
THE EXISTENCE OF HYPERSURFACES OF CONSTANT GAUSS
CURVATURE WITH PRESCRIBED BOUNDARY

BO GUAN AND JOEL SPRUCK

1. Introduction

In this paper we are concerned with the problem of finding hypersurfaces of con-
stant Gauss-Kronecker curvature (K-hypersurfaces) in R

n+1 (n ≥ 2) with prescribed
boundary: given a disjoint collection Γ = {Γ1, . . . ,Γm} of closed smooth embedded
(n − 1) dimensional submanifolds of R

n+1, decide whether there exist (immersed)
K-hypersurfaces M in R

n+1 with ∂M = Γ. Locally this problem reduces to ques-
tions concerning Monge-Ampère type equations and we seek solutions for which the
resulting equation is elliptic. This means that we must confine ourselves to the class
of locally strictly convex hypersurfaces, i.e. those whose principal curvatures are all
positive. Such hypersurfaces locally lie on one side of their tangent planes at any
point but need not do so globally as they have non-empty boundary.

Finding hypersurfaces with prescribed curvature and boundary has been a major
challenge in geometric analysis because of the highly nonlinear nature of the prob-
lem and the lack of variational methods. Beginning around 1980, some success was
achieved due to breakthroughs in the theory of Monge-Ampère equations and general
fully nonlinear equations, but only for hypersurfaces which are globally graphs of func-
tions over domains with geometric restrictions (e.g., strictly convex domains). This
was the case even for K-hypersurfaces where the only general existence results were
consequences of the existence theory for Monge-Ampère equations (see [6], [20], [23]),
and was restricted to strictly convex domains. This means that the resulting surfaces
must be simply connected graphs, a very strong restriction geometrically.

The first idea that a more general result was possible came in the paper of Hoffman-
Rosenberg-Spruck [18] and subsequently such a general result was developed in [12]
and [11]. In these papers, the authors proved an essentially optimal existence theorem
for Monge-Ampère equations in domains of arbitrary geometry and thus the limit of
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our understanding of K-hypersurfaces with boundary was reached, as far as global
graphs (including multi-sheeted radial graphs) are concerned. This theory already
led to striking geometric applications [12], [28], [8].

To solve the problem in its full parametric generality seemed to require substan-
tial new techniques. A necessary condition for Γ to bound a locally strictly convex
hypersurface is that its second fundamental form (as a submanifold of R

n+1) is non-
degenerate everywhere. This however, is not a sufficient condition; Rosenberg [27](see
also [10]) shows there are topological obstructions. It is natural to seek geometric con-
ditions that guarantee the existence of locally strictly convex K-hypersurfaces span-
ning a given Γ. Based on the results in [12], the second author [29] made the following
conjecture: Γ must bound an immersed K-hypersurface if it bounds a locally strictly
convex immersed hypersurface. The first main result of the present paper settles this
conjecture affirmatively. More precisely, we will prove

Theorem 1.1. Assume that there exists a locally convex immersed hypersurface Σ in
R
n+1 with ∂Σ = Γ and KΣ ≥ K everywhere, where K is a positive constant. Suppose,

in addition, that Σ is C2 and locally strictly convex along its boundary. Then there
exists a smooth (up to the boundary) locally strictly convex immersed hypersurface M
with ∂M = Γ such that KM ≡ K. Moreover, M is homeomorphic to Σ.

We note that this is a huge jump in generality from our previous results in [12] as it
deals with general immersed K-hypersurfaces and not just graphs (or radial graphs).
Because of the presence of boundary, locally convex surfaces can be very complicated.
In particular, in Theorem 1.1 M need not be embedded even if Σ is embedded.

It is also important to understand hypersurfaces of vanishing Gauss curvature.
These hypersurfaces are clearly related to convex hulls of codimension 2 submanifolds
in space. Our second main result in this article is the following

Theorem 1.2. Suppose Γ bounds a locally convex hypersurface which is C2 and lo-
cally strictly convex along its boundary. Then there exists a locally convex hypersur-
face M of Gauss curvature KM ≡ 0 with ∂M = Γ, and M is of class C1,1 up to
the boundary. Moreover, for any interior point p ∈ M , all the extreme points of the
(intrinsic) component of M ∩ TpM containing p lie on ∂M , where TpM denotes the
tangent plane of M at p. In particular, if Γ is extreme, i.e., Γ lies on the boundary
of its convex hull, then M coincides with part of the boundary of the convex hull of Γ
and, therefore, is globally convex.
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The C1,1 regularity in Theorem 1.2 is optimal for hypersurfaces of vanishing Gauss
curvature, as shown by counterexamples (see [7]). We also remark that Theorem 1.2
does not hold without the assumption that Γ bounds a locally convex hypersurface
which is locally strictly convex near its boundary. Ghomi [8] has constructed a smooth
extreme Jordan curve γ in R

3 with the properties that (a) γ bounds a convex surface
of vanishing Gauss curvature which is not C1,1, (b) γ does not bound any locally
strictly convex surface, and (c) γ does not bound any locally convex surface of class
C1,1 with vanishing Gauss curvature.

As a consequence of Theorem 1.2 we have

Corollary 1.3. Suppose Γ is extreme and let Σ be a locally convex hypersurface with
∂Σ = Γ. If Σ is C2 up to the boundary and locally strictly convex in a neighborhood
of its boundary, then the interior of Σ lies strictly outside the convex hull of Γ.

We remark that such a hypersurface need not be globally convex, nor embedded. A
somewhat stronger version of Corollary 1.3 has been proven by Alexander-Ghomi [1].
In [8], Ghomi made the following conjecture: every compact connected hypersurface of
positive curvature with connected extreme boundary is embedded and its interior lies
outside the convex hull of its boundary. We see that Corollary 1.3 settles affirmatively
part of this conjecture. On the other hand, we will construct an example which shows
such a hypersurface may fail to be embedded. Furthermore, using the bridge principle
of Hauswirth [16], we will show there exist smooth K-surfaces in R

3, with connected
extreme boundary, which are not embedded.

Suppose Γ is extreme and let HΓ be the boundary of its convex hull. Theorem 1.2
indicates that if Γ bounds a locally convex hypersurface which is C2 (up to the
boundary) and locally strictly convex in a neighborhood of its boundary, then one
of the components of HΓ \ Γ must be C1,1 up to the boundary. However, as we will
show by an example, the other components may have interior singularities. A result
of Ghomi [8] states that every component of HΓ \ Γ is C1,1 up to the boundary if Γ
is strictly convex, i.e., through every point of Γ there passes a (global) supporting
hyperplane with first order contact.

Hypersurfaces of vanishing Gauss curvature are closely related to the homogeneous
degenerate Monge-Ampère equation

detD2u = 0.(1.1)
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In general, the Dirichlet problem for (1.1), even with smooth boundary data, does not
have C2 solutions, as shown by an example of Urbas (see [7]). Under suitable regu-
larity assumptions on the boundary data, the interior and global C1,1 regularity was
established by Trudinger-Urbas [31] and Caffarelli-Nirenberg-Spruck [7], respectively,
for strictly convex domains. Later the first author [11] extended the global regularity
result of [7] to non-convex domains. These regularity results will play important role
in our proof of Theorem 1.2. For more general (non-homogeneous) degenerate Monge-
Ampère equations, the C1,1 regularity has been studied by Caffarelli-Kohn-Nirenberg-
Spruck [5], Hong [19], Krylov [24], P.-F. Guan [13] and Guan-Trudinger-Wang [14],
etc.

