < n ≤ 6 or n ≡ −7 mod 8), and
(2) equals Aut(Tf ), otherwise.

It is clear that there infinitely many values of A satisfying Hypotheses (A.1) - (A.8). The fact
that there is a value of a satisfying Hypotheses (a.1) - (a.3) is a consequence of Bertrand’s
postulate.

The remainder of this section constitutes the proof of Theorem 3.1. Fix elements a < n
and A ∈ Q which satisfy the hypotheses of this theorem, and let f(X) = Xa(X −A)n−a +A.
Let N = 1 if a = 1 and n > 2; otherwise, let N = 0. As in Section 2, for each non-negative
integer k, we denote the extension of E generated by all roots of f◦k by Ek ⊆ Q. Finally, for
each prime p ∈ Z, fix for once and for all an embedding ip : Q ↪→ Qp. The map ip induces
an inclusion on Galois groups GQp ↪→ GQ. Throughout the remainder of this note, we will

regard Q as a subfield of Qp, and GQp as a subgroup of GQ via these maps. We denote the
maximal unramified extension of Qp by Qun

p .
We will use Lemma 2.1 to show that the image of GE under ρf : GQ → Aut(Tf ) con-

tains Γ(N). To do so, we will show that GE contains a set of elements {σk : k ∈ N ∪ {∞}}
that satisfy the hypotheses of Lemma 2.1, where σ∞ denotes σ∞,N , an element satisfying
Hypothesis 2. As described in the introduction, our strategy will be to find a set of prime
integers {pk : k ∈ N ∪ {∞}} that are unramified in E and have the property that the in-
ertia subgroup Ipk 6 GQpk

6 GE contains an element σk satisfying the relevant hypoth-
esis of Lemma 2.1. The primes p0 and p∞ are those primes described in Theorem 3.1
that satisfy hypotheses (A.2) and (A.7), respectively. The local behavior of ρf at these
primes mimic the local behavior at 0 and ∞ in the arboreal Galois representation attached
to f(X, t) = Xa(X − t)n−a + t over C(t). In Lemmas 3.2 and 3.4, we show that when k
is 0 or ∞, the Ipk -action on Tf factors through its tame quotient, and a lift σk of any genera-
tor of tame inertia satisfies the relevant hypothesis of Lemma 2.1. From Lemma 3.2, we will
also deduce all iterates of f are separable. The primes pk for k a positive integer are found in
Lemma 3.5. Every iterate of the polynomial f has a critical point at a

nA. Therefore, f◦k( anA)

divides the discriminant of f◦k. Furthermore, anA is a simple critical point of f. In Lemma 3.5,
we find a prime pk that is prime to the numerator of A (and hence by Assumption (A.1) is un-
ramified in E) and divides the numerator of f◦k( anA) to odd order. Assumptions (A.3)−(A.6)
and (A.8) are made to guarantee that such a prime divisor occurs. In Lemma 3.6, we show the
ring of integers of Ek is simply branched over Spec(Z) at pk. At such primes pk, the elements
of the inertia group Ipk that act non-trivially on the roots f◦k act as a transposition σk.

We begin by verifying that all iterates of f are separable and that Hypothesis 1 of Lemma 2.1
holds for f. Let p0 be a prime that satisfies Assumption (A.2). We wish to show that all iter-
ates of f are separable, and that there is an element σ0 ∈ GE , which acts transitively on the
branches of Tf . We will show that all iterates of f are separable over Qp0 , and that there is
an element σ0 ∈ Ip0 which acts transitively on the branches. This is immediate consequence
of the following lemma:

Lemma 3.2. Let a ∈ Z+ and A ∈ Q satisfy the assumptions of Theorem 3.1. Let p0 be
a prime that witnesses Assumption (A.2). For all positive integers i, the polynomial f◦i is
irreducible over Qun

p0 and splits over a cyclic extension.
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Proof. We show that f◦i is an Eisenstein polynomial over Zp0 . By Assumption (A.2), the
polynomial f has p0-integral coefficients, and satisfies the congruence f ≡ Xn mod p0. There-

fore, f◦k ∈ Zp0 [X] and satisfies the congruence f◦k(X) ≡ Xnk mod p0. Noting that f(0) = A

and that A is a fixed point of f, we conclude that fk(0) = A, which is a uniformizer in Zp0 .

