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Abstract. In this paper we will study solution pairs (u,D) of the minimal sur-
face equation defined over an unbounded domain D in R2, with u = 0 on ∂D.
It is well known that there are severe limitations on the geometry of D; for ex-
ample D cannot be contained in any proper wedge (angle less than π). Under
the assumption of sublinear growth in a suitably strong sense, we show that if u
has order of growth α in the sense of complex variables, then the “asymptototic
angle” of D must be at least π

α
. In particular, there are at most two such solution

pairs defined over disjoint domains. If α < 1 then u cannot change sign and there
is no other disjoint solution pair. This result is sharp as can be seen by a suitable
piece of Enneper’s surface which has order α = 2

3
and asymptotic angle 3π

2
.

1. Introduction

In this paper we consider solutions of the minimal surface equation

2∑
i,j=1

(δij −
uiuj

1 + |∇u|2
)uij = 0 in D(1.1)

u = 0 on ∂D .(1.2)

where D is an unbounded domain in R2. Theorems limiting the behavior of solution
pairs are of great utility in the study of complete embedded minimal surfaces in R3

(for example, [4],[5]). We will see that there are severe limitations on the possible
solution pairs (u,D) , u 6≡ 0.

For example, if D is contained in a proper wedge (angle less than π), then no
nontrivial solution pair exists [6]. The idea of the proof is to compare u with a
rescaled Scherk graph. More precisely, let the vertex of the wedge be the origin and
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let T1 be the isoceles triangle obtained by joining the points on the boundary of
the wedge at distance 1 from the origin. Over T1 there is a “Scherk” solution v of
the minimal surface equation with boundary values 0 on the two sides of length 1
and +∞ on the third side; this solution exists by the work of Jenkins- Serrin [9].
Let w = Rv( xR) be the rescaled solution defined in TR = RT1 . By the maximum
principle, |u| ≤ w in TR ∩ D. Near the origin, v = O(|x|

π
γ ), where γ < π is the

wedge angle (that is, w behaves like a harmonic function). Hence w ≤ CR(1−π
γ
) on

compact subsets of D. By letting R tend to ∞, we see that u ≡ 0 in D.

This leads one to suspect that in some measure theoretic sense, D must open up
to an asymptotic angle of at least π in order to support a solution u vanishing on
∂D. This should imply that there are at most two nontrivial solution pairs over
disjoint domains (one in the case of sublinear growth) and has been conjectured by
Meeks.

In this note, we will prove Meek’s conjecture under additional assumptions.

Definition 1.1. We say that a solution pair (u,D) of (1.1),(1.2) is an admissible
solution if (i) |∇u(z)| → 0
(ii) |K(z, u(z))| ≤ C

1+|z|2

as z ∈ D tends to ∞, where K is the Gauss curvature of the graph.
(iii) ∂D ∩ {|z| = ρ} 6= φ for all ρ sufficiently large.

Remark 1.2. 1. The condition on the Gauss curvature of the graph is the natural
flatness condition for invariance under scaling.
2. If W =

√
1 + |∇u|2, then (i)and (ii) imply |∇W | = o( 1

|z|) as z ∈ D tends to ∞.
3. Condition (iii) rules out the uninteresting case of the exterior of a finite number
of disjoint compact domains. It is also needed in the use of Wirtinger’s inequality
in Lemma 2.1

Definition 1.3. 1. Let (u,D) be an admissible solution pair. The order α of u in
D is given by

α = lim sup
z∈D , z→∞

log |u(z)|
log |z|

.
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2. The asymptotic angle β of D is defined by

β = lim sup
ρ→∞

1
ρ
|D ∩ {|z = ρ|}|

Remark 1.4. Note that by our definition of admissibility, α ≤ 1. Note also that if
D′ is a component of {z ∈ D : u(z) 6= 0} , then (u,D′) is an admissible solution
pair.

Theorem 1.5. Let (u,D) be an admissible solution pair with order α ≤ 1. Then
the asymptotic angle β ≥ π

α . Hence if α < 1 , u cannot change sign and there is no
other admissible solution pair (u′, D′) with D′ disjoint from D. If α = 1, either u is
of one sign with at most one other disjoint solution pair (u′, D′) (necessarily u′ of
one sign and α′ = 1) or {z ∈ D : u(z) 6= 0} has exactly two components and there
are no other disjoint solution pairs.

Remark 1.6. A version of Theorem 1.5 in Rn also follows by the same method using
the Faber-Krahn inequality in place of the Wirtinger equality. In condition (ii) of
admissibility |K| is replaced by |A|, the norm of the second fundamental form of the
graph of u.