A major difficulty in proving Theorems 1.1 and 1.2 lies in the lack of global co-
ordinate systems to reduce the problem to solving certain boundary value problem
for Monge-Ampère type equations. To overcome this difficulty, we adopt a Perron
method to deform (lift) Σ into a K-hypersurface by solving the Dirichlet problem for
the Gauss curvature equation (2.1) locally. This approach, while classical for PDE’s,
requires substantial technical work as we are dealing with general locally convex hy-
persurfaces in space. A key ingredient, among others, is an a priori estimate for the
local Lipschitz constants (C0,1 norms) of locally convex hypersurfaces spanning Γ.
This is established in section 3 where we also derive a priori estimates for the lower
and upper bounds of principal curvatures of locally strictly convex K-hypersurfaces
spanning Γ. The Perron method is carried out in section 4 where we define the defor-
mation space L of liftings of Σ and construct M as the limit of a suitable sequence of
hypersurfaces in L. In section 5, we study the regularity of the resulting hypersurface
constructed in section 4, to complete the proofs of Theorems 1.1 and 1.2. Finally, in
section 6 we prove Corollary 1.3 and construct an extreme curve in R

3 which bounds
a locally strictly convex K-surface with self-intersection and for which the boundary
of its convex hull has interior singularities.

For general Monge-Ampère equations, there is a vast literature, with fundamen-
tal work being done by Pogorelov, Cheng-Yau, Lions, Ivochkina, Krylov, Caffarelli-
Nirenberg-Spruck, Trudinger, Urbas and others in the 1970-1980’s and more recent
regularity results by Caffarelli. For further references the reader is referred to [9], [15]
and the expository article [25].

After this article was completed, we learned that Trudinger-Wang [32] also proved
Theorem 1.1 at about the same time.
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2. Notation and Preliminaries

Let Φ : Σn
0 → R

n+1 be an immersion where Σ0 is a manifold of dimension n ≥ 2
with boundary ∂Σ0 which may be empty. We will often identify Φ with its image
M := Φ(Σ0) and call M a hypersurface of R

n+1. Similarly, the boundary of M , ∂Σ,
means the immersion Φ : ∂Σ0 → R

n+1. When we consider a point p ∈ M , it should
be understood as one of its preimages in M0. For a subset U of R

n+1, Σ ∩p U will
denote the component of Σ ∩ U that contains p, that is, Σ ∩p U = Φ(U0) where U0 is
the component of Φ−1(Σ∩U) that contains the point identified to p in Φ−1(p) ⊂M0.
In this paper, all hypersurfaces in R

n+1 we consider are assumed to be connected,
orientable and compact with or without boundary. Unless otherwise indicated, if two
hypersurfaces have the same boundary, they are assumed to be oriented in such a way
that they induce the same orientation on the boundary.

Let Σ be a C2 hypersurface in R
n+1. We will useKΣ, νΣ and dΣ to denote the Gauss

curvature, the unit normal vector field, and the extrinsic diameter of Σ, respectively.
The orientation of Σ is assumed to be consistent with νΣ which is continuously defined
on entire Σ. At a point on Σ the Gauss curvature KΣ is the product of the principal
curvatures which are the eigenvalues of the second fundamental form of Σ computed
with respect to νΣ. We denote by κmin[Σ] and κmax[Σ] the minimum and maximum,
respectively, of all principal curvatures of Σ. We say Σ is locally convex (locally strictly
convex) if κmin[Σ] ≥ 0 (κmin[Σ] > 0, respectively).

We will also need to consider hypersurfaces with less regularity. In general, a
hypersurface Σ in R

n+1 is said to be locally convex if at every point p ∈ Σ there
exists a neighborhood which is the graph of a convex function xn+1 = u(x), x ∈ R

n,
with s suitable coordinate system in R

n+1, such that locally the region xn+1 ≥ u(x)
always lies on a fixed side of Σ. (Note that Σ is assumed to be orientable so it has two
sides; for convenience we will refer to the inner side as the one facing xn+1 ≥ u(x).)
The latter requirement that the region xn+1 ≥ u(x) lie on one fixed side of Σ is to
ensure that the local convexity at each point is consistent with a fixed orientation;
see [1] for a detailed discussion. Note that a locally convex hypersurface is necessarily
of class C0,1 in the interior.

For a locally convex hypersurface Σ which is not necessarily C1, νΣ is understood
as the Gauss map from Σ to the subsets of S

n: for a point p ∈ Σ, νΣ(p) is the set of
all unit normal vectors of local supporting hyperplanes of Σ at p. For convenience, we
will say νΣ has a certain property of a vector if every element of νΣ has that property.
For the definition in weak sense of Gauss curvature we refer to [26]. According to
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Caffarelli [2], if Σ is the graph of a locally convex function xn+1 = u(x) over a domain
Ω in R

n then KΣ = K if and only if u is a viscosity solution of the Gauss curvature
equation

det(uij) = K(1 + |∇u|2)
n+2

2 in Ω.(2.1)

One can similarly interpret the meanings of KΣ ≤ K and KΣ ≥ K. We will need
the following existence result which follows from, for example, Theorem 1.1 of [11] by
approximation.

Theorem 2.1. Let Ω be a bounded domain in R
n with ∂Ω ∈ C0,1. Suppose there

exists a locally convex viscosity subsolution u ∈ C0,1(Ω) of (2.1), i.e.,

det(uij) ≥ K(1 + |∇u|2)
n+2

2 in Ω,

where K ≥ 0 is a constant. Then there exists a unique locally convex viscosity solution
u ∈ C0,1(Ω) of (2.1) satisfying u = u on ∂Ω.

3. A priori estimates and compactness

In this section we prove some important local properties of locally convex hyper-
surfaces with boundary. Throughout the section, let Σ and M be locally convex
hypersurfaces in R

n+1 with ∂Σ = ∂M and assume that there exists a fixed constant
δ > 0 such that the hypersurface

Σδ := {x ∈ Σ : distΣ(x, ∂Σ) < δ}

is C2 up to the boundary and locally strictly convex, where distΣ denotes the intrinsic
distance on Σ. We furthermore assume that M locally lies on the inner side of Σ
along the boundary and any neighborhood of ∂M in M does not intersect Σδ in the
interior. By this we mean that νΣ(p) · (q− p) > 0 for all p ∈ Σδ and q ∈M near ∂M .
In particular, both Σ and M locally lie on the same side of the tangent plane to Σ at
any point of ∂Σ. Let Π denote the second fundamental form of ∂Σ (as a submanifold
of R

n+1). The main result, which plays a key role in our proof of Theorems 1.1 and
1.2, may be stated as follows.

Theorem 3.1. At every point on M , locally M can be represented as the graph of
a convex function u defined in a domain Ω ⊂ R

n of a fixed lower bound in size
(depending only on δ, κmin[Σδ], κmax[Σδ], max∂Σ |Π| and dM ) such that

‖u‖C0,1(Ω) ≤ C1(3.1)
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where C1 depends on δ, κmin[Σδ], κmax[Σδ], max∂Σ |Π| and dM .

