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Annals of Mathematics, 113 (1981), 1-24 

The existence of minimal immersions 
of 2-spheres 

By J. SACKS and K. UHLENBECK 

In this paper we develop an existence theory for minimal 2-spheres in 
compact Riemannian manifolds. The spheres we obtain are conformally 
immersed minimal surfaces except at a finite number of isolated points, 
where the structure is that of a branch point. We obtain an existence 
theory for harmonic maps of orientable surfaces into Riemannian manifolds 
via a complete existence theory for a perturbed variational problem. Con- 
vergence of the critical maps of the perturbed problem is sufficient to pro- 
duce at least one harmonic map of the sphere into the Riemannian manifold. 
A harmonic map from a sphere is in fact a conformal branched minimal 
immersion. 

We prove the existence of minimizing harmonic maps in two cases. If 
N is a compact Riemannian manifold with j2(N) = 0, then every homotopy 
class of maps from a closed orientable surface M to N contains a minimiz- 
ing harmonic map (Theorem 5.1). This has also been shown by Lemaire [L4] 
and Schoen and Yau [Sch-Y]. If w2(N) ? 0, then there exists a generating 
set for w2(N) consisting of conformal branched minimal immersions of 
spheres which minimize energy and area in their homotopy classes (Theorem 
5.9). Our main result is the proof of the existence of a conformal branched 
minimal immersion of a sphere when the universal covering space of N is 
not contractible (Theorem 5.8). When w2(N) = 0 this cannot be minimizing 
for the energy in the single homotopy class of maps. An important tool 
that is developed is a regularity theorem due to Morrey in the case that 
the harmonic map is minimizing [MO1]. In our version, Theorem 3.6, a 
harmonic map with finite energy from the punctured disk into N is C?? and 
harmonic in the entire disk. 

The outline of the paper is as follows: The first section contains a dis- 
cussion of the properties of harmonic maps from any compact orientable 
surface M into a Riemannian manifold N. The second section describes the 
properties of the perturbed problem. Section Three contains the main a 
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2 J. SACKS AND K. UHLENBECK 

priori estimate needed for convergence and for proving our regularity 
theorem, Theorem 3.6. Section Four describes the convergence properties 
of the perturbed problem, and finally in Section Five there is a collection 
of results on harmonic maps and minimal spheres. 

The difficulties which will arise in our construction of harmonic maps 
are best illustrated by the case M- S2. Here we are trying to parametrize 
conformally by the standard sphere geometric objects representing minimal 
spheres. There are several difficulties which are obvious. Firstly, the con- 
formal parametrization by the standard sphere is not unique. The group of 
conformal transformations of S2 is the group of linear fractional transfor- 
mations, which is not compact, so that the set of critical maps of the energy 
integral on C1(S2, N) must be noncompact. In some way it is necessary to 
make a choice of parametrization. This problem is solved by our perturba- 
tion technique. The perturbed integral is not quite invariant under con- 
formal transformations of the sphere, and prefers a parametrization which 
is carried over when the limit of the critical maps of the perturbed integral 
is computed. 

Furthermore, once we have one minimal sphere we have many. Given 
s: S2- > N harmonic and f: S2 -__ S2 any meromorphic function, then sof: S2-.N 
is harmonic and will also be found by our techniques. This is a similar prob- 
lem to the one arising from the fact that coverings of a closed geodesic 
also count as closed geodesics, although there is really only one geometric 
object represented. We can assume that it will be harder to count the 
number of primitive minimal spheres than it is to count the number of 
primitive closed geodesics. The most severe difficulty, however, seems to 
be of the following type: 

Assume that wr(N) 0 0 and wr,(N) has at least two generators a1 and _r2, 

and try to minimize the energy and area of the image of maps s: S2-< N in 
every connected component of the mapping space C'(S2, N). Conceivably 
we may find a sphere with minimal energy and area in each of the connected 
components of C1(S2, N) corresponding to y1 and y2. A natural candidate for 
the minimal area map from S2 -> N in the component of CI(S2, N) cor- 
responding to y1 + r2 is a map with image consisting of the two spheres 
already found connected by a one-dimensional bridge. Of course there is a 
map of S2 into this object, but not a conformal one. Thus we would not 
expect to be able to minimize the energy in this particular component. Mini- 
mal spheres connected by minimizing geodesics are likely to arise in any 
method of trying to establish a Morse theory for minimal spheres, but 
these objects cannot be conformally parametrized by spheres. 
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One can argue that one shouldn't expect to find minimal spheres cor- 
responding to every element in w2(N), but only to some of them, and v/ + 7, 
is the wrong one to choose. However, it is very hard to construct a con- 
vergence scheme for producing critical maps which sometimes converge and 
sometimes diverge, and which can be shown to converge at least once. The 
existence of peculiar representatives of minimal spheres makes it more dif- 
ficult to find the nice ones. 

A rough description of our technique for finding harmonic maps follows. 
We find the critical maps of a perturbed energy integral for a > 1 (E1 is the 
usual energy integral plus a constant): 

E, (s) (1 + Ids V 2) dut 

and check the convergence of these maps as a --> 1. E, satisfies Ljusternik- 
Schnirelman theory and a Morse theory if a > 1. In what sense do the 
critical maps s, of E, approximate harmonic maps? The conformal invari- 
ance of the unperturbed energy integral and the approximate conformal 
invariance of Eq for a near 1 come into play here. For a near 1, the map s, 
is near a (possibly trivial) harmonic map s,: M - N except on a finite num- 
ber of small disks Di c M whose radii go to zero as a ---* 1. Each of these 
disks Di should be thought of as expanded conformally to cover almost all 
of S2, and on each Di, s, is near a harmonic map si: S2 -, N. Actually, the 
process can repeat, with sq near si on Di, except on a finite set of small 
disks Dij c Di, each of which is conformally almost S2, and on Dij where S, 
is near a harmonic map sij: Sa-ge N. This process repeats. There is a bound 
on the number of harmonic maps produced in this way which is given by 
the bound on the energy. There is evidence that in the limit the object con- 
necting the image of the different harmonic maps s,: M -+ N, si: S2 N, 
sij: S2 --> N and so forth should be geodesics. The domain for a map into the 
limit as a ->1 should be M connected to a sequence of spheres by curves. 
One can see the difficulty of keeping track of the entire set of limits of s(, 
asa - -a1. 

One can show that this complicated type of convergence actually oc- 
curs by looking at radially symmetric critical maps of Eq(s) - Ids 2dt on 
C'(M, S2) for M a disk or S2. Computations along these lines are found in 
the master's thesis of G. Schwarz [S]. 

The perturbed integral E,(s) dsI 2"de is in many ways easier to 
deal with than the perturbed integral E,(s) = (1 + - ds 2)adpe because of 
the invariance of the former integral under expansion from small disks to 
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large disks, which makes explicit calculations easier. However, at some 
point we need the uniform ellipticity of the Euler-Lagrange equations for 
the perturbed integral. Hence our choice of Ea(s) (I + Ids 42)Vde. 