Therefore, f◦k ∈ Zp0 [X] is an Eisenstein polynomial.
Since the degree deg(f◦i) = ni is prime to p0, an Eisenstein polynomial of this degree

is irreducible over Qun
p0 and splits over the cyclic, tame extension of Qun

p0 of ramification

degree ni. �

Our next task is to verify that Hypothesis 2 of Lemma 2.1 holds for f . Note that the con-
ditions (a.1)-(a.3) of Theorem 3.1 are those on a that appear in the statement of Lemma 3.1.
Therefore, we must show that there is a regular (n− a)-branching subtree T ⊆ Tf whose
lowest vertex has height N, and an element σ∞ ∈ GE which preserves T and acts transitively
on the branches of T. This claim is vacuously true if n = 2; in this case one can take T to be
any branch of Tf and σ∞ to be the identity. We may therefore restrict our attention to the
case that n > 2.

Let p∞ be a prime that witnesses Assumption (A.7) of Theorem 3.1. Since p∞ > n, the
pro-p∞-Sylow of Aut(Tf ) is trivial and the action of Ip∞ on Tf factors through its pro-cyclic,
tame quotient. By the unramifiedness condition in (A.7), we have Ip∞ 6 GE . To verify the
Hypothesis 2, it thus suffices to show there is an Ip∞-stable, regular, (n−a)-branching tree T
whose lowest vertex has height N such that Ip∞-acts transitively on the branches of T. In
Lemma 3.4, we will find such a tree.

Before proving Lemma 3.4, we prove the following lemma, which explains the failure of
our methods to produce surjective arboreal Galois representations in Theorem 3.1 under the
assumption that a = 1. In Section 4, we will utilize this lemma to produce examples of
surjective arboreal Galois representations when n ≡ 7 mod 8 or n is in the range 3 ≤ n ≤ 6,
i.e. in the cases that a = 1.

Lemma 3.3. Let l be a prime integer which does not divide n − 1. Assume that B ∈ Ql

satisfies vl(B) = −1. Then the polynomial

g(X) := X(X −B)n−1 +B

splits completely over an unramified extension of Ql.

Proof. Consider the polynomial

S(X) := B−1f(B +X) = B−1Xn +Xn−1 + 1 ∈ Zl[X]

The polynomial S splits over a given field if and only if g does. We show S splits over an
unramified extension of Ql. Consider the Newton polygon of S; it has one segment of slope 0
and length n−1, and one segment of length 1 and slope 1. It follows that S has n−1 roots of
valuation 0 and one root of valuation −1. The root of valuation −1 is necessarily Ql-rational.
As for the roots of valuation 0, since

S(X) ≡ Xn−1 + 1 mod l

is separable, these roots have distinct images in the residue field. By Hensel’s lemma, we
conclude S splits over an unramifed extension of Ql. �

Lemma 3.4. Assume n > 2. Let a ∈ Z+ and A ∈ Q satisfy the assumptions of Theorem 3.1.
Let p∞ be a prime that witnesses Assumption (A.7). Then there is a subtree T ⊆ Tf whose
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lowest vertex has height N which is Ip∞-stable, regular, and (n− a)-branching such that Ip∞
acts transitively on the branches of T.

Proof. Consider the subtree of T∞f ⊆ Tf consisting of 0 and the roots r ∈ Qp∞ of f◦i such

that the valuation vp∞(f◦j(r)) = −1 for all non-negative integers j < i. Since the action of

GQp∞ on Qp∞ preserves the valuation, the tree T∞f is GQp∞ -stable.

We claim that T∞f is a regular, (n− a)-branching tree. To see this, observe that if ε is any

element of Qp∞ of valuation less than or equal to −1. Then the Newton polygon of

f(X)− ε = Xa(X −A)n−a + (A− ε) = (A− ε) +
n∑
j=a

(
n− a
n− j

)
An−jXj

has two segments: one has length n− a and slope −vp∞(A) = 1, and the other has length a
and slope

vp∞(An−a)− vp∞(A− ε)
a

=
a− n− vp∞(A− ε)

a
≤ a− n+ 1

a
≤ 2− n

a
,

which is less than 1. It follows that the pre-image of ε under f contains exactly n−a elements
of valuation −1. Specializing to the pre-image tree of 0, we deduce that the tree T∞f is regular

and (n− a)-branching.
When a = 1, by Lemma 3.3, the polynomial f splits completely over an unramified exten-

sion of Qp∞ . In this case, choose T to be any of the (n− a) full subtrees of T∞f whose lowest
vertex has height 1. The inertia group Ip∞ acts on T. If a > 1, let T equal T∞f . We claim that
the inertia group Ip∞ acts transitively on the branches of T.

Let rk be a root of f◦k contained in T∞f . The ramification index of Qp∞(rk)/Qp∞ is the

size of the orbit of rk in Qp∞ under Ip∞ . We wish to show that Ip∞ acts transitively on T.
By induction on k, it suffices to show that rk orbit has size:

(3.1) ek :=

{
(n− a)k, if a > 1, and

(n− a)k−1, if a = 1.

