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Complete minimal surfaces in S3 
By H. BLAINE LAWSON, JR. 
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Introduction 

It is valuable when dealing with a non-linear theory, such as the study of 
minimal submanifolds, to have available a large collection of examples for 
reference and insight. One purpose of this paper is to develop a simple but 
fruitful procedure for constructing such examples for the study of minimal 
surfaces in spheres. 

The procedure is of particular interest because it shows that even the 
simplest class of objects, minimal surfaces in the euclidean 3-sphere, is richly 
endowed. It will be proven that every compact surface but the projective 
plane (which is prohibited) can be minimally immersed into S3. Moreover, 
every compact, orientable surface can be minimally imbedded in S3, and if 
the genus of the surface is not prime the imbedding is not unique. It will 
furthermore be shown that there exist algebraic minimal surfaces in S3 of 
arbitrary degree. 

Minimal surfaces in spheres are related by means of the tangent cone 
construction to the study of isolated singularities on 3-dimensional minimal 
varieties in euclidean space. Forming the cones in R4 over the surfaces in S3 
mentioned above shows that isolated singularities of every topological type 
but one can occur on minimal hypersurfaces of R4. The exception is that the 
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link of the tangent cone cannot be an immersed projective plane. 
Each of the surfaces constructed has a large group of symmetries. This 

makes it possible to prove that for each set of integers m, k, n, r > 1 
where (n, r) = 1, there exists a compact orientable surface of genus 
(m - 1)(k - 1) + (n - 1)mk minimally imbedded in the lens space La,7, and 
for each set of integers m, n, r > 1 where m is odd and (2n, r) = 1, there 
exists a compact, non-orientable surface of Euler characteristic 1 - m(n -1 
minimally imbedded in L2Xr Moreover, for each pair of integers m, n where 
2/mn there exists a compact surface of Euler characteristic m(l - (1/2)mn) 
minimally imbedded in S3/D* where D* denotes the binary dihedral group 
of order 4n. 

To each complete minimal surface in S3 there is associated a 1-parameter 
family of complete, locally isometric surfaces of constant mean curvature in 
each of the simply-connected, 3-dimensional space forms of curvature <1 
(? 12). Using this theorem and a principle of reflection duality we give a pro- 
cedure for explicitly building complete constant mean curvature surfaces in 
R3. In particular we construct two complete, doubly periodic ones without 
self-intersections. 

The second part of the paper is devoted to the development of a theory 
for compact minimal surfaces in S3. This theory is disjoint from that of 
E. Calabi [3], [4] since his pseudo-holomorphic immersions lie essentially in 
even-dimensional spheres. 

A compact minimal surface is viewed as a conformal immersion A: k S3- 
where 9k is a compact Riemann surface. Fundamental equations for * are 
derived, and the Hopf-Almgren holomorphic form is defined and interpreted 
geometrically (Prop. 1.5). The metrics on minimal surfaces in S3 are charac- 
terized (Th. 8), and ruled minimal surfaces are classified (Prop. 7.2). Asso- 
ciated polar and bipolar minimal immersions are defined, and their relationships 
to the geometry of the surface and the nullity of the immersion are discussed. 
Two reflection principles for minimal surfaces in S3 are established. A conju- 
gate minimal surface is defined, and a principle of reflection duality is proved. 

I want to express particular thanks to R. Osserman for his advice and 
encouragement in the development of this work. I wish also to thank E. Calabi 
for several very informative conversations. 

1. Differential geometric preliminaries 

Let S3 = {x e R4: I x I= 1}. By a 2-dimensional submanifold of S3 we shall 
mean a conformal immersion 
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of some Riemann surface fR. The existence of conformal (isothermal) coordi- 
nates and a 2-sheeted orientable covering surface makes this definition com- 
pletely general. The function * will always be considered as R'-valued with 
122 -1 

Let z = xl + ix2 be a local complex coordinate on Rk and set a = 
1(a/axl - ia/x2). Then the metric induced by * has the form 

(1.1) ds2 = 2FI dz 2 

and its Gauss curvature K is given by 

(1.2) K =-F a log F. 

The vector-valued second fundamental form can be expressed as 

(1.3) -Bi =ij k 1 <*ijl k>+k - 2Fbij* 2F 

where <a *> is the inner product in R4. Choosing a unit normal vector field 
r (tangent to S3) we set 

(1.4) 1ij = <Bjj, a> 1 2 A 1 A *2 A 1i 2F 

and recall that fi satisfies the Gauss curvature equation 

(1.5) 4F2(1 - K) =Ca12 -1122 

and the Weingarten equations 

(1.6) -X; 1 Eklikrk 2F 

(The field ( is considered R4-valued in the natural way.) 
The immersion * is called minimal if trace(B) _ 0. This condition is 

equivalent to the equation 

(1.7) =F* 

and to the fact that * represents an extremal of the area integral. 
Our first observation is 

LEMMA 1.1. If * is minimal, then fr is a real analytic mapping. 
PROOF. Since * is conformal it is also an extremal of the spherical 

Dirichlet integral (4.3). Hence the representation of - in stereographic co- 
ordinates for S3 satisfies equation (4.4) which fulfills the necesssary conditions 
(1.10.8") for [15, Th. 1.10.4 p. 34]. The result follows. 

The value of conformal parameterizations for minimal surfaces is the fol- 
lowing. 
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LEMMA 1.2. If * is minimal, then the differential form GO = 9dz2 where 

1 12 (1.8) 9=2(fl22-il12)= . A a A A A2 2 i 

is holomorphic on A. 