Example 1.7. Enneper’s minimal surface provides a very concrete illustration of
Theorem 1.5. It is a complete properly immersed minimal surface given explicitly
by the Weierstrass-Enneper representation:

X(w) = (x1, x2, x3) = <
∫ w

0
[(1− g2), i(1 + g2), 2g], f dw

with f(w) ≡ 1 and g(w) = w. Integration gives

z = w − w3

3
x3 = <w2

where z = x1 + ix2 and w = u+ iv .

Now let Ω = {(u, v) : u2− v2 > 2 ,−u < v < u }, that is, Ω is a simply connected
domain in the first and fourth quadrant where z > 2. It is not difficult to check
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that the map z(w) restricted to Ω is a diffeomorphism and that the image domain
D is asymtotically a wedge of angle β = 3π

2 . Therefore φ(x1, x2) = x3(w(z)) − 2 is
a solution of the minimal surface equation in D with φ = 0 on ∂D. In other words,
the pair (φ,D) is admissible with order α = 2

3 . Note that β = 3
2π = π

α .

Example 1.8. If we cut the catenoid by a plane through the axis of symmetry,
we obtain a solution pair (u,D) with u > 0 of exponential growth in the domain
D = {(x, y) : |y| < coshx}. Let m be the maximum of u(0, y) , |y| ≤ 1 and let
D’ be the component of {(x, y) ∈ D : u(x, y) > m + 1} contained in {x > 0}.
Then (u−m− 1 , D′) is a solution pair with asymptotic angle π and this angle is
approached exponentially fast. Michael Beeson asked if there is any solution pair
contained in the domain Ω = {(x, y) : |y| < Ax2N +B} for arbitrary positive N,A,B.
By extending the argument for the proper wedge, we can see that the answer is
no as follows. Without loss of generality we may assume A=B=1. Suppose (u,D)
is a solution pair with D contained in Ω. Arguing as for the catenoid, we may
assume that D is contained in Ω ∩ {x > 0}. Let TR be the isoceles triangle with
vertex (−R

1
2N
−1, 0) and symmetric vertices (R

1
2N , R+ 1), (R

1
2N ,−R− 1). Note that

the vertex angle γ is approximately π − 2R
1

2N
−1. Arguing as before, we find that

0 < u(x) < Cx, that is, u has at most linear growth. By the proof of the half-space
theorem of Hoffman-Meeks [8] this is impossible ( the graph of u cannot have a
contact at a finite point or at infinity with the plane z = Lx).

It is useful to have a variant of Theorem 1.5 where we only insist that u = 0 on
∂D outside a compact set.

Theorem 1.9. Suppose that the boundary condition u = 0 on ∂D holds outside a
compact set. Then Theorem 1.5 remains valid if

lim sup
ρ→∞

ρ

∫
D∩{|z=ρ|}

u2 dθ = +∞

Remark 1.10. Theorem 1.9 is false without the growth condition on u. For in any
strictly convex unbounded domain D, we can prescribe u = φ on ∂D with φ ≥ 0
everywhere and φ = 0 outside the ball of radius 2. The existence of such a solution
is proven in [6]. Evidently, u decays to zero at infinity.
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2. Notation and Preliminaries

For ρ ≥ ρo sufficiently large, let Dρ = D ∩ {|z| < ρ} and Cρ = D ∩ {|z| = ρ} 6= φ.
We write Cρ =

⋃Nρ
i=1C

i
ρ as a finite union. We denote the linear measure

|Ciρ| = 2πθi(ρ) ; 0 < θi(ρ) ≤ 1

and introduce θ(ρ), I(ρ) and E(ρ):

θ(ρ) =
∑
i

θi(ρ)

I(ρ) =
∑
i

∫
Ciρ

u2

W
dθ

E(ρ) =
∫
Dρ

|∇u|2

W
dx =

∫
Cρ

ρ
uur
W

dθ .

In the remainder of the paper we will write E, I, etc and not indicate the depen-
dence on ρ.

Lemma 2.1. ∫
Cρ

u2
θ

W
dθ ≥ 1 + o(1)

4θ2
I .(2.1) ∫

Cρ

ρ2 u
2
r

W
dθ ≥ E2

I
.(2.2)

ρE′ ≥ E2

I
+

1 + o(1)
4θ2(ρ)

I(2.3)

ρI ′ = 2E(ρ) + o(1)I .(2.4)

Proof. We use the classical Wirtinger inequality on Ciρ:∫
Ciρ

u2
θ dθ ≥

1
4θi(ρ)2

∫
Ciρ

u2dθ

For ρ large, this implies

∫
Cρ

u2
θ

W
dθ ≥ 1 + o(1)

4θ(ρ)2
I

for (u,D) admissible, proving the first assertion. The estimate on E is standard:
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E2 ≤
∑∫

Ciρ

ρ2 u
2
r

W
dθ

∫
Cρi

u2

W
dθ ≤

∫
Cρ

ρ2u2
r

W
dθ I .