We show e(Qp∞(rk)/Qp∞) = ek. Note that e(Qp∞(rk)/Qp∞) is at most ek as the size of the
orbit of rk under Ip∞ is at most the number of vertices in T that have height k in T∞f . To

conclude the of proof, it suffices to show that ek greater than or equal to e(Qp∞(rk)/Qp∞).

We will show a root rk of f◦k contained in T∞f satisfies:

(3.2) vp∞((rk −A)) = 1 +
k∑
i=1

n− 1

(n− a)i
.

For each integer i in the range 0 ≤ i ≤ k define

ri := f◦k−i(rk) and εi := (ri −A)/A.

Equation (3.2) is equivalent to the assertion that

(3.3) vp∞(ε0) = 0 and vp∞(εi) =
vp∞(εi−1)

n− a
+
n− 1

n− a
if i > 1.
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We verify (3.3). The case when i = 0 is clear, as ε0 = −1. Consider the case where i > 0.
Then since A(1 + εi) = ri, we see that εi is a root of

gi(X) := f(A(1 +X))− ri−1

= An(1 +X)aXn−a + (A− ri−1)

= An(1 +X)aXn−a + εi−1A.

Examining the Newton polygon of gi, one sees that gi has exactly a roots of valuation 0
and n− a roots of valuation

−vp∞(εi−1A)− vp∞(An)

n− a
=
vp∞(εi−1)

n− a
+
n− 1

n− a
.

Since f − ri−1 has exactly n − a roots of valuation −1, it must be the case that εi is a root
of gi of valuation

vp∞(εi−1)

n− a
+
n− 1

n− a
> 0.

Hence, Equation (3.2) holds and ek ≥ e(Qp∞(rk)/Qp∞). �

We thus conclude that Hypothesis 2 of Lemma 2.1 holds for f.

The final hypothesis of Lemma 2.1 is that for every positive integer k > N the permutation
representation of Gal(Ek/Ek−1) acting on the roots of f◦k in Ek contains a transposition.
It is shown to hold for f for all values of k ≥ 0 by the following two lemmas. Recall our
convention for writing a rational number as a fraction: for α ∈ Q, we denote by α+ ∈ Z+

and α− ∈ Z the unique positive integer and integer, respectively, such that (α+, α−) = 1

and α = α+

α− .
Note that a

nA is a critical point of f, and therefore by the chain rule, a critical point of all
iterates of f. The next lemma, Lemma 3.5, shows that for every k > 0, there is a prime pk
(satisfying certain conditions), which does not divide A+, so that a

nA is a root of f◦k mod pk.
By assumption A.2, all primes which ramify in E divide A+. Hence, pk is unramified in E.
In Lemma 3.6, we will show that under the Hypotheses of Lemma 3.5 the inertia group Ipk
acts on the roots of f◦k as a transposition.

Lemma 3.5. Let a ∈ Z+ and A ∈ Q satisfy the assumptions of theorem 3.1. For each positive
integer k, there exists a prime integer pk - nA−A+ so that the pk-adic valuation of f◦k( anA)
is positive and odd.

Proof. For each positive integer k, let ck denote
f◦k( a

n
A)

A . To prove this lemma it suffices to

show for all positive integers k that c+
k is relatively prime to nA−A+ and is not a perfect

square. We will show the following. First, we show that c+
k and A+ are relatively prime.

Then, we show that ck = c+
k /c

−
k is a square in Z×2 . To finish the proof, we analyze the

denominator c−k . We show that if n2 = n/2v2(n), then n2A
−|c−k and that c−k is not a square

in Z×2 . Noting that 2|A+ by Hypothesis (A.4), these claims imply that nA−A+ and c+
k are

relatively prime, and that c+
k is not a square.

Define c0 = a
n . Then for all k > 0,

(3.4) ck = An−1cak−1(ck−1 − 1)n−a + 1.
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Let p 6= 2 be a prime integer factor of A+. By Assumption (A.5), the prime p is not a
factor of n. Hence, c0 is p-integral. Using Equation (3.4), one concludes by induction that ck
is p-integral and ck ≡ 1 mod p.

Now consider the case where p = 2. By Hypothesis (A.4), the valuation v2(A) satisfies

v2(A) ≥ 3

n− 1
+

n

n− 1
v2(n) > 0.