The technique developed in this paper makes essential use of a confor- 
mal parametrization of a minimal sphere. Therefore the method cannot be 
extended to cover high dimensional minimal volume problems. Nor will the 
method extend to yield existence theorems for harmonic maps from mani- 
folds of dimension larger than 2. A corresponding theory for a conformally 
invariant integral is available for domain manifolds of dimension greater 
than 2, but the images of the critical maps in this case will not be nearly 
as interesting as minimal surfaces. It is, however, possible to approach the 
existence question for minimal surfaces which are not spheres, with or 
without boundary, using some of the results in this paper: see IS-UI and 
and [Sch-Y1. 

We are greatly indebted to J. Eells for his constant encouragement. 
We also thank M. Mahowald, the referee and the editor, J. Milnor, for their 
helpful suggestions. 

1. Harmonic maps from surfaces 

Let M denote a compact orientable surface with a given conformal 
structure and N a Ca Riemannian manifold without boundary of dimension 
greater than or equal to 2. We shall find it technically convenient to assume 
that N c Rk is a C"o isometric imbedding. From the Nash imbedding theorem 
we know that such an imbedding can always be constructed for sufficiently 
large k. Assume from now on that M has been given a Riemannian metric 
compatible with its conformal structure and that this metric induces the 
measure dfe on M. Let LP(M, N) be the Sobolev space of maps s: M - N 
whose first derivatives lie in LP. 

Definition 1.1. A map s e L2(M, Rk) n C'(M, N) is harmonic if it is a 
critical point of the energy integral E(s) I ds 12dp. If N C Rk has second 
fundamental form A, then the Euler-Lagrange equations have the form 

( 1 ) As + A(s)(ds, ds) 0= . 

LEMMA 1.2 [MO1l, IUI. If s is har monic then s e C`?(M, N). 

LEMMA 1.3 IE-S21. E is a conformal invariant of M. 

LEMMA 1.4 [E-S21. If s is a confor mat immer sion, then s is harmonic 
if and only if s(M) is a minimally immersed surface. 

Let c be the quadratic differential which in a local isothermal para- 
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meter z = x + iy on M is defined by 

I6{ sx '- s, + 2i(sx, s,)}dz. 

We call s weakly conformal if v- 0. 

LEMMA 1.5 [C-GI, [L1]. If s is harmonic then 5 is holomorphic. 

For the definition of branched immersion and the proof of the next 
theorem we refer the reader to Gulliver-Osserman-Royden [G-O-R1. 

THEOREM 1.6. That s is harmonic and weakly conformal implies s is 
a branched immersion. 

COROLLARY 1.7. If s: S2 --> N is harmonic and dimension N > 3, then 
s is a Co conformal branched minimal immersion (see also IC-G]). 

Proof. The result follows from Lemmas 1.2, 1.4 and 1.5 and Theorem 
1.6, together with the fact that there are no nontrivial holomorphic quad- 
ratic differentials on S2. 

The situation for surfaces of genus larger than zero is complicated by 
the fact that they have many possible conformal structures. The following 
theorem gives a sufficient condition for a harmonic map from such a surface 
to also be a minimal immersion. 

THEOREM 1.8. If s is a critical map of E both with respect to variation 
of s and the conformal structure on M, then s is a conformal branched 
mitntmal immersion. 

Proof. First we show that s is critical with respect to all variations in 
the metric. Let g(t) be a variation of the metric g = g(O) on M. Every such 
variation arises from a composition of 

(a) the pull-back of g by a C o family a(t) of orientation preserving dif- 
feomorphisms of M, 

(b) a smooth curve in the TeichmUller space for the genus of M, and 
(c) a family of conformal changes in the metric. 

See e.g., jEA-E]. By hypothesis and Lemma 1.3 it is sufficient to show that 
s is critical for variations of type (a). To this end let dp(t) be the measure 
on M induced by a*(t)g and let u be the variation of s given by u = 
d/dt(s o a(t)- )to. Then, identifying any metric on TM with the canonically 
induced metric on T*M, we have 
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dE,(u)- 0 

since s is harmonic in the metric g. 
Now we show that s is weakly conformal by proving that the holo- 

morphic quadratic differential 0 of Lemma 1.5 vanishes identically on any 
isothermal chart U. Let z be a local isothermal (with respect to g) para- 
meter on the coordinate chart U. Let g(t) = (gij(t, z)) be a variation of g 
supported in U and (g'i(t, z)) _ (gij(t, z))-'. We can assume that (giJ(t, z))- 
(3ij) when t 0 0 or for z near AU and that g11(t, z) g2(t, z) -1 for all 
(t, z): Then 

dt ig(t)(ds, ds)dpe(t)t= 

= dt ( (z) 2 + |s(Z)l2 + 2g'2(t, z))(sjz), s(z4Vl-(g12(t, z))2)dxdy 

2\ (sx(z), sy(z)) 
0' 

g12(t, z) dxdy = 0 I - ~ ~att= 
by the first part of the proof. Since a/at(g12(t, z)) can be chosen arbitrarily, 
(sx(z), s,(z))- 0 for z on an open subset of U. The same argument applied 
to the rotated isothermal coordinates ei '4z yields 

(s~(z) + s,(z), SX(Z) _ Sy(Z)) = -Ss(Z) = S(z)L2 0 

for z on an open subset of U. Since its real and imaginary parts vanish on 
an open set, '(t) = 0 on all of U. The result follows from Lemmas 1.4 and 
1.5 and Theorem 1.6. 

2. Properties of the perturbed problem 

We approximate the integral E, whose critical points are harmonic 
maps, by a slightly different integral. For convenience, choose a measure 
on M so that the area of M equals 1. Let 

Ea(s) = (1 + I X (dsz(x), dsi(x)))adp = d (1 + I ds(x)12)adde . 

For a = 1, E1(s) -1 + E(s) has harmonic maps as critical points. For 
a > 1, E, is well-behaved. The Sobolev space of maps 

L92a(M, N) =s e L2a(M, Rk): s(x) e N} c C?(M, N) 

is a C2 separable Banach manifold for a > 1. This, and the following 
theorem, plus several other basic smoothness theorems can be found in 
Palais [P3]. 

THEOREM 2.1. Fa is C2 on the Banach manifold L?2Y(M, N) and satisfies 
the Palais-Smale condition (C) in a complete Finsler metric on L2a(M, N) 
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provided that N is compact. 

The Palais-Smale condition (C) is as strong a condition on a functional 
as one can expect to get, but we shall use the following results only: 

THEOREM 2.2. (Palais 1P21). Iff is a C2 function on a complete, sepai- 
able C2 Finsler- manifold L, which satisfies the Palais-Smale condition (C) 
with respect to the Finsler- structure, then 

(a) f takes on its minimum in every component of L, 
(b) if there are no critical values of f in the interval la, bl, then there 

exists a deformation r etraction 

P: f-l(_ C10Yb-1 f -'(_ c--, alI 
Now we give a regularity theorem for critical maps of El.. Although 

the theorem is true for a > 1, we give here a simple proof for a - 1 small. 
We use the same technique later to get local estimates. 

PROPOSITION 2.3. The critical maps of E(, in L2a(M, N) ar e C?? if a > 1. 