PROOF. Since * is conformal and <A, A> = 1 we have 

(1.9) 
aik*,8t+><= <K kl, are> = 0 for 1 < k + i < 3 

(1)<8 8> = F, 
where <., .> is extended complex linearly. It follows that 

<as k> <*Y, a> <*9 5y> <*k a21k> 

1 +A ak A a A &21k)2 - F2 <a*1 1> <ar a+> <ak *1+> <as) a,2> 
iF 22> ?>F F ~~~~~<a2ft *> <a2ft a*> <aft *1 <a2ft A2> 

From (1.7) and (1.9) above we then have 8<a2*k, a2> = 2<a(a5*), a2*> 
-2<a(Fk), a21> = 0, and the lemma is proved. 

Remark 1.3. Corresponding to the vector-valued second fundamental 
form (1.3) we define cp I (B, - iB12). Then 

(1.10) F ( F a+1 ) 

and it can be shown [13] that 

(1.11) a3D - (1 - K)Fa1 . 

Equations (1.10) and (1.11) generalize to minimal surfaces in SX and give a 
holomorphic form Q = <K, 1P>dz4 on any such surface. 

Observe now that if 1 is minimal, the Gauss curvature equation becomes 

(1.12) F2(1 - K) = I 
(p 12 

This immediately gives 

LEMMA 1.4. The Gauss curvature K of a minimal surface in S3 satisfies 
K ? 1, and K = 1 precisely at the isolated zeros of the holomorphic differ- 
ential o. 

Let fR be compact and of genus g. If g = 0, then o = 0 and 1 must be 
totally geodesic. If g > 1, then c has exactly 4g - 4 zeros to multiplicity. 
Using (1.12) we can give a geometric interpretation of these zeros. For each 
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p e Sk we let Sp denote the geodesic 2-sphere which is tangent to the immersed 
surface at +(p) (i.e., tangent to the image of a small neighborhood of p), and 
we let P, denote the linear subspace of R4 such that Sp = P, f S3. The order 
of contact Op of * with Sp at p is the largest integer k such that Pp contains the 
k-jet of * at p. Of course, Op > 1. We define the degree of spherical flatness 
of * at p to be dp = Op-1. 

PROPOSITION 1.5. Let +: Ag- S3 be a minimal immersion where R2 is 
compact and of genus g. Then 

(a) (F. Almgren) If g 0, the immersion is totally geodesic. 
(b) If g > 1, then Y'pe dp = 4g-4. 

In particular if g > 1, there must be points where K = 1. 
PROOF. Part (a) was proved above. For part (b) we assert that dp = order 

of the zero of o at p. Observe that Pp is spanned by the vectors A(p), *1(p) 
and *,(p), and therefore Op = k if and only if 

+(p) A * (p) A* 2(p) A (p) 0 
axpax~ 

for 0< i + j? Ik. From the fact that 1811 = -1822 the assertion and the Propo- 
sition follow easily. 

We now make an observation which will be relevant later on. 

COROLLARY 1.6. It is impossible to immerse minimally the real projec- 
tive plane into S3. 

Remark 1.7. It was shown in [4] that small neighborhoods of p on the 
surface are divided by Sp like a pie into exactly (2dp + 4) wedge-like regions. 
For the surfaces constructed later this will be a useful means of calculation. 

2. Algebraic surfaces 

Associated to every minimal surface *: SI 3 is the cone over that sur- 
face in R4 given by 

C*(2) = J{t*(p): p e AR and t > 0} . 

It is not difficult to see that * is minimal in S3 if and only if C*(9k) is an 
immersed minimal submanifold away from the origin. The surface * is called 
algebraic if C*(Rk) is a homogeneous polynomial variety in R4. In what fol- 
lows, algebraic surfaces in S3 will be designated by the defining homogeneous 
polynomial. As shown in [9], an algebraic surface p = 0 is minimal if and only 
if 

(2.1) ApI Vp 12 - Vp'HVp =_0 (mod p) 



340 H. BLAINE LAWSON, JR. 

where H is the hessian matrix of second derivatives of p. 
One important example of an algebraic minimal surface is the flat Clifford 

torus given by 

(2.2) X1X2 + X3X4 = 0. 

This is the unique algebraic minimal surface of degree 2 and is characterized 
even locally as the only (non-totally-geodesic) minimal surface of constant 
curvature in S3 [12]. 

3. The reflection principle 

Let y be the geodesic in S3 = {(x1, X2, X3, X4) e R4: Ix = 1} given by x3 = 

;4 = 0, and let S be the great 2-sphere given by X4 = 0. 

Definition. By geodesic reflection across y we mean the map r,: S3 S3 

where 

r(X1, X2, X3, X4) = (X1, X2, -X3, -X4) 

By geodesic reflection across S we mean the map rs: S- S3 where 

rs(x1, X2, X3, X4) = (x1 X2, X3, -X4) . 
These maps can be interpreted as sending a point p to its "opposite" point 

on a geodesic through p which meets y (or S) orthogonally. 

PROPOSITION 3.1. Let M be a minimal surface which is of class C2 at 
the boundary AM. Then 

(a) If AM contains a geodesic arc y, M can be continued as an analytic 
minimal surface across each non-trivial component of AM n y by geodesic 
reflection. 