Combining this with Equation (3.4), we observe

v2(c1 − 1) = v2

(
An−1

(a
n

)a (a
n
− 1
)n−a)

≥ (n− 1)v2(A)− nv2(n) ≥ 3,

and

v2(ck − 1) = v2

(
An−1 (ck−1)a (ck−1 − 1)n−a

)
≥ v2(ck−1 − 1),

if k > 1. Therefore, ck is 2-integral and congruent to 1 mod 8. We conclude that c+
k and A+

are relatively prime. Furthermore, recalling that the squares in Z×2 are exactly the elements
congruent to 1 mod 8, we conclude that ck is a square in Z×2 .

Now, we examine c−k . We’ve seen that c−k is prime to 2. Let n2 := n/2v2(n). We will show
by induction that

(3.5) c−k = (A−)n
k−1nn

k

2 (−1)(n−a)nk−1
.

This equation shows that c+
k is prime to n2A

−.More subtly, Equation (3.5) shows c−k 6≡ 1 mod 8,

and therefore is not a square in Z×2 . To see this, observe that

(A−)n
k−1nn

k

2 (−1)(n−a)nk−1 ≡


±A− mod 8 if n ≡ 0 mod 2

(−1)n−a mod 8 if n ≡ 1 mod 8

±n mod 8 if n ≡ 3, 5 mod 8

n(−1)(n−a) mod 8 if n ≡ 7 mod 8.

≡



±3 mod 8 if n ≡ 0 mod 2, by Assumption (A.8),

−1 mod 8 if n ≡ 1 mod 8, by Assumption (a.3),

±3 mod 8 if n ≡ 3, 5 mod 8

−1 mod 8 if n ≡ 7 mod 8, as n− a = n− 1 is even
by Assumption (a.2).

Hence, to conclude the proof, it suffices to confirm Equation (3.5).
We will prove Equation (3.5) by induction on k. We begin by showing the equation holds

when k = 1. The element

c1 = An−1
(a
n

)a (a
n
− 1
)n−a

+ 1 = (−1)n−a
(A+)n−1aa(n− a)n−a

(A−)n−1nn
+ 1.

So a prime p divides c−1 only if p|A− or p|n2. To deduce Equation (3.5) in this case, we must
show that for all p|A−n2 the valuation:

(3.6) vp(c
−
1 ) = vp((A

−)n−1nn2 ),

and the sign

(3.7)
c−1
|c−1 |

= (−1)n−a.
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These equalities hold if and only if

(3.8) (A−n2, A
+a(n− a)) = 1,

and

(3.9)
(A+)n−1aa(n− a)n−a

(A−)n−1nn
> 1,

respectively. We prove (3.8) and (3.9). By Assumption (A.6), if p divides n2, then p is prime
to A+. Since a and n are relatively prime, a prime p dividing n2 does not divide a(n − a).
Similarly, if p divides A−, then by definition p is prime to A+, and by Assumption (A.6), the
prime p does not divide a(n − a). We conclude Equation (3.8) holds. To see (3.9), observe
that

(3.10)
(A+)n−1aa(n− a)n−a

(A−)n−1nn
= (A

(a
n

) a
n−1

∣∣∣a
n
− 1
∣∣∣n−an−1

)n−1 > 2

by Assumption (A.3). We conclude Equation (3.5) holds when k = 1.
Now assume that Equation (3.5) holds k ≥ 1, we show Equation (3.5) holds for k + 1.

Observe that

ck+1 = An−1cak(ck − 1)n−a + 1 =
(A+)n−1(c+

k )a((ck − 1)+)n−a

(A−)n−1(c−k )n
+ 1.

Hence, a prime p divides c−k+1 only if p|A−c−k . By induction, it follows that all prime divisors

of c−k+1 must divide A−n2. Note that,

(A−)n−1(c−k )n = (A−)n−1((A−)n
k−1nn

k−1

2 )n = (A−)n
k−1nn

k

2 .

Hence, to show Equation (3.5), it is sufficient to show for all p|A−n2 the valuation

(3.11) vp(c
−
k+1) = vp((A

−)n−1(c−k )n),

and that the sign

(3.12)
c−k+1

|c−k+1|
=

(
c−k
|c−k |

)n
.

These equations are implied by

(3.13) (A−n2, A
+c+

k (ck − 1)+) = 1,

and

(3.14)

∣∣∣∣(A+)n−1(c+
k )a((ck − 1)+)n−a

(A−)n−1(c−k )n

∣∣∣∣ =
∣∣An−1cak(ck − 1)n−a

∣∣ = |ck+1 − 1| > 2 > 1,

respectively.
We conclude the proof by demonstrating equations 3.13 and 3.14. Because n2 and A+ are

relatively prime (by Assumption (A.5)), and A−n2 divides c−k and A−n2 divides (ck − 1)−

by induction, we conclude equality 3.13 holds. By Equation (3.10), we see that |ck − 1| > 2
when k = 1. It follows by induction that

|ck+1 − 1| =
∣∣An−1cak(ck − 1)n−a

∣∣ > ∣∣A|n−1
∣∣ |ck|a |(ck − 1)|n−a > 2n−a.