Dividing both sides by I proves the second assertion. For the third assertion,

ρE′ =
∑
i

∫
Ciρ

(ρ2 u
2
r

W
+
u2
θ

W
) dθ .

Hence using (2.1)(2.2),

ρE′ ≥ E2

I
+

1 + o(1)
4θ2(ρ)

I

Finally,

I ′ =
∫
Cρ

2uur
W

dθ +
∫
Cρ

u2

(
∂

∂r

1
W

)
dθ

Since ∂
∂r

1
W = o(1

ρ) by Remark 1.2, the last assertion follows.

3. The frequency function

The method of frequency functions has been extensively utilized in recent years
[1], [7] [3], mostly for the study of local regularity or issues of unique continuation.
Here we use it to derive a precise asymptotic relationship between θ(ρ) and the order
α of u .

Definition 3.1. The “frequency function” is defined by U = E
I .

Lemma 3.2. ρU ′ + (1 + o(1))U2 ≥ 1+o(1)
4θ(ρ)2

.

Proof. Writing E = UI, we have from Lemma 2.1:

ρE′ = ρ(IU ′ + UI ′) ≥ U2I2

I
+

(1 + o(1))
4θ(ρ)2

I

or

ρU ′ + U
ρI ′

I
≥ U2 +

1 + o(1)
4θ(ρ)2

.

Recalling ρ I
′

I = 2U + o(1), we obtain

ρU ′ + (U + o(1))2 ≥ 1 + o(1)
4θ(ρ)2

.

Finally, from U2 + o(1)U ≤ (1 + o(1))U2 + o(1) the lemma follows since the o(1)
term can be absorbed into the right hand side.
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Lemma 3.3.
U ≥ 1

2
+ o(1)

as ρ→∞

Proof. Fix 0 < ε << 1. Using Lemma 3.2 we consider two cases:

Case 1. ρ1U
′(ρ1) ≤ ε for some ρ1 ≥ ρ0. Then U(ρ1) ≥ 1

2 − ε + o(1). Hence U
must stay above 1−ε

2 + o(1) for ρ > ρ1.
Case 2. ρU ′ > ε for ρ ≥ ρ0 . Then

U ≥ ε log
ρ

ρo
+ U(ρ0)→∞ as ρ→∞ .

Since ε is arbitrary, the lemma is proven.

Corollary 3.4. ρ I
′

I ≥ 1 + o(1) as ρ→∞. Moreover, the order α of u is at least 1
2 .

Proof. Since ρ I
′

I = 2U + o(1), the first part follows from Lemma 3.3. Fix 0 <
ε << 1 and ρo so large that

I ′

I
≥ 1− ε

ρ
, ρ ≥ ρo

Integration gives,

log
I

I(ρo)
≥ (1− ε) log

ρ

ρo
.

Let M(ρ) = supCρ |u| and observe I ≤ 2πM2(ρ). Hence

2
logM(ρ)

log ρ
≥ (1− ε) +O(

1
log ρ

) .

Letting ρ→∞ gives αD(u) ≥ 1−ε
2 . Since ε is arbitrary, we find α ≥ 1

2 as claimed.

Lemma 3.5.
ρU ′

U
+ 2U ≥ 1− o(1)

θ(ρ)

Proof. Using Lemma 3.2,

(1 + o(1))
ρU ′

U
+ ((1 + o(1))U)2 ≥ 1 + o(1)

4θ(ρ)2

Hence,

(
ρU ′

2U
+ (1 + o(1))U)2 ≥ ρ2U ′2

4U2
+

1 + o(1)
4θ(ρ)2
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Using the inequality √
(a2 + b2) ≥ εa+

√
(1− ε2) b

with a = |ρU
′

2U | , b =
√

1+o(1)

2θ(ρ) and ε = o(1), we obtain

ρU ′

2U
+ (1 + o(1))U ≥ o(1) |ρU

′

2U
|+ 1 + o(1)

2θ(ρ)

and this implies

(1 + o(1))(
ρU ′

U
+ 2U(ρ)) ≥ 1 + o(1)

2θ(ρ)
.

Multiplying both sides by 2
(1+o(1)) proves the lemma.

Corollary 3.6.

ρ
E′

E
=
ρU ′

U
+
ρI ′

I
≥ (1 + o(1))

θ(ρ)

Proof. Follows immediately from ρI′

I = 2U + o(1).

Proposition 3.7. For ρo ≤ ρ
2 ,

I ≥ I(ρ0) + c1e
R ρ/2
ρ0

(1+o(1)) 1
λθ(λ)

dλ

where c1 = 2 ln 2(1 + o(1))E(ρo).