(b) If part of AM lies in a geodesic 2-sphere S and if M is orthogonal 
to S there, then M can be continued as an analytic minimal surface across 
each non-trivial component of AM n S by geodesic reflection. 

PROOF. For part (a) let y be given by X3 = X4 = 0 and choose p in the 
interior of AM n y. There is a conformal map N: A+ - S3 where a+ = 
{(x, y) c R2: X2 + y2 < 1 and y > 0} such that: T is a regular representation of 
M (and of AM) in a neighborhood of p, T(O, 0) = p and T3(x, 0) = T4(X, 0) = 0 

(15, p. 366]. Since T is minimal we have 

(3.1) Ae -<VaT, VT>T 
over a 

We now extend T to the entire unit disk /v by setting Tk(x, y) 
(1)[kI3]Tk(x -y); k = 1, * * *, 4. Clearly Tk C C(^) for each k, and using the 
minimal surface equation quickly shows that Tk C C2(A) for k = 3, 4. It is 
also immediate that Tkxi Tkxx and Tkyy c C(^) for k = 1, 2. We now assert 
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that Tj=2 0 on y = 0. Since <T, P> 1 we have 

<N, 1x> =T1T,. + T2T2,. = <TP TY> = 1T1, + T2T2,Y 0 

Furthermore, T2 + T ,l 12 > 0 for almost all x when y 0. Hence, 
on y = 0 we have Tk,y = Tk,xy = 0 for k = 1, 2, and therefore T E C2(A.; S3). 
It follows that T satisfies (1.7) in a, and therefore by Lemma 1.1 it is analytic 
in a. 

Part (b) is immediate. 
Note. Analogous reflection principles can be formulated and proved for 

minimal surfaces in R3 and in hyperbolic 3-space. 

4. The construction procedure 

We shall now discuss a general method of constructing complete, non- 
singular minimal surfaces in S3 and then use the procedure (in ?? 6, 7, and 8) 
to generate specific families of compact surfaces. 

Let IF be a geodesic polygon in S3 having vertices vo, v1, ..., v = vo and 
edges y0, y1y ..., ya = yo0 such that for each i, yt meets ,-1 in vt at an angle of 
the form w/(ki + 1) where ki is a positive integer. 

Before proceeding we shall need some terminology. If v and 3 are distinct 
geodesics which meet in S3, we denote by S(y, () the unique geodesic 2-sphere 
containing y U 6. S(b, a) is said to bound a subset X of S3 if X is contained in 
one of the two closed hemispheres determined by S(-, a). For each i we denote 
by Ni the geodesic perpendicular to S(7i-1, yi) at vi. I7 is then called proper 
if for each i, it is bounded either by S(-i1, Ni) or by S(yi, N). 

By the convex hull of r (cf. [14]) we mean the set 

e(1) = n {H: H is a closed hemisphere containing '} . 

If 17c &(17), 17 is called convex. We then set 

5, = {S: S is a geodesic 2-sphere in S3 such that 

s n 17 has at least four components.} . 

Finally, we denote by A the closed unit disk in the plane. 
Throughout the following the polygon 17 is assumed to be a proper, convex 

curve satisfying the following: 
(A) 17 lies in an open hemisphere of S3. 
(B) For each p E Cj(1) there is a geodesic 2-sphere Sp containing p such 

that Sp or. 
(C) Whenever one of the pair S(-i1, Ni), S(-i, Ni) fails to bound 1, we 

have ki = 1. 
(D) There exists a continuous map w: 6(r) A A which is differentiable in 
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6(F)0 and carries IF monotonically onto Dz such that for each S E 3r the dif- 
ferential of the map w j S n en(o) is everywhere of rank 2. 

Remark 4.1. Since r is convex we have that for each i there is a geodesic 
2-sphere S containing yt which bounds r. 

Let P: A v S3 represent Morrey's solution to the Plateau problem for 
r [15, p. 389] and set 'DR, = PA). T is continuous on a, analytic and almost 
conformal in A', represents r (in the sense of Frechet) on 8a, and minimizes 
the Dirichlet and area integral among all maps in C(zA; S3) n H21 (z; S3) which 
represent 1 on aA. 

By [14, Th. 2] we have that T(Az) c e(17). Condition B together with 
[14, Th. 4] shows that P is non-singular (i.e., free of branch points) in A'. 
Condition D, Theorem 4, and a standard monodromy argument show that T 

is one-to-one in AO. Hence T conformally imbeds AO into 6(1)0 c S3. 

It is well known that T must be one-to-one on Dz (by arguments similar 
to [5, pp. 63-64]). Moreover, the recent results of S. Hildebrandt [8] show that 
T is analytic (in two variables) at each point of the boundary which is 
mapped to the interior of an analytic sub-arc of 1. Hence T is analytic on 
DzA except possibly at the points corresponding to the vertices of r. 

The idea now is to extend this surface by reflection across its geodesic 
boundary arcs. Fix i, 1 < i < n, and let 3s be the pre-image of y1 in 8A. By a 
conformal mapping carry T into the upper half disk A+ such that 3t corre- 
sponds to the arc y = 0. Since P is analytic and one-to-one on 3j, Proposition 
3.1 shows that reflection across 3t defines an analytic continuation of T 

throughout all of /v. 
We need now to check that there are no points in ai where j VPT 0 

(i.e., no branching takes place on id). Fix (x, 0) e 3? and choose a small disk 
Bcii? centered at (x, 0). By Remark 4.1 above we can find a geodesic 2-sphere 
S D yt which divides S3 into hemispheres H+ and H- such that T(zA+) c H+. 
By [14, Th. 2] we have that T(int (A+)) c int(H+) and T(int (A-)) c int (H-) 
(A- = A, A+). It follows that T(aB) n S consists of exactly two points, and 
therefore applying [14, Th. 4a] to the surface P IB: B S3 shows that 
Vet I O at (x, O). 