Hence, Equation (3.14) holds. �
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By Lemma 3.5, the prime pk does not divide A+. Therefore by Assumption (A.2), this
prime is unramified in E. To finish the proof of Theorem 3.1, we show that some element of
the inertia group Ipk 6 GE acts on the roots of f◦k as a transposition.

Lemma 3.6. Let a ∈ Z+ and A ∈ Q satisfy the assumptions of theorem 3.1. Let pk be a
prime integer such that pk - nA−A+ and the pk-adic valuation of f◦k( anA) positive and odd,
then

(1) there is a factorization of f◦k(X) ≡ g(X)b(X) mod pk as where g(X) and b(X) are
coprime, g(X) is a separable, and b(X) = (X − aA

n )2, and

(2) the inertia group Ipk 6 GQpk
6 GE acts on the set of roots f◦k in Qpk

as a transpo-
sition.

Proof of Claim 1. We show that a
nA is the unique multiple root of f◦k and its multiplicity is

2.
We begin by showing a

nA is a multiple root of f◦k. A polynomial over a field F has a

multiple root at α ∈ F if and only if α is both a root and a critical point. By assumption,
the value a

nA is a root of f◦k mod pk. To see a
nA is a multiple root, observe that

(3.15) (f◦k)′(X) = f ′(X)
∏

0<i<k

f ′(f◦i(X))

and

(3.16)
f ′(X) = aXa−1(X −A) + (n− a)Xa(X −A)n−a−1

= Xa−1Xn−a−1(nX − aA),

and therefore a
nA is a critical point of f◦k.

Now assume c is a root of f◦k mod pk with multiplicity m > 1. Let Zpk be the ring of

integers of Qpk
and m be its maximal ideal. Because f◦k is separable, there exists exactly m

roots r1, . . . , rm ∈ Zpk of f◦k such that ri ≡ c mod m. Let L(c) := {r1, . . . , rm}. To prove
Claim 1, it suffices to show c equals a

nA and m = |L(c)| equals 2.
For each pair of pair of distinct roots r and r′ lifting c, let l(r, r′) be the smallest positive

integer such that f◦l(r,r
′)(r) = f◦l(r,r

′)(r′). Considering r and r′ as vertices of the tree Tf , the
value l(r, r′) is the distance to the most common recent ancestor between r and r′. Let

N(c) := max{l(r, r′) : r, r′ ∈ L(c)}.

We claim that if N(c) equals 1, then c equals a
nA and m equals 2. To see why, assume N(c)

equals 1. Then r1, . . . , rm are all roots of the polynomial f(X)−f(r1). Therefore, c is a critical
point of f(X) mod m. From Equation (3.16), one observes that the critical points of f(X)
are 0, A and a

nA. By assumption f◦k(c) ≡ 0 mod m. On the other hand, since A is a fixed
point of f and f(0) = A,

f◦k(0) = f◦k(A) = A 6≡ 0 mod m.

Thus, c must equal a
nA. The critical point a

nA has multiplicity 1. Therefore, m = L(c) = 2.
To finish the proof the claim, we must show N(c) = 1. Assume this is not the case, and

let r and r′ be a pair of lifts such that l := l(r, r′) > 1. Then f◦l−1(r) and f◦l−1(r′) are distinct
roots of the polynomial

gr,r′(X) := f(X)− f◦l(r) = f(X)− f◦l(r′)
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which reduce to f◦l−1(c) modulo m. It follows f◦l−1(c) is a root of g′r,r′(X) = f ′(X), and

hence equals A or 0 or a
nA. Since f◦k(c) ≡ 0 mod pk and

f◦k−l−1(0) = f◦k−l−1(A) = A 6≡ 0 mod pk,

it must be the case that f◦l−1(c) equals a
nA. But this implies, as 0 ≡ f◦k( anA) mod pk by

assumption, that

0 ≡ f◦k(a
n
A) mod pk

≡ f◦k(f◦l−1(c)) mod pk

≡ f l−1(f◦k(c)) mod pk

≡ f l−1(0) mod pk

≡ A mod pk,

a contradiction. �

Proof of Claim 2. The factorization b(x)g(x) = f(x), appearing in Claim 1, lifts by Hensel’s
Lemma to a factorization

B(X)G(X) = f(X)

in Zpk [X], where B(X) and G(X) are monic polynomials such that

B ≡ b mod pk and G ≡ g mod pk.

As g is separable, G splits over an unramified extension of Qpk . To show Ipk acts a transpo-
sition, we show the splitting field of B is a ramified quadratic extension of Qpk .