Proof. The Euler-Lagrange equations for a critical map s: M -- NczRk 

can be written 

d*(1 + ds 2)a-lds + (1 + ds '2)-1A(s)(ds, ds) = 0 

Here A is the second fundamental form of the imbedding Nc Rk. By Sobo- 
lev, for dim M = 2, s is of Holder class Cl-l '(M, N) c C0(M, N). By Morrey 

IMOl, Theorem 1.11.1, ds e L'(M, N). We may now differentiate and re- 
write the Euler-Lagrange equations 

(2) As + (a -1) (dIs, ds)ds + A(s)(ds, ds) 0 

If a -1 is small, we have nice inverses for the linear operator ,: LR(M, N)- - 
L 4(M, N) where 

(3) t~~~~Au = A~u + (a -i) (d'u, ds)ds 
(i + Ids 12) 

It follows that s e L4(M, N) Ci C'(M, N). The regularity of the non-linear 
equation (2) is now proved by treating the equation as a linear equation in 
s with coefficients which are H6lder continuous (although they depend for- 
mally on s). The smoothness of solutions follows from Theorem 5.63 of 
[MOl]. 

Theorems 2.2 and 2.3 are nearly sufficient to prove the existence of non- 
trivial maps of E, for a > 1. The only difficulty is that No { Is: M--> 
N: s(M) y e N} N is the set of trivial critical maps of E, for a> 1 on 
which E,, takes its absolute minimum value 1. This submanifold of minima 
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will have to be treated in a fashion similar to the submanifold of trivial 
minima in the geodesic problem. We shall be using the fact that the homo- 
topy type is the same for all mapping spaces, from CO(M, N) to L 2a(M, N) 
to C (M, N) (see IPl). 

PROPOSITION 2.4. Let a > 1. In every connected component of 
L2y(M, N) the minimum value of E, is taken on at some map sa e C(M, N), 
which also minimizes E, in its connected component in C'(M, N). There 
exists a B independent of a such that min E, < (1 + Bf)' in that compo- 
nent. 

Proof. Since E, satisfies the Palais-Smale condition (C), it takes on its 
minimum in every component of L2a (M, N). Proposition 2.3 implies that 
the critical maps lie in C-(M, N). In each component we locate a differenti- 
able map u, and let B = maxX ,, du(x) 1. Then min E < E(u) < (1 + B2)" 

in that component. 

We need now to analyze the structure of the submanif old N c L 2N(M, N) 
of trivial maps to points in N. Recall that at y e Nc L 2a(M, N), we can in- 
terpret TYL2a (M, N) Lla(M, T N) and TYN, = {a: da 0}. Then in a weak 
L2 sense we construct a normal bundle to N,, 

Ul NoX cI TL(IJ(M, N) I No 

Y {v c Li((M, TYN): vd~e }. 

We use the exponential map exp: TN , N to define 

e: TL>'(M, N) > Lf"r(M, N) 

by the formula e(s, v)(x) exp(s(x), v(x)). 

LEMMA 2.5. el'.) L'a(M, N) is a diffeomorphism from a neighborhood 

of the zero section of 01 to a neighborhood of N0, c L 2 (M, N). 

Proof. de(yO. (a, v)(x) = expy(a, v(x)) for a e TYN, v e 01 ci L""(M, TYN). 
We choose 0'X0 so that de(y,0): TyN D 1)i - > T L 2 (M, N) is an isomorphism. 
The result is a direct application of the implicit function theorem. 

THEOREM 2.6. Given a > 1, there exists a o' > 0 depending on a and a 

deformation retraction 

a: E,-'1, 1 + - > E,2 1(1) = No. 

Proof. Since (1 + \)(r - 1 - V' > 0 for X> 0, if s E E, 1[1, 1 + o1, 
IdsI 2"de < a, and max s - \s < c(6112a where c, is the norm of the Sobo- 

lev imbedding L 2 "(M, R') c C0(M, R0). The metric topology of inclusion 
La (M, N) c- L,'(M, Rk) and the intrinsic topology are the same. We may 
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conclude that if o is sufficiently small and s e E '1[1, 1 + o], then there exist 
y e N, v e ',,)IY such that s = e(y, v). Lemma 2.5 also implies that both II v IjK 
and |dv 2a may be made arbitrarily small by choosing o sufficiently small. 

Finally, we consider the candidate for a retraction v: E,-'[1, 1 + 6I x 
[0, 1] --> Li [M, N]. Define a(s, t) = e(y, tv) for s = e(y, v). Then a(s, 1) 
s, a(s, 0) y e N and a is continuous if ( is sufficiently small. 

For simplicity, we denote u(s, t) = u = exp (y, tv) and d/dt u(s, t) 
d expY t,, - v. Since d exp~,.0, is the identity, we calculate 

dv 1/t du + O(H v I K.) * du, 

d/dt E,(a(s, t)) 2a (1 + I du 2)'-a(dv du)da 

> 2a/t5 (1 + Idu 12)1-aI du 12(1- t HIv voo)dt 
M 

Consequently, if ( and therefore I I v I loo are sufficiently small, d/dt E,(U(s, t)) > O 

and a(., 0) is a retraction. 
Let z0 e M and q0 e N be chosen as base points for M and N. Q(M, N) 

will denote the space of base point-preserving maps from M to N. The map 
p: C?(M, N) -> N defined by p(s) s(zO) is a fibration with fiber Q(M, N). 

THEOREM 2.7. If Q(M, N) is not contractible, then there exists a B > 0 
such that for all a > 1, E. has a critical value in the interval (1, (1 + B2)(t). 

Proof. The fibration p: C?(M, N) --- N has a section N- -- Noc C?(M, N) 

defined by mapping q e N to the constant map s(M) = q. Therefore the ex- 
act homotopy sequence splits and 

Wk(CO(M, N)) = Wk(N) & Wk(Q(M, N)). 

If C?(M, N) is not connected, apply Proposition 2.4 in a connected compo- 
nent not containing No. Ootherwise choose a non-zero homotopy class vy e 
wk(Q(M, N)). Note that _y: Sk_ _> Q(M, N) c C?(M, N) has its image lying in 

C?(M, N) and is not homotopic to any map ,: Sk - No. Let B = maxyE xEM 

dy(y)(x) 1. Then E,(y(y)) ? (1 + B2)a for all y e Sk. 

Suppose that E, has no critical value in the interval (1, (1 + B2)a). Then 
by Theorem 2.2 there exists a deformation retraction p: E( 1[1, (1 + B2)a]_- 

Ea-1[1, 1 + o3 for all ( > 0. Choose o as in Theorem 2.6. Composing p with 
the deformation retraction a of Theorem 2.6 produces the deformation re- 
traction 

aop: EY-1[1, (1 + B12) > Er-'(1)= N 

But a o p o y: Sk - - N. is homotopic to vy, a contradiction. 
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PROPOSITION 2.8. If M - S2 and the universal covering space of N is 
not contractible, then there exists a B and a critical map of E, with values 
in the range (1, (1 + B2)") for a > 1. 

Proof. If the covering space of N is not contractible, 7k+2(N) 

wk(Q(S2, N)) + 0 for some k > 0. Now apply Theorem 2.7. 