Proof. Step 1. We first note the following simple fact. Let p be an arbitrary point
on ∂Σ and X a unit tangent vector to ∂Σ at p . Since Σ is strictly locally convex
near ∂Σ, we have

νΣ(p) ·Π(X,X) ≥ κmin[Σδ] > 0.(3.2)

Throughout this proof let β = 1
2 sin−1(κmin[Σδ]/max∂Σ |Π|). Then

νΣ(p) ·Π(X,X)
|Π(X,X)|

≥ κmin[Σδ]
max∂Σ |Π|

= sin 2β > 0.(3.3)

Thus the angle between νΣ(p) and Π(X,X) does not exceed π
2 − 2β.

Now, for a fixed point p ∈ ∂Σ, we take p to be the origin and choose a coordinate
system of R

n+1 such that en and en+1 are normal to ∂Σ at p and

νΣ(p) = en cosβ + en+1 sinβ.(3.4)

Here ek is the unit vector in the positive xk-axis direction (1 ≤ k ≤ n+ 1). For later
reference we will call this the special coordinate system at p. It follows that Σ (locally
at p) can be represented as the graph of a strictly convex function xn+1 = u(x) over
a domain Ω′ with a lower bound in size which depends on δ, β and κmax[Σδ]. In
particular, ∂Σ is locally a graph over a portion, which we denote as Γ′, of ∂Ω′. By
(3.3) and (3.4), the angle between en and Π(X,X) does not excess π

2 − β, that is

en ·Π(X,X) ≥ |Π(X,X)| sinβ ≥ κmin[Σδ] sinβ(3.5)

for any unit tangent vector X to ∂Σ at p. Consequently, (possibly after a rotation of
the (x1, . . . , xn−1) coordinates) we may represent Γ′ as a graph

xn = ϕ(x′) ≡
n−1∑
i=1

aix
2
i + o(|x′|2), x′ = (x1, . . . , xn−1) ∈ R

n−1(3.6)

for some constants ai, 1 ≤ i ≤ n− 1, satisfying

0 < κmin[Σδ] sinβ ≤ ai ≤ max
∂Σ
|Π|, 1 ≤ i ≤ n− 1.(3.7)

By shrinking the size of Ω′ as necessary, we may assume Ω′ = {ϕ < xn < 2r} for
some uniform constant r > 0.

Let v be the convex function defined on Ω′ by

v(x) = sup{L(x) : L is an affine function, L ≤ u on Γ′}.(3.8)
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We have

u ≤ v ≤ max
Γ′

u in Ω′, v = u on Γ′

and

LipΩ′(v) ≤ max
Γ′
|∇u|+ C

where LipΩ′(v) denotes the Lipschitz coefficient of v on Ω′.
By the local convexity of M we have νM ·Π(X,X) ≥ 0 for any tangent vector X

to ∂Σ. From (3.3) we see that the angle between νM and νΣ at any point on ∂Σ does
not exceed π − 2β. Therefore,

νM (p) · en+1 ≥ sinβ.

That is, the angle between νM (p) and en+1 does not exceed π
2 − β. Consequently, M

locally (near p) can be represented as the graph of a convex function xn+1 = u(x).
Since M is locally convex, we see that u is defined on a smooth strictly convex domain
Ωp satisfying

{ϕ < xn < r} ⊂ Ωp ⊂ {ϕ < xn < 2r}(3.9)

with

u ≤ u ≤ v in Ωp and LipΩp(u) ≤ C(3.10)

where C depends on r and ‖u‖C1(Ω′). For later reference we set

∂′Ωp := {xn = ϕ|0 ≤ xn ≤ r} ⊂ ∂Ωp

and by Γ(p) the graph of u over ∂′Ωp. Note that Γ(p) ⊂ ∂M .

Step 2. Next, let q be an interior point of M . We will consider two different cases.
We first assume that there exists a hyperplane P through q, which either is a local
supporting hyperplane or is transversal to M at q, such that

Ut ∩ ∂M = ∅ for all t > 0 sufficiently small(3.11)

where Ut = M ∩q {z ∈ R
n+1 : (z− q) · νP ≤ t}. We first note the following fact which

will often be used in the sequel without being explicitly referred to.

Lemma 3.2. Suppose s > 0 such that (3.11) holds for all nonnegative t ≤ s. Then
Us is transversal to Ps := {z ∈ R

n : (z − q) · νP = s}.
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Proof. We note that Ut is transversal to Pt for all t > 0 sufficiently small. Suppose
s > 0 is the first value such that (3.11) holds for all nonnegative t ≤ s while Us is
not transversal to Ps at a point p ∈ ∂Us. By the local convexity of M , Ps is a local
supporting hyperplane to M at p where M locally lies in the half space (z−q)·νP ≤ s.
For ε > 0 small enough,

Vε := M ∩p {(z − p) · (−νP ) ≤ ε}

is transversal to Ps−ε and is a convex disk. Moreover, ∂Vε = ∂Us−ε, for ∂Us−ε is a
globally convex disk as its boundary is contained in a hyperplane (see [17]). This
implies M = Vε ∪ Us−ε and therefore is a closed convex sphere without boundary,
which is a contradiction.

We now return to the proof of Theorem 3.1. Let t0 > 0 be the smallest value such
that Ut0 ∩ ∂M 6= ∅ and choose a point p ∈ Ut0 ∩ ∂M . Note that U := Ut0 is globally
convex. We consider the special coordinate system at p which satisfies (3.4). Under
this coordinate system, q lies in the region |xn+1| ≤ xn cotβ. In particular, xn(q) > 0.
We also note that

νP = en cos θ + en+1 sin θ

for some θ ∈ [β, π − β]. Moreover, M locally (near p) is given as the graph of a
function u on a domain Ωp as in (3.9) satisfying (3.1).

Let r > 0 be as in (3.9). We see from above that if xn(q) < r/2 then q is on the
graph of u over Ωp and we are done. So we next consider the case that xn(q) ≥ r/2.
Let Cq = Cq(∂U) be the convex cone generated by ∂U with vertex q. We will show
that Cq contains a non-degenerate cone of fixed size that contains p. This means
there exists a point q0 ∈ R

n+1, |q0 − q| = 1, and a uniform constant δ0 > 0 such that
p ∈ Cq(Bδ0(q0)) ⊂ Cq where Cq(Bδ0(q0)) is the cone generated by Bδ0(q0) with vertex
q. Since |q − p| ≥ r/2, this will complete our proof under assumption (3.11).

Choose new coordinates (y1, . . . , yn+1) in R
n+1 with origin at p such that yi = xi

(1 ≤ i ≤ n − 1), yn(q) > 0, yn+1(q) = 0 and let τi denote the unit vector in the
positive yi direction (0 ≤ i ≤ n+ 1). We have yn(q) ≥ xn(q) ≥ r

2 and hence

(τk · (q − p))2

|q − p|2
=

(ek · (q − p))2

|q − p|2
≤ 1−

( r

2dM

)2
∀ 1 ≤ k ≤ n− 1.(3.12)

From the convexity of U we see that Cq contains the cone generated by Γ(p) with
vertex q since Γ(p) and q are separated by the hyperplane containing ∂U . By (3.6),
(3.7) and (3.12) the projection of Cq to the hyperplane R

n ≡ {yn+1 = 0} contains
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an n-ball Bρ(0) in R
n where ρ ≥ c0 for a uniform constant c0 > 0. To complete the

proof, therefore, we only have to find a point p0 with

yn+1(p0) > 0 and
yn(q)− yn(p0)
yn+1(p0)

≤ C0(3.13)

for some uniform constant C0 > 0 such that the cone generated by the convex hull of
Γ(p) ∪ {p0} with vertex q is contained in Cq. (We note that it is always possible to
find such p0 on Γ(p) with C0 = C0(t0) depending on t0; C0(t0) may, however, tend to
infinity as t0 → 0.)