Consider the quadratic polynomial B(X + a
nA) = X2 +B′( anA)X +B( anA). As

B′(
a

n
A)G(

a

n
A) +B(

a

n
A)G′(

a

n
A) = f ′(

a

n
A) = 0,

and

G(
a

n
A) ≡ g(

a

n
A) 6≡ 0 mod pk,

we observe vpk(B′( anA)) ≥ vpk(B( anA)). It follows that the Newton polygon B(X + a
nA) has

a single segment of slope
vpk (B( a

n
A))

2 and width 2. As

vpk(B(
a

n
A)) = vpk(f(

a

n
A))− vpk(G(

a

n
A)) = vpk(f(

a

n
A))

the slope is non-integral. We conclude B(X + a
nA) is irreducible and splits over a ramified

(quadratic) extension. �

Having verified that the conditions of Lemma 2.1 hold for f, we conclude that Theorem 3.1
is true.
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4. Bridging the Gap

Having proven Theorem 3.1, we observe that our main theorem, Theorem 1.2, holds in
polynomial degrees n satisfying n 6≡ 7 mod 8 and n ≥ 6, or n = 2. In this section, we prove
that Theorem 1.2 holds in all remaining cases.

Assume that either n ≡ 7 mod 8, or n is in the range 3 ≤ n ≤ 6. Define

f(X, t) := X(X − t)n−1 + t ∈ Q[t,X].

By Theorem 3.1, there are infinitely many values of A ∈ Q such that the image of the arboreal
Galois representation ρf(X,A) : GE → Aut(Tf(X,A)) associated to the specialization

f(X,A) = X(X −A)n−1 +A ∈ Q[X]

contains Γ(1). To prove Theorem 1.2, we will use the Hilbert Irreducibility Theorem to show
that for some infinite subset of these values the splitting field of the specialization f(X,A)
over E is an Sn-extension. For our first step, we calculate the geometric Galois group of
the 1-parameter family f(X, t).

Lemma 4.1. Let F be a field of characteristic 0. The splitting field of the polynomial f(X, t)
over F (t) is an Sn-extension.

Proof. Without loss of generality, we may assume F is the complex numbers C. Let

g(X, t) = f(X − t,−t) = Xn − tXn−1 − t.
It suffices to show that the splitting field of g(X, t) over C(t) is an Sn-extension. Let π : C0 → P1

be the étale morphism whose fiber above a point t0 ∈ C is the set of isomorphisms

φt : {0, . . . , n− 1} ∼−→ {r ∈ C : g(r, t0) = 0}.
Let C be a smooth, proper curve containing C0, and let π : C → P1 be the map extend-
ing π : C0 → P1. The splitting field of g is an Sn-extension if and only if C is connected. We
show the latter.

We will analyze the monodromy around the branch points of π : C → P1. The cover C is
ramified above the roots of

∆g(X, t) = nn
∏

c∈C(t),
∂g
∂t

(c,t)=0

g(c, t)mc

= nng(0, t)n−2g(
n− 1

n
t, t)

= nn(−t)n−2

((
− 1

n
t

)(
n− 1

n
t

)n−1

− t

)

= nn(−t)n−1

((
1

n

)(
n− 1

n
t

)n−1

+ 1

)
where mc is the multiplicity of the critical point c. Hence, π : C → P1 is branched at 0 and

αk := Me
(2k+1)πi
(n−1) ,

where k ∈ {0, . . . , n − 2} and M is a positive real number which is independent of k. Each
of the branch points αk is simple. One may check (though it is not relevant to our proof)
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that π : C → P1 is unramified at∞; for a proof, see Lemma 3.3. We letD := {0, α0, . . . , αn−2}
denote the branch locus.

Since g(X, t) = Xn − tXn−1 − t is t-Eisenstein, it splits over C[[t1/n]]. Observing that

t−1g(Xt1/n, t) ≡ Xn − 1 mod t1/n,

it follows that each of the roots r of g in C[[t1/n]] satisfy

r = e2πik/nt1/n mod t2/n

for some unique value of k ∈ {0, . . . n − 1}. Let ptα0→0 be the set (0, |α0|)α0 ∈ C, i.e. the
image of the straight line path from 0 to α0. Let s : ptα0→0 → C be the unique holomorphic
section of π : C → P1 such that

lim
t→0+

s(t)(k)

|s(t)(k)|
= e

2πik
n e

πi
(n−1)n .