3. Estimates and extensions 

In this section we discuss local properties. The theorems and definitions 
on previous pages should be interpreted locally where necessary. First we 
note the difference in the roles of M and N. In the theory of harmonic 
maps the curvature of N plays an important role. In this paper the esti- 
mates on this curvature are in terms of the second fundamental form A of 
the isometric imbedding Nc Rk, although with some extra work one could 
show that they depend only on the sectional curvature of N. The curva- 
ture and topology of M do not play a role in these estimates. To see this, 
cover M by small disks of radius R on which the metric differs from the 
ordinary Euclidean metric by terms of order E. When we expand these disks 
conformally to be of unit size the integral becomes E,(s) = R2'1-' 

(R2 + 1ds2)ad/e where D is the unit disk, on which the induced metric 
still differs from the Euclidean metric by E, but the curvature now differs 
by terms of order eR . In fact, the smaller the original disk, the nearer 
to Euclidean is the metric on the expanded disk. For this reason, a 
priori estimates are uniform in a > 1, 0 < R < 1 and the Laplacian A 
close to the flat Laplacian 82/8X2 + 92/ay2 for critical maps of E(s) 
R2(1-a) (R2 + I ds 12) dVe 

The two expressions E(s) = (1 + I ds 12)('de = R2(1-a (R2 + Ids '2)adte' 

are the same integral in coordinate patches with different parametrizations. 
Because the factor R2 1a-( does not affect the Euler-Lagrange equations, we 
often omit it. However, we try to make estimates in terms of the energy 
E(s D) rather than EBI(s D) because this conformal factor is confusing to deal 
with. The Euler-Lagrange equations (2) and (3) appear in the following 
forms after this conformal dilation: 

(4 ) d*(R2 + Ids 2)l-ds + (R2 + ds 12)1--lA(ds, ds) 0 
or 
(5 ) As + 2(a - 1)(d2s, ds)ds(R2 + ds 2)1 + A(ds, ds) = 0 

PROPOSITION 3.1. Let s: D -N be a critical point of E,. If a - 1 > 0 
is sufficiently small depending on c'> > p > 1, for all smaller disks D'czz D, 
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I ds IID'__ p < k(p, D', sI IS D,0,O4)1 ds i(D,04) 

Proof. Let vp be a smooth function with support in D which is 1 on D 
and choose a base point in Rk so that Is 0. Then lI ds ID ,0, P can be used as 
a norm for IIdsID, lp. Multiplying (5) by 9 and putting terms from com- 
muting differentiation with multiplication by 9 on the right gives us 

I (9s) + 2(a - 1)(d2(9s), ds)ds(R2 + dsj2)--1+A(d(cps), ds)I < k(9)(Idsj + IsI). 
Here the size of k(9) depends on two derivatives of 9, IA I , and s 
For all p we get an estimate of the form 

( 6 ) 11 A(s)Ij0 P < 2(e -1)IH9PSl 2,P + I A I1 40,. |II d(9ps)j I dsI I oP + k(9p) i I S,. P 

Let c(p) be the norm of A-' as a map from LP (LP r L2,0) on the disk (LAG]). 
Then from (6) we get 

( 7 ) c(p)-Hws 2 (P 2(S - 1)Is !, 2 + I A H0oooJ Id((s)| I dsI o0,p + k(9)Hs ) 

Now let p = 2. For 2(a - 1) < c(2)-1 we get 

(c(2) - - 2(a -1))I TS 2.2-< 98 j2 0 ,IA I1PS II1H 4 sII1 + k(9p) I5s 11,2 

which provides a bound on sI II2,2 where D" = {x e D: 9(x) = 1}. By 
Sobolev, this gives a bound on IIs5, , p for all p. Repeat (7) for any p with 

9 now having support in D". If c(p)-1 > 2(a - 1) we get a bound on IIS12,p 

in the interior of D". These estimates are uniform as a - 1. 

We were more careful with our estimates in the proof of Proposition 

3.1 than we really needed to be. We shall use inequality (7) in the proof of 

the main estimate of this paper. One should note that this is the standard 

sort of estimate for regularity in perturbation theory. It says that if s is 

close enough to a constant map in a disk, we can get uniform estimates 

which are not otherwise available. 

MAIN ESTIMATE 3.2. There exists E > 0 and a, > 1 such that if s: D --oN 
is a smooth critical map of Ea, E(s) < E and 1 ? a < a, then there is an 
estimate uniform in 1 a < a, 

dsjDjl,,P < C(p, D')lIds 10,2 

for D'cz D any smaller disk. 

Proof. Clearly we need only get a bound on l ds 1)0,4 for any smaller 

disk D"c( D and apply Proposition 3.1 to this. Again we assume s = 0 and 

use (7) with p = 4/3. We estimate the bad quadratic term | ds I I d(9ps) II I 0,4,, 
using Minkowski's inequality, by ds 10,21 1 d(ps) 1 10,4 The inclusion 

L4/3(D, Rk) c LI4(D, Rk) is exact for the Sobolev imbedding theorems because 

1/2 - 1/(4/3) + 1/4 = 0, and we use II d(9s) 104 k? i' s 1 s2,4/,, We have now put 
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(7) in the form 

(8) (c(4/3)-' - 2(a - 1)) II 2,S I2,4/3 

=< k' I A IIjl I ds f f0,211 (PS 1 2,4/3 k(9p) I I ds 110,4X3 

Certainly lds 10,4/3 lVE(s). If in addition (c(4/3)-' - 2(a - 1) - 
k'I I A I To,.1tI ds 0,2) > 0, we get an estimate on I I qs 112,4/3 > (k')-' 91 8 s 1 1,,4 Note 
that the form on the estimate for E(s) < E is 

l/E(s) < 1/2[(c(4/3)-' - 2(a - 1))(kf'] AIIOOO) 

and E is small only if the second fundamental form is large. 
Naturally the above estimate can be made globally on M without the 

boundary terms containing k(q). If the norms are norms on M, 9- 1, and 
c(4/3) is the norm of the inverse of the Laplace operator L413(M) ---a L 4/3(M) 

(assuming &-'udit=o) and k' is the norm of the imbedding L3(M) 
L4(M), equation (8) has the global form 

(c(4/3)--' -2( - 1)) SI I 2,4,,'3< k'~ I A I o jE(s) I I S 1,43: 

Clearly, if W/E(s) is too small, this has no solutions except s _s. We use 
this later. 

THEOREM 3.3. There exists E > 0 and a0 > 1 such that if E(s) < E, 
1 < a < a, and s is a critical map of Ea, then s e N0, and E(s) -0. 