For 0 ≤ t ≤ yn(q), letWt = {yn ≥ t}∩qM . IfWyn(q)∩∂U 6= ∅ then we are done since
∂U lies in the upper half space {yn+1 ≥ 0}. We thus may assume Wyn(q) ∩ ∂U = ∅.
Note that then Wyn(q) ⊂ U and is therefore a convex cap. We may find t1 ∈ [0, yn(q))
such that Wt ∩ ∂M = ∅ for all t1 < t ≤ yn(q) and Wt1 ∩ ∂M 6= ∅. Note that Wt1 is
also a convex cap and Wt1 \ U ⊂ Cp by convexity.

If t1 = 0 then

τn ·Π(X,X) ≤ 0, ∀ X ∈ Tp∂M(3.14)

since Γ(p) lies in the half space yn ≤ 0. (This implies that Γ(p) is contained in the
half space xn+1 ≥ 0.) It follows from (3.5) that τn+1 · en ≥ sinβ, that is, the angle
between τn+1 and en does not exceed π

2 − β. Consequently,

yn+1(z) = z · τn+1 ≥ xn(z)en · τn+1 ≥ xn(z) sinβ ∀ z ∈ Γ(p).

since xn+1(z) ≥ 0. We see any point p0 on Γ(p) with xn(p0) ≥ r
2 must satisfy (3.13).

We now assume t1 > 0 and take an arbitrary point p1 ∈ Wt1 ∩ ∂M . We have
p1 ∈ (Wt1 \ U) ∪ ∂U ⊂ Cq and, similarly to (3.14),

τn ·X = 0 and τn ·Π(X,X) ≤ 0, ∀ X ∈ Tp∂M.(3.15)

Moreover, since Wt1 ∩ {yn+1 ≤ 0} ⊂ U ,

yn+1(p1) > 0 and 0 < yn(p1) = t1 < yn(q).(3.16)

We may further assume that there exists a uniform constant ε0 > 0 such that

|X · τn+1| ≤ ε0(3.17)

and

|Π(X,X) · τn+1| ≤ ε0(3.18)

for all unit tangent vector X to ∂M at p1. This can be seen as follows. Suppose there
is a unit vector X ∈ Tp1∂M which does not satisfy (3.17) or (3.18) and let γX be the



HYPERSURFACES OF CONSTANT GAUSS CURVATURE 11

geodesic on Γ(p1) tangential to X at p0. We can then find a point p0 ∈ γX near p1

such that, if (3.17) is violated then (3.13) holds for C0 = C0(ε0), while if (3.18) fails,

|Y · τn+1| ≥ ε1

for some unit tangent vector Y to ∂M at p0 and some uniform constant ε1 > 0.
Note that (3.17) and (3.18) imply

νΣ(p1) · τn ≤ 0(3.19)

when ε0 is sufficiently small, since the angle between Π(X,X) and −τn is sufficiently
small while that between Π(X,X) and νΣ(p1) does not exceed π

2 −2β. By (3.16) and
(3.19) we obtain

νΣ(p1) · τn+1 ≤ 0,(3.20)

since the segment joining p1 and q locally lies on the inner side of Σ near p1. Finally,
by (3.19), (3.20) and the local strict convexity of Σ near boundary there exists a point
z ∈ Σδ ∩ V with

yn+1(p1)− yn+1(z) ≥ c0

for some uniform constant c0 > 0 depending on δ and κmin[Σδ], where V is the vertical
2-plane (in y-coordinates) through p1 and q. Since z must lie above the line through
q and p1 by the convexity of M and the assumption that Σδ does not intersect M in
interior, we have yn+1(z) ≥ yn+1(q) = 0. Thus yn+1(p1) ≥ c0 and p0 := p1 satisfies
(3.13) where C0 > 0 depends on δ and κmin[Σδ].

Step 3. We now assume there is no hyperplane through q satisfying assumption
(3.11). We will first prove that M has a unique local supporting hyperplane (thus a
tangent hyperplane) at q.

Let P be a local supporting hyperplane at q to M and let E denote the set of
points on ∂M that (intrinsically) belong to P ∩q M . Clearly E 6= ∅. We claim that
q is contained in the convex hull of E. Indeed, if this is not the case, that is, q and
E are separated by a hyperplane, we may assume P = {xn+1 = 0} and q lies in the
region xn > ε while E in xn < −ε for some ε > 0. Then M ∩q {xn+1 ≤ axn} does
not intersect ∂M where a > 0 is sufficiently small, which is a contradiction.

By Caratheodory’s theorem (cf. [22]) q is contained in an l-dimensional simplex S
with vertices in E for some 1 ≤ l ≤ n. We have S ⊆ P ∩q M by the local convexity
of M .
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Let p be a vertex of S and consider the special coordinate system at p. We note
that, by the local convexity of M , P is a local supporting hyperplane to M at every
point on the segment pq joining p and q. It follows that

νP = en cos θ + en+1 sin θ(3.21)

for some θ ∈ [β, π−β]. Recall M locally near p is the graph of a convex function over
a domain Ωp in {xn+1 = 0}. Since Ωp is strictly convex the segment pq is transversal
to ∂M at p. For otherwise pq would be contained in {xn+1 = 0} and tangential to
∂Ωp at p, resulting in a contradiction as Ωp would contain points on pq other than
p. Consequently, P is the tangent hyperplane to M at p as P contains pq and is
tangential to ∂M at p.

Next, assume furthermore that pq ⊂ pp1 ⊆ S for some p1 6= q. Let Q be a local
supporting hyperplane to M at q. Then pp1 ⊂ Q and therefore Q is a local supporting
hyperplane to M at every point on pp1. We have Q = P since both are the tangent
hyperplane to M at p. This also shows that P is the tangent hyperplane of M at
every point on pp1 (except possibly p1). Consequently, u extends along pp1.

As we can always find a point p ∈ E such that the segment pq extends in S, we
have proved the uniqueness of the local supporting plane to M at q. Using induction
on l we will next prove the assertion in the Theorem at point q.

Let us first consider the case l = 1, that is, S = pp1 where p, p1 ∈ ∂M . Suppose
|p − q| ≤ |p1 − q| and let Ω̃ be the convex hull (in R

n = {xn+1 = 0}) of {p′1} ∪ Ωp

where p′1 ∈ R
n with p1 = (p′1, xn+1(p1)). (Similar meaning for q′ below.) As in Step 2

we may assume xn(q) ≥ r
2 where r as in (3.9). This implies (3.12), that is the angle

between pq and ek has a uniform positive lower bound for all 1 ≤ k ≤ n− 1.
Let

v(x) = sup{L(x) : L is an affine function, L ≤ u at p′1 and on Ωp}, x ∈ Ω̃.(3.22)

Then v is a convex function and detD2v = 0 in Ω̃. We have u ≤ v where u is defined
in Ω̃. Since |p1 − q| ≥ |p − q| ≥ r

2 , by (3.12) there exists a uniform constant λ > 0
depending on r and max∂M |Π|, such that the n-ball Bλ(q′) is contained in Ω̃. By
the local convexity of M we see u is defined on Bλ/2(q′) ⊂ Ω̃ with a uniform bound
on ‖ũ‖C0,1(Bλ/2(q′)). This completes the proof for l = 1.