We consider the monodromy representation ϕ : π1(P1 \ D, ptα0→0) → Sn which maps a
path p in P1 \D with endpoints in ptα0→0 to p̂(1)−1 ◦ p̂(0) where p̂ is the unique lift of p
satisfying p̂(0) = s(p(0)). To show C is connected, it suffices to show ϕ is surjective. Our
strategy will be to show that the generators of the symmetric group (0 1 2 . . . n−1) and (0 1)
are contained in the image of ϕ.

Consider a counterclockwise circular path p0 around 0 with endpoints in ptα0→0. Since 0 is
the only branch point contained in the circle bounded by p0, the image of p0 under ϕ is the
cycle (0 1 2 . . . n − 1). Let p1 be a path with endpoint in ptα0→0 which bounds a punctured
disk in P1 \D around α0. Since the branch point α0 is simple, the image of p1 under ϕ is a
transposition. We claim ϕ(p1) = (0 1).

Let S be the set of complex numbers z which satisfies

π

n(n− 1)
≤ Arg(z) ≤ 2π

n
+

π

n(n− 1)
.

Note that α0 ∈ S. Furthermore, observe the boundary rays of S are the two tangent directions
by which the 0-th and 1-st root of g(X, t0) (in the labeling given by the section s) converge
to 0. To show ϕ(p1) = (0 1), we will demonstrate that

(?) for all t0 ∈ ptα0→0 there exists a unique pair of roots of g(X, t0) contained in S.

From (?), one concludes by uniqueness ϕ(p1) = (0 1).
Since α0 is a simple branch point contained in S, when t0 is sufficiently close to α0 there

are at least two roots in S. On the other hand, as t0 approaches 0, there is a unique pair of
roots whose tangent directions are contained in S. Hence for t0 sufficiently close to 0, there
are at most two roots contained in S. To prove (?) for all t0 ∈ ptα0→0, we will show that
there is no value t0 ∈ ptα0→0 such that g(X, t0) has a root r whose argument equals π

n(n−1)

or 2π
n + π

n(n−1) , i.e. roots cannot leave or enter the sector S as one varies t0 along ptα0→0.

Assume for the sake of contradiction that there is a value t0 ∈ ptα0→0 and a root r of g(X, t0)
such that Arg(r) = π

n(n−1) or Arg(r) = π
n(n−1) + 2π

n . Then since g(r, t0) = 0, one observes that

rn = t0(rn−1 + 1).
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And so,

π

n− 1
≡ Arg(rn) mod 2π

≡ Arg(t0) + Arg(rn−1 + 1) mod 2π

≡ π

n− 1
+ Arg(rn−1 + 1) mod 2π.

From which it follows Arg(rn−1 + 1) ≡ 0 mod 2π. Note however,

Arg(rn−1) ≡

{
π
n mod 2π if Arg(r) = π

n(n−1) , and

2π − π
n mod 2π, if Arg(r) = π

n(n−1) .

Therefore, rn−1 is not a real number. It follows rn−1 + 1 is not real, and therefore has
non-zero argument, a contradiction. We conclude that there is no value t0 ∈ ptα0→0 such
that g(X, t0) has a root with argument π

n(n−1) or π
n(n−1) + 2π

n . Therefore, ϕ(p1) = (0 1) and C

is connected. �

We deduce our main theorem, Theorem 1.2, via a Hilbert irreducibility argument.
Proof of Theorem 1.2. If n 6≡ 7 mod 8 or in the range 3 ≤ n ≤ 6, then the theorem is a
consequence of Theorem 3.1.

Assume that n ≡ 7 mod 8 or 3 ≤ n ≤ 6. Without loss of generality, we may assume E is
a Galois extension of Q. Let D be the unique positive, square-free integer which is divisible
by the primes which ramify in E and those that divide n(n − 1). In particular, note that 2
divides D. Let B = D/(D,n− 1). Consider the polynomial

h(X, t) = f(X,B−1(1 +Dt)) ∈ Q[t,X].

By Lemma 4.1, the polynomial h(X, t) has Galois group Sn over Q(B−1(1 + Dt)) = Q(t).
Therefore by the Hilbert Irreducibility Theorem, there exists infinitely many values t0 ∈ Z
such that the splitting field Kt0 of h(X, t0) = f(X,B−1(1 + Dt0)) is an Sn-extension of Q.
Fix such a value t0. We claim that there is a finite set L of prime integers which satisfy the
following two conditions.

(1) If l ∈ L, then l - D.
(2) The closed, normal subgroup2 SL 6 GQ generated by the inertia groups Il for l ∈ L

acts on the roots f(X,B−1(1 +Dt0)) as the full symmetric group Sn.

Since there are no everywhere unramfied extensions of Q, the set of primes which ramify
in Kt0 satisfy Condition 2. We show this set satisfies Condition 1, i.e. that Kt0 is unramified
at all primes dividing D.