In our definition of harmonic maps, we assumed that the maps were 
continuous and satisfied the Euler-Lagrange equations in a weak sense. It 
followed from regularity theorems that the harmonic maps were smooth. 
Here we prove a slightly stronger theorem. We assume that s: D -{0---N 
is harmonic, and that the energy I ds 12dle < Cal In this case s is a weak 
solution of the Euler-Lagrange equation in L 2(D, N). We will prove that 
in such a case s is smooth. In the case that s is a strict minimum, this is 
proved by another method by Morrey [MO1], Section 4.3. He directly uses 
the minimizing properties of E(s). Notice that due to the conformal equi- 
valence of D - {0} with R2 - D, this theorem can be interpreted as a 
theorem on the growth at infinity of harmonic maps. We use the Main 
Estimate 3.2 derived in Section 3 for a more general equation. D(x0, R) 
denotes the disk of radius R and center x0; D(R) the disk of radius R and 
center the origin; D = D(1). We choose isothermal coordinates centered at 
the origin of the disk. Since5 ds 2dje < c&o, lim,-0 l ds 2dfe = O. By a con- 

S)~~~~~~~~~ D(R) 

formal expansion to D(2) withS ds 2dfe<s, we can assumes ds 12de < E. 
Wc( Roos l(2) 

We choose 6 later. 
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LEMMA 3.4. There exists & > 0, such that if X ds I2djt < &, then there 
D (2) 

exists a constant c such that 

ds(x) lx I < c ( ds 2di)/2 for x e D 

Proof. Choose E from the Main Estimate 3.2 with p = 4 and a = 1. For 
x0 e D, define i (x) = s(x,, + I x,, x). Then 

I d 2dje =I@ ids j2die < Ids '2die < . 
l ~ ~~~~~ /)X0, 1) /(2) 

We may apply 3.2 to s: D -> N, which is also a harmonic map. By the Sobo- 
lev imbedding theorem and 3.2 we have 

max x evi D 1) |Idi8() I & I gIds IID(1,~2),1,4 & c I I dR 1 I0,2 

If we transform this into an inequality on s, we get 

ds(x0o) x0i d-d(O) ? c(4) 11 ds D(Xo, xO) c C ds nD(2 xoO),0,2 

which is what we wanted to show. 

LEMMA 3.5. Let s: D - (0)- N NcRk be a smooth harmonic map such 
that E(s) < . Then 

lso(z)12dO =. r2 1 J(Z)J12dO 

Proof. Let qp(z) = w(z)dz2 be the holomorphic quadratic differential de- 
fined preceding Lemma 1. 5. From Lemma 3.4 we get i w(z) 1[ 21 ds(z) 2 c z 

Therefore w(z) has a pole of order at most two at z = 0. Since I w(z) Idd, 
2 ds I2d~t < a, the order of the pole is at most one. A direct computation 

D 

shows that 

Re w(z)z2 S,(z) 12 Z 21 5r(Z) 12 

in polar coordinates. From Cauchy's theorem, 

0 = Im i w(z)zdz - Re 5 (w(z)z2)dO (| so(r, O)21-r 2 I S(r O)2)dO 
! z r 0 Izlr 0 

This holds for all I z r ? 1. 

THEOREM 3.6. If s: D - (0) -> N is harmonic with finite energy, then 
s extends to a smooth harmonic map s: D -* N. 

Proof. We can assume that ds 2d, < s (by a conformal expansion), 
D (2) 

where s is at least as small as the s chosen in Lemma 3.4. We approximate 
s by a function q which is piecewise linear in log r and depends only on the 
radial coordinate. Let q(2-m) = 1/27c s(2-m, O)dO. Then q(r) is harmonic for 

0o 
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e- between 2-M-S1 and 2-m, m > 1. Now for 2-m ? r < 2-m i-1, 

Jq(r) s(r, 0) I < I q(2-m) - q(2-m 4') - +s(r, 0) q(2-m I') 

Since 

max{js(x) - s(y): 2-X < x < 2-m} 

? 2-m 3 max{Ids}(x): 2--m < x < 2--} 

< c2 1 ds di) 

we can assume 

(9) q() s(r, 0) < 24cc ds-I2die) <?2461/2 

Here we have used the main estimate incorporated into Lemma 3.4. Now 
we estimate the L, norm of the difference between q and s. 

I 2-r m 

(10) ;dq - ds 2die - r L ?A (q(?) - s(?, 0)).(Sr(, 0) - q'(?))dO m 
- (q- s)z(q - s)dje 

The integral in 0 of the boundary term containing q'(r) disappears because 
q is the average of s at 2-m. The terms with Sr(T, 0) cancel with succeeding 
and preceding terms, since sr(r, 0) is continuously defined, as are q and s. 
One checks by a limiting argument and (9) that as m the limit con- 
verges and no boundary term is necessary at 2-m as m . But zA(q -s) 
-A(s)(ds, ds). So we estimate (q - s)z(q -s)dpt by 

A I lo 0o q - 8 ,o~oo d ds 0,9 A A, 2'cV 6 I ds 0,2 

Choose IA1c02 o24cV1 < 6. Then from (9) and (10) we have derived 

D Id(s - q) 2dte < (| - q 2d) ( Srl"do) + d 2dse . 

We may replace the left side by 1/2 j ds l 2dre se 12de. We note this 
D (l) D (1) 

can only decrease the left side by Lemma 3.5 and the fact that q does not 
depend on 0. Because q is the average value of s, 

(sr=1 qd)-(I ? id) (rr_= 1 2d0) (2 dr= d0) 

for the right-hand side. Finally, we obtain the estimate (1 - 2a) 
ds 2dic <E ds 2do. If we translate this inequality by expansion and 

Do(1) ar 
contraction into a disk of any radius, we get for e- :< 1, 
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(1 - 20) 5 ds de < r id2ds O 
P (r! r --1 

This inequality integrates to yield S ds 2dle ? Ir ds 2dfe. See for ex- 
D I r) I 

ample |_L-U, Section 9.71. Apply Lemma 3.4 one last time to get, for 
0 < X f, I < 1/2, 

ds(x,) ix? < c 2x} Io)2( ds I dt) 

This now implies s E L2 (D, N) for a > 1, and the proof of (2.3) applied to 
equation (1) gives regularity. 

1. Convergence properties of critical maps of the perturbed problem 

In the previous section we obtained existence of critical maps of the 
perturbed integrals and some uniform estimates. Our main result of this 
section, Theorem 4.7, is that as a 1, either these converge to a harmonic 
map, or there is a minimal sphere acting as an obstruction. This statement 
sounds a bit circular when M = S2, but it works. The technique is based 
on the type of estimates used in regularity theorems for elliptic operators; 
see for example reference [GI-Mi. 

LEMMA 4.1. Let sq, for a - > 1, be a sequence of critical maps for Ea, 

with E,,(s) ? B. Then there exists a subsequence {,3} c {ca} such that sp -* s 
weakly in LI(M, Rk) and limo l E(s~) > E(s). 

Proof. This is just the weak compactness of the unit ball in L2(M, Rk). 
Because we have not assumed any minimizing properties for the sequence 
s,, we do not know much about s e L 2(M, Rk) except s(x) C N for almost all 
x e M. We do not, for example, know that s is continuous. It can certainly 
happen that limp , E(sp) > E(s) and s C N, Recall that N. is the set of 
trivial maps to a point. 