Assume now l > 1 and suppose we have proved the assertion for any point in a
simplex of dimension less than l with vertices in E. Choose p ∈ E and p1 on an (l−1)
dimensional face of S such that q ∈ pp1. If |p − q| ≤ |p1 − q| then the proof follows
as exactly in case l = 1. Let us therefore assume |p − q| ≥ |p1 − q|. By induction,
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in a suitable coordinate system (y, yn+1), y ∈ R
n with origin at p1, M locally near

p1 is the graph of a convex function yn+1 = u(y) with a uniform C0,1 bound in an
n-ball BR(0) where R is a uniform constant. Since P is the tangent hyperplane to
M at any point on pp1 (except possibly p1), we have νP · (0, . . . , 0, 1) ≥ c0 for some
uniform constant c0 > 0. Thus u extends along pp1. Replacing the convex function v
in (3.22) by

v(y) = sup{L(y) : L is an affine function, L ≤ u at p and on BR(0)},(3.23)

defined in the convex hull of {p} ∪BR(0), the rest of proof follows that of case l = 1.
This, finally, completes our proof.

An important consequence of Theorem 3.1 is a compactness result (Theorem 3.4)
which we will need in the next section. First, it follows immediately from Theorem 3.1
that

Corollary 3.3. There exist uniform constants R, r > 0 depending on δ, κmin[Σδ],
κmax[Σδ], max∂Σ |Π| and dM such that for any p ∈M , M ∩p BR(p) is embedded and
the convex body in BR(p) bounded by M ∩p BR(p) contains a ball of radius r.

According to a convergence theorem of Alexander-Ghomi [1] we thus have

Theorem 3.4. Let {Mk} be a sequence of locally convex hypersurfaces contained in
a bounded region in R

n+1 with ∂Mk = ∂Σ for all k. Suppose each Mk lies on the
inner side of Σ and does not intersect Σδ. Then there exists a subsequence {Mki}
converging in Hausdorff metric to a locally convex hypersurface M with ∂M = ∂Σ.
Moreover, for each i there exists a homeomorphism form Mki on to M with boundary
fixed.

Proof. We refer to [1] (Theorem 7.1) for the major part of the proof. Here we only
point out that by Corollary 3.3 the conditions of Theorem 7.1 in [1] are satisfied, and
give a brief proof of the fact ∂M = ∂Σ and that M is C0,1 up to the boundary. Given
a point p ∈ ∂Σ, we consider the special coordinates at p satisfying (3.4). Then each
Σk locally near p can be represented as a convex graph xn+1 = uk(x) over a domain
Ωp of form (3.9) with a uniform C0,1 norm bound. By compactness there exists a
subsequence of {uk} converging to a convex function u ∈ C0,1(Ωp). Moreover, we
have u = u on {x ∈ ∂Ωp : xn = ϕ} since u ≤ uk ≤ v in Ωp where v is as in (3.8), ϕ as
in (3.6) and the graph of u represents Σ. Note that M must coincide with the graph
of u near p. Consequently, M is a locally convex hypersurface of class C0,1 up to the
boundary and ∂M = ∂Σ.
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We next derive a priori bounds for all principal curvatures for smooth locally
strictly convex K-hypersurfaces.

Theorem 3.5. Assume in addition that M is a smooth locally strictly convex hyper-
surface of constant Gauss curvature K > 0. Then

1
C2
≤ κmin[M ] ≤ κmax[M ] ≤ C2

where C2 > 0 depends on K, K−1, δ, κmin[Σδ], κmax[Σδ], max∂Σ |Π|, and dM .

Proof. We first establish the estimate on the boundary. Given any point p ∈ ∂M ,
by Theorem 3.1 we may write M locally (near p) as a graph xn+1 = u(x) with an
a priori gradient bound over a smooth strictly convex domain Ωp where u satisfies
the Gauss curvature equation (2.1). As ∂Ωp is strictly convex we may appeal to the
boundary estimates for |∇2u| due to Caffarelli-Nirenberg-Spruck [6] (which is local in
nature) to obtain

|uij(0)| ≤ C(3.24)

where C depends on ‖u‖C1(Ωp) and geometric quantities of Σδ and ∂Σ. Since the
principal curvatures of M at p are the eigenvalues of the matrix{

(1 + |∇u|2)−
1
2uij

}
(with respect to {δij+uiuj}, the metric of M), the desired estimates follow from (3.24)
and the fact that the Gauss curvature is the product of all principal curvatures.

Turning to the global estimates, consider Λ := maxκeρ where

ρ(x) = |x− x0|2, x ∈ R
n+1

(x0 is a fixed point in R
n+1), and the maximum is taken for all normal curvatures κ

over M . As we already have estimates for principal curvatures on ∂M , we may assume
Λ is attained at an interior point p ∈ M . Choose coordinates in R

n+1 with origin at
p such that the tangent hyperplane of M at p is given by xn+1 = 0 and M locally is
written as a strictly convex graph xn+1 = u(x) where x = (x1, . . . xn) ∈ R

n. We may
also assume the Hessian matrix {uij} to be diagonal at 0 with u11(0) ≥ uii(0) > 0
for all 1 < i ≤ n. Note that, since Du(0) = 0, uii(0) (1 ≤ i ≤ n) are the principal
curvatures of M at p. Thus Λ is achieved at p with respect to the normal curvature
in x1 direction which is locally given by

κ =
u11

(1 + u2
1)w

, w = (1 + |∇u|2)
1
2 .
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Since the function log u11 − log(1 + u2
1) − logw + ρ then has a maximum at the

origin where Du = 0, w = 1, Dw = 0 and wii = u2
ii for all 1 ≤ i ≤ n, we have at 0,

u11i

u11
− wi
w
− 2u1u1i

1 + u2
1

+ ρi = 0, 1 ≤ i ≤ n(3.25)

and
u11ii

u11
− (

u11i

u11
)2 − u2

ii − 2u2
1i + ρii ≤ 0, 1 ≤ i ≤ n.(3.26)

Multiplying (3.26) by u11/uii and taking sum over i from 1 to n, one obtains∑ u11ii

uii
−
∑ (u11i)2

u11uii
− u11∆u− 2u2

11 +
∑ ρii

uii
≤ 0.(3.27)

Differentiating equation (2.1) we have for 1 ≤ k ≤ n,

uijuijk = (n+ 2)
wk
w

and

uijuijkk − uilujmuijkulmk = (n+ 2)
wkk
w
− (n+ 2)

w2
k

w2
,

where {uij} is the inverse matrix of {uij} Combining these and (3.27) we obtain

nu2
11 − u11∆u+

∑ ρii
uii
≤ 0.(3.28)

Next,

ρ(x) = |x− x0|2 + (u(x)− x0
n+1)2, x ∈ R

n

where x0 = (x0, x0
n+1), and therefore,

ρii = 2 + 2(u(x)− x0
n+1)uii + u2

i .

Since ∆u ≤ nu11, by (3.28) one sees that at 0,

0 ≥
n∑
i=1

ρii
uii
≥

n∑
i=2

2
uii
− 2nx0

n+1

≥ 2

(u22 · · ·unn)
1

n−1

− 2nx0
n+1

≥ 2
( u11

detuij

) 1
n−1 − C

= 2
(u11

K

) 1
n−1 − C.