Proof. From Corollary 3.6,

2E ≥ 2E(ρo)e
R ρ
ρo

(1+o(1)) 1
λθ(λ)

dλ

On the other hand, ρI′

I = 2U + o(1) ≥ 1 + o(1) and so

I ≤ (1 + o(1))ρI ′

ρI ′ = 2E + o(1)I ≥ 2E + o(1)ρI ′ .

Hence,

ρI ′ ≥ coe
R ρ
ρo

(1+o(1)) 1
λθ(λ)

dλ
, co = 2(1 + o(1))E(ρo) .(3.1)
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Taking ρ
2 ≥ ρo and integrating (3.1) gives

I ≥ I(ρo) + co

∫ ρ

ρo

1
t
e

R t
ρo

1+o(1)
λθ(λ)

dλ
dt

≥ I(ρo) + co

∫ ρ

ρ
2

1
t
e

R t
ρo

1+o(1)
λθ(λ)

dλ
dt

≥ I(ρo) + co ln 2 e
R ρ

2
ρo

1+o(1)
λθ(λ)

dλ

4. Proof of the Main Theorem

The main theorem of the paper will follow from

Theorem 4.1. Let (u,D) be an admissible solution pair and let ε > 0 be fixed.
Then for ρo sufficiently large,

1
α+ ε

≤ 2 log ρ(
log ρ

2ρ0

)2

∫ ρ/2

ρ0

(1 + o(1))
θ(λ)
λ

dλ ≤ (1 + o(1))
β

π
.(4.1)

In particular, β ≥ π
α .

Proof. Fix 0 < ε << 1 and let α be the order of u in D. Then 2 logM(ρ) ≤ 2(α+
ε) log ρ for ρ = |z| large enough. On the other hand, I(ρ) ≤ 2πθ(ρ)M(ρ)2 ≤ 2πM2.
Hence using Proposition 3.7,

2(α+ ε) log ρ ≥ 2 logM ≥
∫ ρ/2

ρ0

(1 + o(1))
λθ(λ)

dλ .(4.2)

To proceed further, we rewrite (4.2) as

1
α+ ε

≤ 2 log ρ∫ ρ/2
ρ0

(1 + o(1)) dλ
λθ(ρ)

(4.3)

Now by Schwartz’s inequality,

(log
ρ

2ρ0
)2 ≤

∫ ρ/2

ρ0

(1 + o(1))
θ(λ)
λ

dλ

∫ ρ/2

ρ0

(1 + o(1))
dλ

λθ(λ)
or

1∫ ρ/2
ρ0

(1 + o(1)) dλ
λθ(λ)

≤
∫ ρ/2
ρ0

(1 + o(1)) θ(λ)
λ dλ(

log ρ
2ρ0

)2(4.4)
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Inserting inequality (4.4) into (4.3) gives

1
α+ ε

≤ 2 log ρ(
log ρ

2ρ0

)2

∫ ρ/2

ρ0

(1 + o(1))
θ(λ)
λ

dλ

This is the desired result.

Proof of Theorem 1.5.

Suppose we have admissible pairs (u1, D1) . . . (uN , DN ) with the Di disjoint and
ui of one sign. Let αi and βi be the corresponding order and asymptotic angle of
the pair (ui, Di) respectively. Then from Theorem 4.1,∑ 1

αi
≤ 1
π

∑
βi ≤ 2

since the Di are disjoint. Hence if α1 < 1 there is no other disjoint solution pair
while if α1 = 1 there are at most two such pairs and necessarily α2 = 1 , β1 = β2 = π.

5. Sketch of the proof of Theorem 1.9

In this section we will briefly indicate the modifications necessary to prove The-
orem 1.9. For simplicity , suppose u = 0 on ∂D ∩ {|z| > 1} and set

D̃ρ = D ∩ {1 < |z| < ρ}(5.1)

Ẽ =
∫
D̃ρ

|∇u|2

W
dx+

∫
C1

uur
W

dθ =
∫
Cρ

ρ
uur
W

dθ(5.2)

Ũ =
Ẽ

I
(5.3)

Then Lemmas 2.1 and Lemma 3.2 remain valid for I , Ẽ , Ũ . The first change
comes in Lemma 3.3 . Now we have the two possible conclusions, Ũ ≥ 1

2 + o(1)
as before, or Ũ ≤ −1

2 + o(1). In the former case, things proceed as before without
change. In the latter case, we conclude from ρ I

′

I = 2Ũ + o(1) that

I ≤ I(ρ0) (
ρ0

ρ
)1+o(1)

In other words, I decays to zero like 1
ρ contradicting our assumption.
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