As in the previous section, we assume M has been covered by disks, 
with the disks of half the radius covering M, and the metric on these disks 
uniformly close to the flat metric. These disks can be as small as we want, 
say of radius R = 2-m, and we make the additional assumption that each 
point of M is contained in at most h disks, where h is uniform as 2 -m> 0. 
If we expand these small disks to unit size, the integral appears on the unit 

disks D in the form E,(s) = (R2 + Ids 1?)Odp where R is the radius of the 
D 

disk. Define Ea -R2 =Dd/-. 
D 

LEMMA 4.2. Let s,: D(R) --aN be a sequence of ce itical maps of E,, foe 
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a sequence a -- 1, which is weakly convergent in L`a(D(R), Rk). Then there 
exists s > 0 such that if E(s,) < s then so -> s in C'(D(R/2), N) and 
s: D(R/2) --- N is a smooth harmonic map. 

Proof. From the conformal invariance we can assume D(R) = D. 
Choose s from the Main Estimate 3.2 with p = 4 and D' D(1/2). We have 
a uniform estimate ds, D1)(1,X2),1,4 < C(4, D(1/2))s, since a -) 1. From the 
compact Sobolev imbedding LP(D(1/2), Rk)cCl(D(1), Rk), it follows that the 
set of limit points of s, in C'(D(1/2), Rk) is compact, and from the weak con- 
vergence s, --- s in L2(D, Rk), sa s in C'(D(1/2), Rk). Since convergence is 
in C', the form of the Euler-Lagrange equations (4) shows s is harmonic. 

PROPOSITION 4.3. Let U c M be an open set and sa: U ---> N ci Rk be a 
sequence of critical maps of Ea, for a 1 , s, --> s weakly in L2( U, Rk), 

Ei(s,) < B. Let Um {x e U: D(x, 2-m+') c U}. Then there exists a sub- 
sequence {a(l)}ci {a} and a finite number of points {XirM, * * Xi,m}, where I 
depends on B and N but not on m, such that 

s(l) > s in C' ( Urn- U1=1 D(xi, 2-n-'), N) 

Proof. Cover Urn by disks D(xi, 2-r) Ci U such that each point x e U is 
covered at most h times and the disks of half the radius cover Urn. Then 

L.| ,rn I dsI 2die < Bh and for each a there are at most Bh/s disks on 
D (xi,2 mt1 

which ds, a 2dl-e > s, where s is the constant from Lemma 4.2. We 
claim a subsequence {a(l)} c {a} can be selected to converge to s in 
C'(D(xi, 2-m-'), N) except on I < hB/s + 1 disks. Suppose we have shown 
S5a(k) S in C'(D(x,, 2-r-n) N) for i = 1, 2, *.., k disks and there are more 
than Bh/s disks on which the convergence fails. Then there must be at 
least one disk D(y, 2-r) in the remaining disks, and a subsequence 
{a(k + 1)} c {6a(k)} such that for a =-a(k + 1), 

S Idsa 2dpe < s 
I) (y, 2)- ) 

Then ia(x) = s,(x + a) is a critical map of Et on C'(D(2-m), N) and 
E(it(x)) < E. From Lemma 4.2, &, - a s in CI(D(2-rn), N), which is the same 
thing as so s in C'(D(y, 2-m-r), N). We repeat this procedure until there 
are I < hB/s + 1 disks remaining. 

THEOREM 4.4. Let Uci M be an open set and sa: U ---> N be a critical 
map of Ea, and E(s,) < By a --> 1 and so --> s weakly in L2( U, Rk). Then there 
exists a subsequence {/3} c {a} and a finite number of points {xl, ., x}, 
where I does not depend on U such that s,g > s in C'(U - {x1, .., x,}, N). 
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Moreover, s: U -> N is a smooth harmonic map. 

Proof. We use the preceding proposition to construct a series of sub- 
sequences {a(m)} c {a(m - 1)} c {oa} with a(m) -> 1 and sa(m, > s in C( Ur - 

Ural D(xim, 2-m), N) for each integer m. Here 1 < Bhle + 1. Choose a dia- 

gonal subsequence ,3 of the sequences {a(m)}. Then sp -> s in 

C'(Ur(Um - Uijj D(Xim, 2-m), N) - Cl(U- nm(Ui,1 D(xim, 2-m), N) 
- C(U- {x1, .., xi}, N) . 

We have constructed s e C1(U - {x1, ... , xl}, N). Because s is a weak limit 
in L2( U, Rk), we have E(s) < lima e1 E(s,) < B, and we can apply Theorem 3.6 
to get s: U-* N smooth and harmonic. 

We have no assurance that s is not trivial when U M, or that the 
convergence can be extended over the points {x1, .. , x1} in the theorem. 
However in some cases we can directly argue that the convergence sa--+ s 
in the C' topology. 

LEMMA 4.5. Suppose that the hypotheses of Theorem 4.4 are true and 
there exists 3 > 0 such that maxxe ,(x1,a I ds,(x) I < B < . Then sa -> s in 

C'(D(xi, 6), N). 

Proof. In a small enough disk D(xi, R) c D(xi, 6), \ dsa 2 A _2 
D (xi, A) 

wR2B2 < s. Choose wR2B2 <es. Then we may apply Lemma 4.2 to get sa--> s 
in C'(D(xi, R/2)). 

THEOREM 4.6. Let sa, be a sequence of critical maps of Ea for a -> 1, 
E,(sa) < B and s, -> s in C'(M -{x1 .., x1}, N) but not in C1(M - {x2, ..., 
x1}, N). Then there exists a harmonic map s: S2 --- N which is not a map to 
a point such that 

i (S2) ci nfm w (nll, U.a s~(D(xj, 2-m))) 

Moreover E(s) + E(i ) < lima ,l E(s,,). 

Proof. Let ba maxxeD(x,2- ) Idsa(x)I and xa e D(xl, 2-m) be a point a 
which the maximum ba is taken on. By choosing a subsequence, by Lemm, 
4.5 we may assume lima s1 b"y cx,-. Moreover, lima, xa = x1, because s. --a 
inC'(M-{x1, *... xl}, N). Definesa(x)=s(xa+b-'x). Then ia: D(O, 2-mbay)--I 
is a critical map of E, and I dia(x) ? 1 for x e D(O, 2-mb). We have chose 
i ds&(O) 1. Note that the disks on which the maps r, are defined have rad 
going to co as a -> 1 and bys &o, and the metric on these disks converge 
to the Euclidean metric. Using Theorem 4.4 and Lemma 4.5, for any R < a 
we can find s, --a s in C'(D(R), N), where s: D(R) Nis smooth and harmoni 
Since I ds(O) = 1, s cannot be a map to a point. By a diagonal argumen 
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for a subsequence s,, - > W in C'(R2, N), 

E(s) + E(sI M- D(x, 2---m)) 
f limp _, {E(S,3 D(O, 2-mb,)) + E(s, M- D(x,, 2-m))} 
? lim, - E(s,) 

By letting m->c<-, we have E(s) + E(s) ? limp -- E(s,). But R2 = S2 {p} con- 
formally, and E(s) < c-,, so from Theorem 3.6, W extends to a map W: S2 -- N. 

THEOREM 4.7. Let s. be a sequence of cr-itical maps of E, foer a --> 1, and 
s weakly in L'(M, Rk). Then either s, --- s in C'(M, N), or there exists 

a non-tr-ivial har monic map W: S2 -a N with r(S2) C n, , U,,, s,3(M). More- 
over E(s) + E(s) < lime, l E(s,). 