It follows that

u11(0) ≤ CK.
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This proves an upper bound for κmax[M ], from which a lower bound for κmin[M ] can
be derived in terms K−1. The proof is complete.

Remark 3.6. Using an estimate of Guan-Trudinger-Wang [14] in place of that of [6],
it is possible to obtain an upper bound for the principal curvatures which does not
depend on the lower bound of Gauss curvature.

4. Deformation to K-hypersurfaces

The primary purpose of this section is to prove the existence part in Theorems 1.1
and 1.2. Throughout the section, let Σ be a locally convex immersed hypersurface in
R
n+1 with embedded boundary ∂Σ and Gauss curvature KΣ ≥ K everywhere on Σ,

where K is a fixed non-negative constant. Our idea is to deform Σ to a locally convex
immersed hypersurface M with KM ≡ K and ∂M = ∂Σ.

Let D ⊆ Σ be a disk on Σ which, as a hypersurface in R
n+1, may be represented

as the graph of a convex function u defined in a domain Ω (in some hyperplane) with
Lipschitz boundary. By Theorem 2.1, there is a unique function u ∈ C0,1(Ω) whose
graph is a convex hypersurface D̃ of constant Gauss curvature K with ∂D̃ = ∂D. By
the maximum principle, we have u ≥ u in Ω. Thus D̃ lies on the inner side of D.

This naturally induces a C0,1-diffeomorphism ΨD : Σ→ Σ̃ := D̃ ∪ (Σ \D) which is
fixed on Σ \ D. The hypersurface Σ̃ is locally convex with KΣ̃ ≥ K and ∂Σ̃ = ∂Σ.
We call Σ̃ a basic lifting of Σ (by D̃ over D). A lifting of Σ is a hypersurface which is
obtained by a finite number of basic liftings starting from Σ. We introduce a partial
order � between liftings of Σ: Σ1 � Σ2 if and only if Σ2 is a lifting of Σ1 or Σ2 = Σ1.

Lemma 4.1. Let Σ1 and Σ2 be any two liftings of Σ. Then there exists a unique
lifting, which we denote as Σ1 ∨Σ2, of Σ such that Σ1 � Σ1 ∨Σ2, Σ2 � Σ1 ∨Σ2, and
Σ1 ∨ Σ2 � N for any lifting N with Σ1 � N and Σ2 � N .

Proof. We first assume Σ1 is a basic lifting of Σ by D̃1 over a disk D1 ⊆ Σ and let
A be the open region in R

n+1 bounded by D1 ∪ D̃1. Assume Σ2 to be a lifting of Σ
over a region D2. (D2 is not necessarily a disk.) Intuitively, if Σ, Σ1 and Σ2 are all
embedded, then it is obvious that the hypersurface

Σ1 ∨ Σ2 := (Σ2 \ (Σ2 ∩A)) ∪ (D̃ \ (D̃ ∩B))

where B is the open regions in R
n+1 bounded by Σ2 ∪ Σ, is a lifting of Σ with the

desired properties. In the general case when some of these hypersurfaces may be
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immersed, we view Σ as an immersion

Φ0 : Σ0 → Σ ⊂ R
n+1(4.1)

of a differentiable manifold Σ0 and let

Φi : Σ0 → Σi ⊂ R
n+1, i = 1, 2(4.2)

be the immersions induced from the liftings. (Note that Φi = Φ0 on Σ0 \ Φ−1
0 (Di).)

The lifting Σ1 ∨ Σ2 is then given by the immersion

Φ : Σ0 → Σ1 ∨ Σ2 := Φ(Σ0) ⊂ R
n+1

defined as

Φ(p) :=


Φ1(p), if p ∈ Φ−1

0 (D1) \ Φ−1
0 (D2),

Φ1(p), if p ∈ Φ−1
0 (D1) ∩ Φ−1

0 (D2) and Φ2(p) ∈ A,
Φ2(p), otherwise,

(4.3)

for p ∈ Σ0. The general case now can be proved by induction.

The next lemma, which states that volume decreases under lifting, is well known;
for completeness we include a proof.

Lemma 4.2. Let Σ1 and Σ2 be liftings of Σ. If Σ1 � Σ2 then Vol(Σ1) ≥ Vol(Σ2).
Moreover, the equality holds if and only if Σ1 = Σ2.

Proof. Obviously we may assume Σ2 is a basic lifting of Σ1 over a disk D1 ⊂ Σ1.
Suppose D1 and its lifting D2 ⊂ Σ2 are the graphs of convex functions u1 and u2 over
a domain Ω ⊂ R

n, respectively. We have u1 ≤ u2 on Ω and u1 = u2 ∂Ω.
Let

N(x, z) =
(∇u2,−1)√
1 + |∇u2|2

, (x, z) ∈ Ω× R.

denote the downward unit normal vector to D2 at (x, u2(x)). Thus divN(x, z), the
distributional mean curvature of D2 at the point (x, u2(x)) with respect to the upward
normal vector, is nonnegative almost everywhere since u2 is a convex function. Let

ω = {(x, z) ∈ R
n+1 : u1(x) < z < u2(x), x ∈ Ω}.

By the divergence theorem we have

0 ≤
∫
ω

divNdv =
∫
D1

N · ν1dσ −
∫
D2

dσ

= Vol(D1)−Vol(D2) +
∫
D1

(N · ν1 − 1)dσ
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where ν1 is the downward unit normal vector to D1. Since 0 ≤ N · ν1 ≤ 1 on D1 we
have Vol(D1)−Vol(D2) ≥ 0; obviously, the equality holds only when D1 = D2.

We need one more lemma which states that volume is continuous under uniform
convergence of uniformly Lipschitz convex functions.

Lemma 4.3. Let wk be a sequence of uniformly Lipschitz convex functions on Ω
converging uniformly to w. Then∫

Ω

√
1 + |∇w|2 dx = lim

k→∞

∫
Ω

√
1 + |∇wk|2 dx(4.4)

Proof. Let Wk =
√

1 + |∇wk|2 ; then |∇Wk| ≤ |∇2wk| ≤ ∆wk a.e. in Ω since wk is
convex. Therefore, ∫

Ω
|∇Wk| dx ≤ sup

Ω
|∇wk||∂Ω| .

Hence Wk are uniformly bounded in W 1,1 and so converge in L1 to
√

1 + |∇w|2.

We are now ready to prove the main result of this section. Let L be the collection
of liftings of Σ and set

µ := inf
L∈L

Vol(L).

Theorem 4.4. Suppose Σδ is C2 and locally strictly convex up to the boundary for
some fixed δ > 0. There exists a locally convex hypersurface M in R

n+1 of class C0,1

up to the boundary with ∂M = ∂Σ and KM ≡ K. Moreover, M is homeomorphic to
Σ and Vol(M) = µ.

Proof. For each k ≥ 1 choose Σk ∈ L such that

Vol(Σk) ≤ µ−
1
k
.

By Lemmas 4.1 and 4.2 we may assume Σk � Σk+1 for all k ≥ 1. According to The-
orem 3.4 after passing to a subsequence we may assume {Σk} converges in Hausdorff
metric to a locally convex hypersurface M which, in addition, is homeomorphic to
each Σk. Clearly ∂M = ∂Σ. It remains to show Vol(M) = µ and KM ≡ K.