It is now clear that the surface DR,, constructed above, can be analytic- 
ally continued as a non-singular minimal surface across each of its boundary 
arcs -a, ..., y by geodesic reflection. 

Each reflection map rrk: S3 - S3 is an isometry. Hence any reflected 
image of 'DR, can itself be reflected about its boundary arcs, and those images 
in turn reflected, etc. If we successively reflect 2ki + 2 times at the vertex vi 
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we return to the original surface OR,. Hence the indefinite reflection process 
generates a nice analytic surface near vi with a possible singularity at vi it- 
self. 

We shall show that the surface so produced is in fact non-singular at vi. 
Reflecting 9R, ki-times at vi produces a surface OiR+ which is bounded near vi 
by an unbroken geodesic arc a, and the total surface near vi is obtained by 
reflecting AR+ across y. Let T+: A+ - S3 be a conformal, analytic parameter- 
ization of 91t+ which maps the interval [-1, 1] of the x-axis onto y with (0, O) 
going to vi. T+ is analytic on [-1, 1] except possibly at (0, 0) and is at least 
continuous there. Extend P+ to a map P*: A S3 by reflection across a. 

LEMMA 4.2. T* is analytic at (0, 0). 
PROOF. The surface OR* = T*(A) consists of 2ki + 2 reflected images of 

Otr. Since OR, was minimizing we have an isoperimetric inequality for OTLP 
which can be extended to OR by raising the constant. That is, there exists a 
constant C such that 

(4.1) Area (D) < C[length (&D)J2 

for any domain D on OR*. 
Let R3 be a system of local coordinates for S3 obtained by stereographic 

projection from the point -va. The metric in these coordinates has the form 

(4.2) ds2 = ( 4X 1 dX 2 

(1 + IXl2)211 

where X = (XI, X2, X3) and I X I denotes the euclidean norm. The Dirichlet 
integral for any SI-valued function JD defined in a plane domain D and repre- 
sented in these coordinates is written 

(4.3) 9)(Q ID) = 55(1 + 122 VD 12 d2dy . 

Note that if JD is almost conformal, then 9(0, D) = 2 x (area integral of (P 
over D). 

Represent A* in these coordinates. Then using (4.1) above and replacing 
the length, area and Dirichlet integrals by those corresponding to the metric 
(4.2), we can follow precisely the argument in [7, ? 4] to show that there exist 
constants K and A, independent of r and R, with 0 < a < 1, such that 

( 1 ) T* is a-Hblder continuous in A (in particular, at (0, 0)). 
(2) For any p e A and any r, R with O < - < R we have 

J9(T* B7(p)) < K( )r p 
T(T*, BR(p)) 
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where Bp(p) = {qezA: Ip - q < p}. 
Over domains in A which parameterize domains on 'DR, or one of its 

images, T* minimizes the integral D. Since T* is analytic except possibly at 
(0, 0), it represents a weak solution in A to the equations 

(4.4) 9 v*a + a v*a +2 I~*2 A* ax (1 + I T* 12)2 ay (I + (* ) + IT* 12)3 

However, this system satisfies the conditions (1.10.8") in [15, p. 33]. Com- 
bining this fact with (1) and (2) above we can use the work of Ladyzenskaya 
and Ural'tseva [15, p. 34] to conclude that T* is analytic at (0, 0). 

Note. Similar methods can be used to show that if the angle of r at vt is 
a rational multiple of w, indefinite reflection produces an analytically para- 
meterized branch point at vi. 

We are now in a position to apply the results of [14, ? 4]. 

LEMMA 4.3. j VT*(0, 0) j # 0. 
PROOF. Choose a small circular disk B c As centered at (0, 0) such that 

T*(B) is contained in an open hemisphere. By [14, Th. 3] we know that if 

I VT*(0, 0) I = 0, then for every geodesic 2-sphere S containing vt we have that 
<v* I aB)-'(S) consists of at least four components. To prove the lemma we 
shall find an S for which this set has only two points. 

Suppose r is bounded by both S(7i1, Ni) and S(yt, N.). Then r lies in a 
narrow lens-like region L determined by these hyperspheres. Moreover, 
'R' c L'. Observe now that there is a tessellation of S3 by 2ki + 2 regions 
congruent to L each of which meets Ni. When DR, is reflected at vi, each 
distinct image lies in a different one of these regions (with its interior in the 
interior of the region). The surface 9T* meets the interfaces of the regions in 
great circles which are parameterized one-to-one. It follows that if S 
S(ryi, Ni), then (T* I aB) 1(S) consists of exactly two points. 

def. Suppose, on the other hand, that S(yi, Ni) = S. bounds r and ki = 1. 
Since F is convex, there exists a geodesic 2-sphere S, D vi 1 which also bounds 
r. S. and S1 are perpendicular and separate S3 into four disjoint, congruent 
domains. It is not difficult to see that the interiors of each of the four images 
of DR, reflected at vi lie in different domains and that T*(B) meets S. U S, in 
nicely parameterized great circular arcs. It follows that S. has precisely two 
pre-images in aB and the lemma is proved. 