Recall that D = B(D,n − 1). If l divides B, then l is prime to n − 1 and the valua-
tion vl(B

−1(1 + Dt0)) = −1. It follows by Lemma 3.3, that the extension Lt0 is unramified
at l. On the other hand, if l divides n− 1, then f(X,B−1(1 +Dt0)) has l-integral coefficients

2the subgroup SL is simply the absolute Galois group of the maximal extension of Q in which all primes
in L are unramified.
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and the discriminant:

∆(f(X,B−1(1 +Dt0)) = nn
∏

c∈Q : h′(c,t0)=0

f(c,B−1(1 +Dt0))mc

= nn(B−1(1 +Dt0))n−1

(
(B−1(1 +Dt0))n−1

(
1

n
− 1

)
+ 1

)
≡ B1−n mod l,

is prime to l. Hence, Kt0 is unramified at l. We conclude that Kt0 is unramified at all primes
dividing D.

To conclude the proof of the Theorem, we perturb B−1(1 + Dt0) in
∏
l∈LQl to produce

values of A for which f(X,A) has a surjective arboreal GE-representation. Let X0 denote the
set of roots of f(X,B−1(1+Dt0)) in Q. Note that since the splitting field of f(X,B−1(1+Dt0))
over Q is Sn-extension, the polynomial f(X,B−1(1 +Dt0)) is separable over Ql. Let

δl := min{|r1 − r2|l : f(r1, B
−1(1 +Dt0)) = f(r2, B

−1(1 +Dt0)) = 0 and r1 6= r2}

be the minimum distance between a distinct pair of roots. By Krasner’s Lemma, there
exists an open ball Ul ⊆ Ql centered at B−1(1 + Dt0) such that if Al ∈ Ul and r is a root
of f(X,B−1(1+Dt0)), then there is a unique root r(Al) of f(X,Al) such that |r−r(Al)|l < δl.
Since the action of Il on Ql preserves distances, the map r 7→ r(Al) is GQl

-equivariant.
Identifying the set of roots of f(X,Al) and f(X,B−1(1 +Dt0)) via this map, we see that for
all Al ∈ Ul the image of Il in the symmetric group SX0 is locally constant.

The group SL is the normal closure of the group generated by the subgroups Il for l ∈ L.
Let UL :=

∏
l∈L Ul. Since the action of SL on X0 surjects onto SX0 , for all A ∈ UL ∩Q the

permutation representation of SL on the roots of f(X,A) is surjective. Since E is Galois and
unramified at the primes in L, the group GE 6 GQ is normal and contains SL. It follows that
for any A ∈ UL ∩Q the splitting field of f(X,A) over E is an Sn-extension.

We conclude the proof by showing that there are infinitely many values A ∈ UL ∩Q such
that the arboreal Galois representation attached to f1,A(X) := f(X,A) contains Γ(1). By
Theorem 3.1, it suffices show that there are infinitely many A ∈ UL ∩Q satisfying Hypothe-
ses (A.1) - (A.8). Let p0 and p∞ be any choice of distinct primes which are greater than n,
unramified in E, and not contained in L. Then Hypotheses (A.1) - (A.7) are open local condi-
tions on A at the finite set of places dividing Dp0p∞ and∞. In particular, they are conditions
at places distinct from those in L. Let UΓ(1) denote the open subset of R×

∏
p|Dp0p∞Qp con-

sisting of values which satisfy Hypotheses (A.1) - (A.7) locally. Let S denote the set of
places

S := {| · |p : p ∈ L, or p =∞, or p|Dp0p∞}.
By weak approximation there are infinitely many values A0 ∈ (UΓ(1)×UL)∩Q. Fix any such
value. Since UΓ(1) × UL is open, there exists a real number ε > 0 such that if |1− w|p < ε at
all places in S, then wA0 ∈ UΓ(1) × UL. Fix such an ε > 0. Let M be a positive integer such
that |M |p < ε at all finite places | · |p ∈ S. If x is any positive integer which is

(1) not divisible by the primes contained in S, and
(2) sufficiently large: specifically M/x < ε,

then Ax := x+M
x A0 ∈ UΓ(1) × UL, and therefore satisfies hypotheses (A.1) - (A.7). For such

a value x ∈ Z+, if one additionally asks that

(3) (x,A+
0 ) = 1 and x 6≡ ±(A−0 )−1 mod 8,
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then A−x ≡ A−0 x 6≡ ±1 mod 8, and hence Ax satisfies hypothesis (A.8). There are infinitely
many x ∈ Z+ satisfying conditions 1, 2, and 3. For every such value, the arboreal GE-
representation associated to f(X,Ax) is surjective.
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