Consider a point p ∈M . There exists a sequence pk ∈ Σk, k = 1, 2, . . . , converging
to p (in R

n+1) such that Σk ∩pk BR(pk) converges to M ∩pBR(p) in Hausdorff metric
where R > 0. According to Theorem 3.1, when R is chosen sufficiently small each
Σk∩pkBR(pk) can be represented as the graph of a convex function wk with a uniform
C0,1 norm bound (independent of k). By compactness we may choose a coordinate
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system in R
n+1 such that, after possibly passing to subsequences, all the functions

wk are defined in a fixed domain Ω ∈ R
n satisfying

‖wk‖C0,1(Ω) ≤ C0 independent of k(4.5)

and wk converges uniformly to a function w ∈ C0,1(Ω) whose graph obviously locally
represents M . Hence by Lemma 4.3 and a covering argument, Vol(M) = µ.

Consider now the Dirichlet problem for the Gauss curvature equation (2.1) in Ω.
Using wk as a subsolution for each k ≥ 1, by Theorem 2.1 we obtain a unique convex
solution uk ∈ C0,1(Ω) of (2.1) satisfying uk = wk on ∂Ω. We have uk ≥ wk on Ω and
by (4.5)

‖uk‖C0,1(Ω) ≤ C0 independent of k.

Thus there exists a subsequence, which we still denote by {uk}, converging to a convex
function u in C0,1(Ω). We see u satisfies (2.1) and u ≥ w on Ω with u = w on ∂Ω.

On the other hand, for each k ≥ 1 let Σ̃k be the lifting of Σk obtained by replacing
Dk with D̃k, where Dk and D̃k are the graphs of wk and uk over Ω, respectively.
Similarly, let M̃ be the locally convex hypersurface obtained from M by replacing the
graph of w over Ω by that of u. Clearly Σ̃k converges to M̃ as uk converges uniformly
to u on Ω. Since by Lemma 4.2 µ ≤ Vol(Σ̃k) ≤ Vol(Σk) for each k it follows that
Vol(M̃) = µ and therefore Vol(D̃) = Vol(D). As both u and w are convex functions,
this implies u ≡ w on Ω by the proof of Lemma 4.2. Since u satisfies (2.1), M has
constant Gauss curvature K in a neighborhood of p.

5. Regularity

In this section we study the regularity of the hypersurface M constructed in the
previous section to complete our proof of Theorems 1.1 and 1.2. Throughout this
section, we assume, as in section 4, that Σ is a locally convex immersed hypersurface
which is C2 and locally strictly convex along its boundary ∂Σ. Thus Σ is C2 and
locally strictly convex in a neighborhood of, and up to, ∂Σ. In addition, we assume
∂Σ to be embedded and smooth. Let K ≤ minKΣ be a non-negative constant and
let M the locally convex hypersurface with KM ≡ K and ∂M = ∂Σ constructed in
section 4. By Theorem 4.4, M is C0,1 up to the boundary.

Theorem 5.1. If K > 0 then M is smooth up to the boundary and locally strictly
convex.
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Proof. Consider an interior point p ∈ M which we assume to be the origin of R
n+1.

Since M is of class C0,1, M locally near p can be represented as a convex graph
xn+1 = u(x) ≥ 0 over a domain Ω1 ⊂ R

n ≡ {xn+1 = 0} with a C0,1 norm bound

‖u‖C0,1(Ω1) ≤ C1.

It follows that u satisfies the inequalities in the viscosity sense

K ≤ det(uij) ≤ K(1 + C2
1 )

n+2
2 in Ω1.

We may assume M ∩p {xn+1 = 0} ⊂ Ω1. By a theorem of Caffarelli [2], the nodal set
{u = 0} either is a single point, in which case M is smooth and strictly convex at p
(see [4]), or does not contain any interior extreme points. So we will be done if we can
show that {u = 0} = {0}. Suppose this is not the case. Then we can find two points
q1, q2 ∈ ∂M such that q1q2 ⊆ M ∩ {xn+1 = 0} and xn+1 = 0 is a local supporting
plane of M at every point on q1q2. By the proof (Step 3) of Theorem 3.1, q1q2 is
transversal to ∂M at the endpoints. Without loss of generality we may assume

qi = (0, . . . , 0, (−1)ia, 0), i = 1, 2,

where a > 0. Consequently, there exists a constant δ > 0 such that, in a neighborhood
of q1q2, M is given as a convex graph xn+1 = u(x) ≥ 0 over a domain

Ω0 := {x := (x′, xn) ∈ R
n|ϕ1(x′) < xn < ϕ2(x′) for |x′| < δ}

where ϕ1, ϕ2 are smooth functions since ∂M is smooth and transversal to q1q2. Let
ψ be a smooth function defined on ∂Br, where Br ⊂ Ω0 is the n-ball of radius r ≤ δ

centered at the origin, satisfying ψ(0,±r) = 0 and

ψ(x′, xn) ≥ max{u(x′, ϕ1(x′)), u(x′, ϕ2(x′))}, ∀ (x′, xn) ∈ ∂Br.

This is possible since both u(x′, ϕ1(x′)) and u(x′, ϕ2(x′)) are smooth in x′ as ∂M
is smooth and tangential to xn+1 = 0. By [6] there exists a unique strictly convex
solution v ∈ C∞(Br) to the Dirichlet problem of the Monge-Ampère equation

det(vij) = K in Br, v = ψ on ∂Br.

Since det(vij) = K ≤ det(uij) in Br and, by the convexity of u,

u(x′, xn) ≤ max{u(x′, ϕ1(x′)), u(x′, ϕ2(x′))} ∀ (x′, xn) ∈ Ω0.

which implies v ≥ u on ∂Br, by the comparison principle we have v ≥ u ≥ 0 on Br. By
the strict convexity of v, however, we have v(0) < 0 since v(0, a) = v(0,−a) = 0, which
is a contradiction. This proves that M is strictly convex and smooth in any interior
point, while the boundary regularity follows from [6]. The proof is complete.
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This completes the proof of Theorem 1.1. Turning to the case K = 0 we first prove
the following lemma.

Lemma 5.2. Let N be a locally convex hypersurface with KN ≡ 0. Let p be an
interior point of N and P a local supporting hyperplane to N at p. Then p is contained
in a k-dimensional sub simplex of N ∩p P with vertices on ∂N for some 1 ≤ k ≤ n.

Proof. This follows form the argument in Step 3 of the proof of Theorem 3.1 as there
is no hyperplane through p satisfying assumption (3.11). We redo the proof here for
the reader’s convenience. Since N is locally convex, P is a local supporting hyperplane
to N at every point on N ∩p P . Let D be the set of points on ∂N that (intrinsically)
belong to N ∩p P . It suffices to show that any point in N ∩p P is contained in the
convex hull of D. If this is not the case, there is a point q ∈ N ∩pP which is separated
by a hyperplane from D. We may assume P = {xn+1 = 0} and q lies in xn > ε while
D lies in xn < −ε for some ε > 0. It then follows that N ∩q {xn+1 < δxn} is contained
in the interior of N when δ is sufficiently small. This is a contradiction as the Gauss
curvature of N ∩q {xn+1 < δxn} is zero everywhere while its boundary is contained
in the hyperplane xn+1 = δxn.

Theorem 5.3. If K = 0, then M is C1,1 up to the boundary.