We have now shown that indefinite reflection of DR, produces a complete, 
non-singular submanifold in S3 which we shall denote by Mr. In fact, if we 
let G, be the subgroup of 0(4) generated by the reflections {rrk}>k,=: then 
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Mr = UgeGrg[9IOr] 

In particular, if Gr is finite, then Mr is compact. 
Conversely, let Hr = {g E GI,: g(tr)= Or}. Hr is a subgroup of the group 

of symmetries of r and hence is finite. Moreover, each coset of HF in Gr cor- 
responds to a distinct image of Or under Gr. (Distinct images may intersect 
but may not coincide.) Hence if Mr is compact, the volume of Mr (=Haus- 
dorff 2-measure of Mr) = [ord (G,)/ord (Hr)] x (volume of 911f), and G, is finite. 

Summing up we have the following. 

THEOREM 1. To each proper convex polygon F in S3 having vertex angles 
of the type w/(k + 1), where k is a positive integer which depends on the 
vertex, and satisfying conditions (A), (B), and (C) we have associated a com- 
plete, non-singular minimal submanifold Mr of S3 which contains IF. The 
surface Mr is compact if and only if the group Gr generated by reflections 
across the geodesic sub-arcs of IF is finite. If r further satisfies condition D, 
then the fundamental region Or, which has boundary IF and generates Mr 
under Gr, has no self-intersections. 

Suppose now that Mr is compact and let K denote the Gauss curvature 
function on Or,. By the Gauss-Bonnet formula we have that 

5t KdH2 = w[2 - E=1 i -_I 
0'ar ~ ~ ='ki 

where H2 = Hausdorff 2-measure in S3. Consider Mr now as a point set in SI 
rather than as an immersed manifold. Then the Gauss curvature K is well. 
defined H2-almost everywhere on Mr, and we see that 

, KdH=2 ord (Hr) L [2 _ ki- 
However, Mr can be considered as the image of an immersion of a compact 
manifold Mr (perhaps non-orientable) which is one-to-one almost everywhere. 
It is not difficult to see that the Euler characteristic X(MI*) is given by 

2w,(Mr) 
= KdH2. 

MI, 

This proves 

PROPOSITION 4.4. 

(4.5) X(Mr*) = ord (1 H) 2k) 

Remark 4.5. To simplify the group Gr it is sometimes useful to produce 
a larger fundamental domain OR,, by making several reflections of Mr. We 
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still have 
Mr = {g(Otr): g e Gr} 

and if we choose D1r carefully the group 

Hr {= g e Gr: g(Or) = or} 

may contain a large normal subgroup of Gr. Such observations can lead to 
drastic simplifications in applying formula (4.5). 

In this regard we point out that two successive reflections at vt constitute 
a rotation of 2w/(k, + 1) about N1. 

Remark 4.6. Let 9r be the full group of self-congruences of Mr in 0(4), 
and let Hc 9r be a finite subgroup which acts freely on S3. Then if M, is 
imbedded in S3, MJ /H will be imbedded in S3/H. 

5. Models for S3 

Choose coordinates (z, w) for C2 (C = complex numbers) and set 
S3 = {(z, w) e C2: zJ2 ?+ Iwj I 1} . 

If we view S3 in this context, the formulas for many interesting algebraic 
surfaces can be simplified. For example, the Clifford torus can be written 

Im (Z2 + W2) = 0 . 

We now consider R3 with a distinguished set of coordinates (X1, X2, X3) 
as a coordinate system for S3 obtained by stereographic projection from the 
point (z, w) = (0, -1). The metric in these coordinates is given by (4.2). 

The origin 0 (0, 0, 0) corresponds to the "south pole" of the projection, 
and the unit sphere S centered at 0 corresponds to the equatorial hypersphere. 
The geodesics of S3 correspond to all straight lines through 0, all great circles 
of S, and all plane circles meeting S in antipodal points. The geodesic 2- 
spheres of S3 correspond to all planes through 0, the sphere S and every 
euclidean sphere which meets S in a great circle of S3. 

We shall be particularly concerned with the distinguished great circles 
C1 = X3-axis and C2 = {(X1, X2, 0): XI + X22 = 1}. We shall assume that 

(5.1) C1 {(O, w) e C2: I w I =1} 
C2 {(z, O) e C2: I z I= 1} . 

6. The surfaces $m,k 

Let k and m be non-negative integers and choose points P1, P2 e C1 and 
Q1, Q2 e C2 such that distance(P1, P2) = w/(k + 1) and distance(Q1, Q2) = 
7r/(m + 1). We define rmk to be the polygon P1Q1P2Q2. (See Fig. 1.) 

The convex hull of rmk is easily seen to be a geodesic tetrahedron 
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Figure 1. 

(bounded by three planes and a sphere in Figure 1) whose tesselations give a 
simplicial decomposition of S3, the 1-skeleton of which can be described as fol- 
lows. Continue the subdivisions of C1 and C2 into equally spaced points P1, * * *, 
P2k+2 and Q1, *.., Q2m+2 respectively. Let Cij be the great circle containing Pi 
and Qj. Then the 1-skeleton of the geodesic triangulation is 

Skm,k = C1 U C2 U (UiCi Cij) . 

All the polygons but Fm,0; m > 0, are contained in an open hemisphere. 
However, under the above procedure each 1m0O is seen to produce a geodesic 
2-sphere without recourse to involved arguments. In view of this and the 
symmetry of Im, kin m and k we shall henceforth assume that m > k > 1. 