5. Applications and results 

In this section we state and prove the final results using the conver- 
gence schemes developed in Section 4. In what follows, s is a uniform con- 
stant depending on the second fundamental form of the imbedding N z Rk 

and is assumed to be the minimum of the constants appearing in the Main 
Estimate 3.2, Theorem 3.3 and Lemma 4.2. Theorems 5.1, 5.2 and 5.5 
yield existence of minimizing harmonic maps. Theorems 5.1 and 5.2 
have been obtained independently by Lemaire [L4J and Schoen and Yau 
{Sch-Y] by other methods. Note that some hypothesis like w2(N) 0 
is necessary in Theorem 5.1 in view of the examples of Eells and Wood in 
lE-WI. 

THEOREM 5.1. If N is compact and r(N) = 0, then ther e exists a mini- 
mizing harmonic map in ever-y homotopy class of maps in C0(M, N). 

Pr oof. Let sa: M - , N be a minimizing map for E(, in a fixed homotopy 
class with Ea(s,) < (1 + B 2)' as in Proposition 2.4. By Theorem 4.4, with 
M - U, we can choose a subsequence /3 -> 1 such that s, -- s in C'(M - 

{x, .., x1}, N) with s: M - N harmonic. We claim sp > s in C'(M, N). 
Center a small ball about xi in M of radius p, where p is small enough 

so x, e D(p) for J ? i. We will choose p later. Define a modified function 
so: D(p) -) N which agrees with s,9 on the boundary of D(p) and with s in 
the center. Let C be a smooth function which is 1 on X > 1 and 0 on X?1/2. 
Let exp be the exponential map on N. 

(11) S^ 3(x) = exp8(x, (2( x j/p) exp-) (x) o sp(x)) 

Then s, s in C1(supp 2( x /p)) n D(p), N) and we have s -___ S in CI(D(p), N). 
Recall that for s e LINM ) N), (s) (1 + ds 2)Vde-1, which implies 
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(12) limp lE-(s A) = E(s I D(p)) 
By assumption, w2(N) = 0 and sj and so are homotopic. Since so is a 

minimizing function for ES in its homotopy class, Eg(sgID(p)) ? Eg(siD(p)). 
Apply (12) and 

limg -i Eg(sg I D(p)) ? E(sj D(p)) < p2w7 S 1 
2 

If we initially choose p so p27w ls 12,. < s/2, we can apply Lemma 4.2 to get 
so s in C'(D(p), N), since Eg(sg D(p)) < E for /3 sufficiently close to 1. We 
may conclude so - s in C'(M, N). Since so minimizes En, s must minimize E 
in the same homotopy class. 

A free homotopy class of (unbased) maps from M to N induces a map 
between wz1(M) and wc1(N). The following theorem has exactly the same 
proof as Theorem 5.1 which we do not repeat. When we replace so by so in 
D(p), we do not change the map on the fundamental group. 

THEOREM 5.2. Ever-y conjugacy class of homomorphisms fr-om wz1(M) 
into wz1(N) is induced by a minimizing har monic map fr om M into N. 

If wj2(N)- 0, then Theorem 5.2 implies Theorem 5.1, since in this case 
conjugacy classes of homomorphisms from w1(M) into wz1(N) are canonically 
identified with the components of C0(M, N). 

In the next lemma we use the construction (11) in the proof of 
Theorem 5.1 to relate the minimal values of E in the free homotopy classes 
of C0(S2, N) to the structure of w2(N) acted on by wz1(N). Each V C wr2(N) de- 
termines a free homotopy class of maps from S2 into N and two elements V 

and a' in wr2(N) determine the same free homotopy class if and only if they 
belong to the same orbit wc1(N)> = wc1(N)y' under the usual action of wc1(N) 
on w49(N); i.e., the set w0,,C0(S`, N) of free homotopy classes of maps is in 
natural one-to-one correspondence with the set of orbits wz1(N)> ci w2(N). 
We denote by F G w0C0(S2, N) the free homotopy class corresponding to 
w1,(N)7. For F G 7w0C0(S2, N), v will denote any element of wr2(N) such that 
w1,(N)> corresponds to F, and we shall write V e F. Note that for a e wc1(N) 
and y1, v2 E w2(N) we have a(71 + 7y) a71 + a72. Moreover, given Fj = 
w1,(N)yi for i 1, 2, 3, with al + y2 =3, then, since ayl + av9 =v3 we 
have wz1(N).3 ci wz(N)y, + 1(N)v2. This last relation is the substitution for 
addition in free homotopy classes. Define 

#F = min{E(s): s e F , L- (S2, N)} 
- limq ,{min Eq(s): s e r n L7(S', N)} 

Note that r- 0 if and only if F is trivial and that #F > E otherwise. 
LEMMA 5.3. Let s(,: S2 --> N, a -a 1, be a sequence of non-trivial critical 
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maps of Eq, with s s in C 1(S -{p}, N). Then s: S -EN is not a map to 
a point. 

Pr-oof. Let (a, 0) be spherical angles on S2 with S I = {(d, 0): 0 < 0 < r/2} 
and S- {(, 0): wr/2 < 7 ? w}. Let p be at the north pole 5 = 0. Relabel 

s, = v. We compute the variation of Eq, at v in the direction u, which is 
obtained by differentiating the family vo,,. Here a,: S2 , S2 is a family of 
conformal transformations which depend only on the polar angle 0. The 
formula for this variation is u( i, 0) = v,( , 0)sin v. Since v is critical for 

ka, 

0 = dE, ,(u) = 2a 2(1 + dv 2)a-(dv du)d/e 

We evaluate (dv. du)dje as 

(v. (vosin 0)) + sin- f(v(, (vosin 0),)] sin Odfdo 

- K1 jdv 2sin 2, +'dv 1 2sin cosJ0dod5 . 

Putting this expression into the integral gives 

0 |[((1 + I dv 12) - 1)0 sin 2 + 2a(1 + I dv 2)a,-1' dv 12 sin 0 cos Ododo 

2 2 [-(1 + I dv 12)a + 1 + a(1 + I dv 12) Il dv ]COS Odle 

where the last equality is obtained from integration by parts. To estimate 
the integral, use Taylor's theorem, for real X > 0 in the expression 

1 + (( \)q\ (+ - (i + \)q -(1 + X)2q a(1 + \)\ - (1 + X)2 

(a - 1) (a - 2(1 + t)-(' + 2)(1 - t)dt?& . 

The extremal values of the integral are a/2 and 1 at X = 0 and X - cs re- 
spectively. It follows that the integrand we obtained over S2 

a(l + Idv 12)1- 1' dv2 1- (1 + Idvs) (1-a)(1 + Idv12)a-"2ldvv 12 

Divide the integral up into integration over S-t and S-. 

(13) a/2 (1 + dv 2)"2 I dv 2cos5dM ? (1 + Idv 2)"-2 dv 2(-cos )dje 

Recall v s(,, a -> 1, and sq -> s in C (S2 - {p}, N). If s is trivial, by 

Theorem 3.3, sq cannot approach s in C1(S2, N). From Theorem 4.6 we see 

that there exist expansions sq,, of Sq near p which converge to s: SE > N. 