Proof. Let p be an interior point of M . From Step 3 of the proof of Theorem 3.1 we
see that M has a tangent hyperplane at p. Suppose M locally (near p) is written
as a convex graph xn+1 = u(x) with u ≥ 0 over TpM := {xn+1 = 0}. Since TpM is
the tangent hyperplane to M at every point on M ∩p TpM , u is defined in a domain
Ω ⊂ R

n such that M ∩p TpM ⊂ {(x, 0) : x ∈ Ω}. By [7], in order to prove that M is
C1,1 it suffices to show that there exists a constant C, depending only on ∂M , and
ε = ε(p) > 0 such that

u(x) ≤ C|x|2(5.1)

for all x ∈ Bε(x0) ⊂ R
n where p = (x0, 0).

By Lemma 5.2, p is contained in a k-dimensional subsimplex, which we denote as
S, of M ∩p TpM with vertices on ∂M for some 1 ≤ k ≤ n. According to [7], in order
to prove (5.1) it suffices to consider the case k = 1. Suppose now that S is a segment
with end points q1 := (x1, 0), q2 := (x2, 0) on ∂M . By the proof of Theorem 3.1,
S is transversal to ∂Ω at the end points and both ∂Ω and u|∂Ω are smooth in a
neighborhood of xi (i = 1, 2). Of the two end points, suppose that q2 is the closer to
p. We may assume x2 = 0 and en to be the interior unit normal to ∂Ω at 0 where ek
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(1 ≤ k ≤ n+ 1) is the unit vector in the positive xk-axis direction. Since xn+1 = 0 is
a local supporting hyperplane to M at q2, en+1 ·Π(X,X) ≥ 0 for any X ∈ Tq2∂M .
On the other hand, from the proof of Theorem 3.1 we see that the angle between
Π(X,X) and νΣ at q2 does not exceed π

2 − 2β for some uniform constant β > 0. It
follows that

νΣ(q2) = en cosα+ en+1 sinα(5.2)

where 2β − π
2 ≤ α ≤

π
2 . We distinguish two cases: (i) α ≤ β and (ii) α > β.

If α ≤ β, then for any X ∈ Tp∂M , the angle between Π(X,X) and en is less than or
equal to π

2 −β and, therefore, en ·Π(X,X) ≥ sinβ > 0. This implies that ∂Ω∩Bδ(0)
is uniformly strictly convex where δ > 0 is a uniform constant. We therefore may
follow the proof of [7] to derive (5.1).

We now suppose α > β. Then locally Σ is a strictly convex graph xn+1 = u(x)
over Ω ∩ Bδ(0) for some uniform constant δ > 0. To prove (5.1) we then can follow
the proof of Theorem 3.2 in [11]. This proves Theorem 5.3.

Remark 5.4. Theorem 1.2 follows from Lemma 5.2 and Theorem 5.3. If minKΣ > 0,
Theorem 5.3 may be proven by approximation as follows. For any positive constant
ε ≤ minKΣ, by Theorem 5.1 there exists a smooth locally strictly convex hyper-
surface M ε with constant Gauss curvature ε and ∂M ε = ∂Σ. By Theorem 3.5 (see
Remark 3.6) we obtain a subsequence εk → 0 such that {M εk} is convergent in local
C1,1 norms. Clearly, the limiting hypersurface must be M . Consequently, M is C1,1

up to the boundary.

Remark 5.5. We have the following characterization of M at boundary (for K = 0).
Let p ∈ ∂M and choose coordinates of R

n+1 with origin at p such that en+1 and en

are the unit normal and interior conormal to TpM , respectively, where ek as before is
the unit vector in the positive direction of xk axis.

Proposition 5.6. Let K = 0 and p ∈M . Suppose M ∩p TpM does not contain any
point in ∂M ∩ {xn > 0}. Then there exists some unit vector X ∈ Tp∂M such that
θ(X) = 0 where θ(X) is defined by

Π(X,X) = |Π(X,X)|(en cos θ(X) + en+1 sin θ(X)), X ∈ Tp∂Σ, X 6= 0.(5.3)

Proof. Suppose

min{θ(X) : X ∈ Tp∂Σ, |X| = 1} > 0.
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Then M ∩p {0 ≤ xn+1 ≤ λxn} does not contain any point on ∂M ∩ {xn > 0} when
λ > 0 is sufficiently small. By Lemma 5.2 this implies

(M ∩p {0 ≤ xn+1 ≤ λxn}) ∩ {xn > 0} = ∅,

contradicting the fact that TpM = {xn+1 = 0}.

6. Locally convex hypersurfaces with extreme boundary

We first give a brief proof of Corollary 1.3.

Proof of Corollary 1.3. By Theorem 1.2 we obtain a globally convex hypersurface
M with KM ≡ 0 and ∂M = Γ. Moreover, M is on the inner side of Σ along the
boundary. Consider now an arbitrary interior point q ∈ Σ and let P be a local
supporting hyperplane to Σ at q. Since Σ is C2 and locally strictly convex near the
boundary, Σ ∩q P does not (intrinsically) contain points on ∂Σ. Let t0 > 0 be the
smallest value such that Σt0 contains a point p on ∂Σ, where

Σt := Σ ∩q {z ∈ R
n+1 : (z − q) · νP ≤ t}, t ≥ 0.

We see that ∂Σ locally near p lies in the half space {z ∈ R
n+1 : (z−p) ·νP ≥ 0}. Since

M is globally convex, ∂M lies on one side of TpM . Let us assume TpM = {xn+1 = 0}
and that ∂M lies in xn+1 ≥ 0.

Choose coordinates in R
n+1 such that en+1 and en being the unit normal and

interior conormal to ∂M at p, respectively. We claim that

νP = en cosα+ en+1 sinα, for some 0 ≤ α ≤ π
2 .(6.1)

Note that this implies Σt0 ⊂ {xn+1 ≤ 0} and thus completes the proof.
For any 0 < t < t0, since Σt does not contain points on ∂M , it is easy to see

that (Σ \ Σt) ∪ Dt is a lifting of Σ with respect to K = 0, where Dt is the region
on the hyperplane Pt := {z ∈ R

n+1 : (z − q) · νP = t} bounded by Σt ∩ Pt. Thus
M ∩p {z ∈ R

n+1 : (z − q) · νP ≤ t0} does not intersect the region bounded by Σt ∪Dt

for any 0 < t < t0. Consequently, TpM does not intersect the interior of Σt0 . This
proves (6.1).

We next construct a smooth locally strictly convex, non-embedded, surface M of
Gauss curvature one in R

3 such that ∂M is strictly extreme. Let S1 be the unit sphere
centered at (1

2 , 0, 0). Cut off a small cap from the top of S1 using a plane perpendicular
to the line through (0, 0, 2) and the center of S1. Let Σ1 be the resulting spherical cap
and Σ2 the reflection of Σ1 with respect to x1 = 0. Now, connecting the boundary
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circles of Σ1 and Σ2 by a thin convex bridge, we obtain a locally strictly convex
surface Σ with self-intersection. Moreover, ∂Σ is strictly extreme. According to the
bridge principle of Hauswirth [16] there exists a locally strictly convex surface M of
constant Gauss curvature one with the same boundary. It follows from [16] that M
is a small perturbation of Σ and therefore has self-intersection.

If we start with cutting a small cap from the top of S1 using a horizontal plane
and repeat the rest of the above procedure, we get a non-embedded locally strictly
convex K-surface M such that ∂M is extreme while the boundary of the convex hull
of ∂M has interior singularities along the bottom edges.
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