We first observe that Fmnk is proper, convex, and satisfies conditions (A) 
and (C) of ? 4. What may not be evident is that Fm,,k also satisfies conditions 
(B) and (D). 

To check condition (B) consider the family of great spheres passing 
through C1, i.e., the family of planes passing through the X3-axis in Fig. 1. 
For condition (D) we rotate lmk to a position where the X3-axis becomes the 
center line of symmetry of Fnk Q1 and Q2 lie in the plane X3 = 0, and P1, P2 
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lie in the set 

{(0 X2, X3): X22 + XS, _= 1 and X3 > O}. 
rmk now lies on the union of two planes whose intersection is the X1-axis. 
(See Fig. 3.) Let wr: R3 - R2 be orthogonal projection onto the (X1, X2)-plane. 
Then r I c(rFm,k)0 is a projection having the properties necessary for condition 
(D). 

\, /,~~~~~~~~~~k' 

Figure 2. 

Hence, by Theorem 1, rn k is associated to a complete, non-singular mini- 
mal surface in S3 which we shall denote by dm,k* 

PROPOSITION 6.1. The surface dmk is a compact orientable surface of 
genus mk imbedded in S3. 

PROOF. Since G.m k must leave Skm,k invariant it is finite and dm,k is com- 
pact. mnk can be explicitly constructed by first reflecting the imbedded sur- 
face Mrrm k (2m + 2)-times at P, and then reflecting the resulting configura- 
tion (k + 1)-times at Q1. The result is a compact, imbedded (hence orientable) 
surface passing through a checkered array of tetrahedra comprising half the 
simplices in the above triangulation of S3. The Euler characteristic % 

can be computed by (4.5) as 
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lX3 

Figure 3. 

27UX(r,,k) -2(k + 1)(m + 1) KmKdH2 

= 4w(1 - mk) . 

Alternatively, one could begin with the fundamental surface 9ThR* pro- 

duced by reflecting OR mk across P1Q1. em,k is then produced by acting on 
'DmRk with the group Zm,+ x Zk~l generated by a: S3 S3 and b: S3 SI 

where 
21ri 

(6.1) a(z, w) = (eTm+z, w) 
2i i 

(6.2) b(z, w) = (z, ek+Iw) 

Either way the proposition follows. 

The surface emO (any m) is the geodesic 2-sphere, and $1,1 is the Clifford 

torus (2.2). In fact s%,' is just the surface 1, described in [11]. 

Using techniques developed in [13] one can show that em,k is the unique 
surface arising from this construction; that is, the solution to the Plateau 

problem for rmJ is unique even among surfaces of varying topological type. 

Hence, if k > 0 (recall that m > k), we have that $m,k =m',k' if and only if 
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m = m' and k = k'. 
The uniqueness of ORrmk further implies that ORrm k must have the sym- 

metries of rFik. These, of course, extend to all of $m,k. Hence, the group of 
congruences of $m,k contains a subgroup generated by reflections across the 
edges of rn k and reflections across the "planes" of symmetry of rmk* 

A useful tool for computing this group of congruences of $m,k is the alge- 
braic model surface mnk given by the equation (cf. ? 5) 

(6.3) Im (zm+') + I W rm-k Im (Wk+l) = 0 

Each surface Em k contains Skm,k {C1, C2} and can be generated by reflecting 
the piece 2mk f C(rm k) about these geodesics. Furthermore Em k has the 
symmetries of rmk. 

It is easy to see that 2 O= and l= .1 l. However, 22,2 is not mini- 
mal, and the author conjectures that $2,2 is not algebraic. 

Observe that by [14, Th. 4c] the Gauss curvature K of ORO is every- 
where < 1. Applying the theorem to OR* shows that K < 1 on smooth sub- 
arcs of OR, 7mk Hence, the zeros of the holomorphic form co defined by (1.8) 
appear precisely at the points P1, *.., P2k+2 and Q1, *.. Q2m+2. By Remark 1.7 
the order of the zero at Pi must be k - 1 and, at Qj, m - 1. It follows that 
0) has 4mk - 4 zeros to multiplicity as required. The locus of these zeros, 
the spherically flat points, is the set where the linked great circles C1 and C2 
meet dm,k orthogonally. 

One important conclusion from all this is 

THEOREM 2. For each non-negative integer g there is a minimal im- 
bedding of a compact orientable surface of genus g into S3. If g is not prime, 
the imbedding is not unique. 

7. The surfaces zrnk 

By taking different Hamilton circuits on the same family of geodesic 
tetrahedra we can produce an entirely different family of minimal surfaces. 

Fix positive integers m and k and let P1, P2, Q1, Q2 be chosen as in ? 6. 
We denote by rPmk the geodesic polygon P1P2Q2Q,. (Note. c(m ,k) = C(Fm k). 

See Figure 4.) 
Theorem 1 associates to r, a compact, non-singular minimal submani- 

fold Zm,k = Mrnk which by formula (4.5) must have Euler characteristic zero. 
Verification of the hypotheses of Theorem 1 will be omitted, however, because 
Tm,k can be explicitly described by the doubly periodic immersion tik: R2 , S3 
given by 

(7.1) Pm k(X, y) = (cos mx cos y, sin mx cos y, cos kx sin y, sin kx sin y) 
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Figure 4. 