Then 
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i-E(s) < liml E(saDJ) ? lime-1 5 ds, 12 COS 5df 
2 Si 

< lim. (1 + Ids,t a) 1' ds, 12COS5) dfp -l - ds2 COS Ode 

Here we use (13) in the last inequality. If ds = 0, s is trivial, which is 
impossible. 

LEMMA 5.4. Let F e wOCO(S2 M). Then either F contains a minimizing 
harmonic map s or for all 8 > 0 there exist non-trivial free homotopy classes 
F, = w1(N)y1 and F, = 2(N)y2 such that F = 1(N)YQW7r(N)y, + wz,(N)y and 

#F1 + F2 <K #F + 8. 

Proof. By Proposition 2.3 and Theorem 4.4 we can find a sequence 
a> 1 and maps sa e F which are minimizing for F, in r n L 2t(S2, N) and 
which converge weakly to s in L"(S2, Rk). In fact sa > s in C'(S2-{X, . 

xl}, N). We can assume that lim__ lima ,1 Ea(sajD(xi, 2-m)) > z, for if not 
we can apply Lemma 4.2 to remove the singularity x, of the convergence 
of s. to s. If we can remove all the xi in this fashion, s, > s in CI(S2, N) 
and s e F is a harmonic map which minimizes E in F. Assuming we cannot 
do this, pick a small disk D(p) around x, and use construction (11) to define 
sa:D(p) - > N. Let 

sa(x) x e S2 - D(p) 

u,,(x) = (x) x E D(p) 
(s_(x) x e S2- D(p) 

Va(x) - (Sa o(x) x e D-'-p) p 
v,,() = x E D(p) . 

Here f: S2 - D(p) -a D(p) is the conformal reflection leaving the boundary 
of D(p) fixed. Let F, and F2 be the free homotopy classes of u, and v, re- 
spectively. Then w1(N)> ci w1(N)1 + w1(N)y2. From (12) and the conform- 
ality of f 

lima-l Eck(uh) - lima- l Ea(s(,S 2 -D(p)) + E(s D(p)) 
and 

lima1 E,(vv) lim ka (s, S S -D(p)) J E(s D(P)) 
Jf p21 [t'o 

? 0/6, we can choose a close enough to 1 so that 

E.a(Th) ?n ,(s S2 - D(p)) + a/3 
Ear(vr) ?< E(sa iD (p)) + 03/3 

and 
$F, + ? F, E,(Th) + Ea(va) ? E(s) + 2/3a <, + o 

We assume O < s/2. It is automatically true that E(,(v(,) > E(,(v(,lD(p)) > 
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so #F1 < E,(u,) IF + a3- E < #F. Then F, # FandF, # 0. We now need 
only show E,(u,) > ( to get IF, # 0. If we have chosen a close enough to 1, 

Ea(Uh) > Ea(sI S - D(p)) > E(s S2 - D(p)) - 0/6 > E(s) - 6/3 

If s is not trivial, we are finished as E(s) > E from Theorem 3.3. If s is 
trivial, it was shown in the preceding lemma that there must be at least a 
second point x2 xi where the convergence sar -- s fails. Then Lemma 4.2 
gives us that lima -1 A,(s, I D(x2, p)) > E and EA(ua) > kA(sa I D(x,, p)) for small 
p. In either case, Ek,(u,) > ( and F, # 0. 

THEOREM 5.5. There exists a set of free homotopy classes Ai cwC0(S2, N) 
such that elements {X e Ai} form a generating set for w2(N) acted on by w1(N), 
and each A, contains a minimizing harmonic map si: S2--- N. 

Proof. Let Ai be the homotopy classes containing minimizing harmonic 
maps. Let Pci 2J(N) be the subgroup generated by elements {x e Ai). Sup- 
pose the inclusion is proper. Pick a class F with elements V E F, V X P such 
that if # F' < # F - s/2, then the elements {a' e F'} ci P. 

By assumption F does not contain a minimizing harmonic map, so there 
exist F, and F with wz1(N)> c 7r1(N)71 + 7w1(N)y2 and # F, + F F, < # F + s/2. 
But F, and r2 are not trivial so F1j > s for j = 1, 2. All this implies $ F, < 
IF - s/2. By assumption the sets wz1(N)7j are both in F, so 

w1(N)-y c w(N)71 + 1zl(N)y2 c PF. 

In the next two theorems we look into the situation where the har- 
monic maps are not necessarily minimizing but may be saddle points. Our 
first result treats the case where there are no obstructions to our conver- 
gence technique. 

THEOREM 5.6. Let s= min E(s) for S: S2 --, N, s harm onic and not a 
map to a point and s, = if this set of harmonic maps is empty. Then 

EI E-1[0, 6) satisfies a Morse theory for M # S2, and for M S2 

El E'IO0, 2,s) satisfies a Morse theory . 

Proof. We apply the technique of Morse theory by perturbations E, 
from E. The set {s,: sa, is critical for Ea, E <sa) < < so} is compact, since 

by Theorem 4.6, si, -> s in C1(M, N) unless there is a minimal harmonic map 
s: S2 - N with image lying in the Hausdorff limit set of s(a(M). In this case 
lima El Ea(sa) > E(S) + E(s) > 6s. If M = S2, by Lemma 5.3, E(s) > ,s. There- 
fore the results of [UI are valid. 

THEOREM 5.7. If the universal covering space of N is not contractible, 
then there exists a non-trivial harmonic map s: S2 --- N. 



MINIMAL IMMERSIONS OF 2-SPHERES 23 

Proof. We apply Theorem 2.8 to get a critical map s, of E, with 
e < E,(s) < B. Then from Theorem 4.4, there is a subsequence, which we 
alc, denote by s,, such that s, --i s in C'(S2 - {x, .. *, x1}, N), where ax ---> 1 
and s is harmonic. If s is not a map to a point, we are finished. If s is a 
point, since Ej(s) > c, sa must fail to converge to s at some points. From 
Theorem 4.7 there exists a harmonic map s with s(S2)cln, U <. S,(S2). Re- 
call the result of Corollary 1.7: the image of a harmonic map from S2 to N 
is a conformal branched minimal immersion. This, together with the pre- 
ceding theorem, yields the main theorem on the existence of minimal 
spheres stated in the introduction. Note that the hypothesis on the uni- 
versal covering space of N cannot be dropped, for if N has non-positive 
curvature then every harmonic map s: S2 ---* N is constant. 

THEOREM 5.8. If the universal covering space of N is not contractible, 
then there exists a non-trivial C~o conformat branched minimal immersion 
s: S2 ---- N. 

Combination of Corollary 1.7 and Theorem 5.5 yields the final result on 
minimal spheres. 

THEOREM 5.9. There exists a set of free homotopy classes A, G c wC0(S2, N) 
such that elements {. E3 Ai} generate w9(N) acted on by w1(N) and each A, con- 
tains a conformal branched immersion of a sphere having least area among 
maps of S2 into N which lie in Ai. 
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