It is clear from this representation that Zm,k = rm,k' (up to congruences) 
if and only if there is some integer p such that m _ m' (mod p) and k _ 
k' (mod p). Hence we have a countable family of compact surfaces with the 
following properties. 

THEOREM 3. To each unordered pair of positive integers {m, k} with 
(m, k) = 1 there corresponds a distinct, compact minimal surface Zm,k of 
Euler characteristic zero in S3 given by (7.1). Moreover 

(a) Tm,k is non-orientable (an immersed Klein bottle) if and only if 
2/mk. 

(b) Tm,k is real algebraic of degree m + k and satisfies the equation 

Im {ZkWm} = 0 

(cf. ?? 2 and 5). 
(c ) Each Zm,k admits a distinct one-parameter group of self-congru- 

ences. 
(d) Each zm,k is geodesically ruled. 
(e) Area (mak) > 2rZ min {m, k}. 
(f) z, is the Clifford torus and the only surface Zm,k without self-inter- 

sections. 
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With this family we are able to answer a question of Wu-Yi Hsiang [9]. 

COROLLARY 7.1. There exist algebraic minimal hypersurfaces of arbi- 
trary degree in S3. 

In fact the hypersurfaces 

Re .zk ... Zkn} n S2n-1 C S2n-1 C 1n 

with (k,, * k, 1c) = 1 are always minimal in S2n-1 (although not always 
immersions of non-singular varieties). 

We note that the tori Tm,k are not the ones known to T. Otsuki [16] and 
E. Calabi [11] because the self-congruence groups are inequivalent. 

PROOF OF THEOREM 3. Suppose that 2/mk. Then either 2/m and we have 

Tm,k(X, Y) = Tm,k(X + A, 27c - y) or 2/k and Pm,k(X, y) = Pmk(X + 7A, 7r - 

In either case 4m,k immerses a Klein bottle. 
To see the converse of this we first observe that zm,k is invariant under 

the action $D: S3 S3 of S1 on S3 given by 

(7.2) $D,(z, w) = (eimtz, eiktW) t X R 

In fact zm,k is just the union of the orbits meeting the curve y (cos y, 0, 
sin y, 0). These orbits are mutually distinct for y X [0, i), and if 2Xmk they are 
distinct for y X [0, 2ir). Parts (a) and (c) follow. 

Observe that P1,, is the only imbedding. In all other cases the immersion 
cuts itself m and k times respectively in the distinguished great circles C1 and 
C2, (5.1), which are the exceptional orbits of the action (7.2). 

From the immersion (7.1) we see that the curves y Pm,k(X, y) for any x 
are geodesics on S3. This gives part (d). Parts (b) and (f) are straight- 
forward. Part (e) follows from the fact that the metric induced by 4m,k has 
the form ds2 = (M2 cos2 y + k2 sin2 y)dx2 + dy2. This completes Theorem 3. 

We now show that the fact that zm,k is ruled characterizes the surface. 

PROPOSITION 7.2. Every ruled minimal surface in S3 is an open sub- 
manifold of one of the surfaces OR, given by 

T(x, y) = (cos ax cos y, sin ax cos y, cos x sin y, sin x sin y) 

for some a > 0. 
PROOF. Let OR be a ruled minimal surface in S3 C R4 and choose a curve 

y on oR which cuts the family of great circles on OR orthogonally. Consider 
y as a curve in R4 with y l = 1. Then the great circle of OR passing through 

v(t) is given by 8 v(t) cos 8 + v(t) sin 8 where v(t) is a curve in R4 satisfying 
(i) 1v1=1, 
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(iii) <a, Y'> = 0 (and, therefore, <v', 7> = 0). 
Hence OR is described locally by *(t, 8) = v(t) cos 8 + v(t) sin 8 and the induced 
metric is ds2 = A dt2 + dO2 where 

A = y ' 2cos20 + 2<y', /> cos sin8 + Il>' 2sin2'0 

In these coordinates the minimal surface equation (1.7) has the form 

( I 2 
+ ? 

2 
+ A a = -2* 

A at2 &82 2A 81 

which reduces to the following pair of equations 

(7.3) 7f'? + I 12 y? + <yf ,t>>O 0 

(7.4) 2)"? + I VI 12 )? + <y, V>,y=O 0 

It follows immediately that <y", y'> = <Y", VI> = <v", ,I'> = <v", IV> = 0 
and therefore each of the functions y a' 12, 1 VI 12 and <a', V/> are constant. 

If we replace 8 by 80 + 8' and write *,(t, 8') = al(t) cos 8' + vp(t) sin 8', 
then the functions y, = y cos 80 + v sin 80 and v, = y sin80 + v cos 8" also satisfy 
equations (7.3) and (7.4) and conditions (i), (ii), and (iii). For the proper choice 
of 80 we have <V,, 7l> 0. By a linear change of the variable t we get l 2 1 

and I VI 12 a2 = constant. 
It is now straightforward to show that in a properly chosen orthogonal 

basis for R4 71(t) = (cos t, sin t, 0, 0) and v,(t) = (0, 0, cos at, sin at), and the 
proposition is proved. 

Remark 7.3. It has been noted that the surface zm,k is invariant under 
a compact group of isometries of S 3. In a forthcoming paper by Wu-Yi Hsiang 
and the author [10] the compact minimal surfaces in S3 which are invariant 
under non-trivial, connected groups of isometries of SI are classified. For 
groups of dimension greater than one the only possibilities are the geodesic 
2-sphere and the Clifford torus. However, for each compact group of dimen- 
sion one, there exists a countably infinite family of surfaces. 

8. The surfaces 72m,k 

We shall now construct a family of non-orientable surfaces. Fix integers 

ml k > 1 and choose points P1, P2, Q1, Q2 as in ? 6. We shall denote by Ym,k the 

(four-sided) polygon P2Q2P1(- Q2)Q1 as shown in Figure 5. 
An apparent obstruction to applying Theorem 1 to this polygon is that 

condition (A) does not hold. This condition was assumed in order to use the 
theorems of [14, ?? 3 and 4]. However, by using [14, Prop. 1] and the fact 
that there is a closed hemisphere H containing 7Ym,k with H nf Ym,k = {Q2, -Q2} 

all the results of these sections can easily be shown to hold for area minimiz- 
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X3 1 

M+1 ~ ~ ~ k+ 

Figure 5. 

ing surfaces with boundary eYm,k* Hence we need only verify conditions (B)? 
(C), and (D). 

With reference to Figure 5 the convex hull of Y/m,k can be described as the 
set bounded by the planes X1 = 0 and X3 = 0 and by the sphere which con- 
tains P2 and meets X3 = 0 in the circle X12 + X22-1. Consideration of the 
family of planes through the X2-axis quickly establishes condition (B). 

Condition (D) can be verified as follows. Project S3 stereographically from 
the point -Q2 and choose coordinates on R3 so that Q2P2 lies on the X3-axis, 
Q1- Q2) lies on the X2-axis, and Q2P1( -Q2) is mapped onto the plane X2 = 0. 

(See Fig. 6.) Let A' be the closure in S3 of the positive quadrant of the 
(X1, X2)-plane. We define a map X2: (Ymk) A' by projecting (Ymk) { -Q2} 

onto the (X1, X2)-plane along the X3-axis and setting o'(- Q2) = -Q2. 
The map iZ is not continuous at- Q2. However, it is sufficient for our 

purposes to know that i: 9TCrm k is continuous at- Q2. This latter fact is true 
and is proved as follows. Using Hildebrandt [8] and the methods of ? 4 we 
have that 9rm k is regular and analytic along its smooth boundary arcs and, 
since the angle at- Q2 is ir/2, it is also regular and analytic at - Q2. Let 
So = S(Q2P1, Q2Q1). In Figure 6, SO is represented by a plane passing through 
the X2-axis. Let St be a geodesic hypersphere represented by another plane 
through the X2-axis which lies above SO when X1 is positive. The regularity 
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P2 

2 X2 

xi~~~~~~~~~~~~x 

Figure 6. 

of OR,,mk at- Q, implies that small neighborhoods of OR.mk at - Q2 will lie 
between S0 and S, in C(Ym,k). The continuity of i I OR.mk at - Q, follows easily. 

To verify the rest of condition D for the map ir we make the following 
observations. 

(a) If S is a great 2-sphere of S3 such that S n Ymk has four or more com- 
ponents, then S meets the interiors of each of the four geodesic subarcs of Ym,k* 

This follows from the fact that for any geodesic y of length < ir, either -r c S. 
or -n s = {p}, or length (y) = 7r and y n s = {p, -p}. 

( b ) Let S' be the image of a great 2-sphere in the stereographic coordi- 
nate system above, and set S+ = s' nf {x G R: X3 > O}. Then S+ has a non- 
singular perpendicular projection onto the (X1, X2)-plane if and only if S+ lies 
in a hemisphere of S' (when S' is considered as a euclidean sphere in R3). 

These facts make straightforward the proof that ir satisfies condition D 
and therefore that ORm k is an embedded disk. 

For m = 1 and k arbitrary condition (D) is satisfied, but when m > 1, it 
fails at the vertex P2. Nevertheless, for any m the methods of ? 3 show that 
the extended surface at P, is analytically parameterized with a possible isolat- 
ed drop in rank of the jacobian at P2. Furthermore, if for a neighborhood N 
of P2 on the surface OR'm k the set N {P2} can be shown to lie in the region 
of C(Ym,k) where X1 cos (27/(m + 1)) - X2 sin (2i/(m + 1)) < 0 (again with 
reference to Figure 5), then the arguments of ? 4 will show that no branching 
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can occur at P2. These necessary local bounds for Trmk can be obtained 
inductively by using Trm k as a comparison surface for armk* In particular 
we shall show that when the boundaries Ym-i,k and Ym,k are fit together so that 
their convex hulls coincide, the open surfaces OI' m_ and OR'h k are disjoint. 
The fact that OTR m-i k (or equivalently 2m.-i,k) has a well-defined tangent plane 
at P2 then provides the necessary local bound for 9rmk at P2. 

The fact claimed above can be proved either by methods developed in [13] 
or as follows. Let 9R and 9T' respectively denote the surfaces Tm k and 
ORrmk and suppose OT and OR' are situated so that C(a&T) = C(a9T'). Let 
v = OR, n 9TO. Then y is the union of open analytic arcs which intersect ex- 
actly at points of tangency of the surface. (If 91 and 91' are tangent at a 
point p, then in a small neighborhood of p on OR the distance from OR to OR' 
along the normal direction looks like a harmonic polynomial of degree >2.) 

It is now possible to find components @D and ?D' of O1t - y and 9Th0' 
respectively such that &8D = a&D'. This follows from the fact that the projec- 
tion w discussed above simultaneously maps eR and 9R', each in a one-to-one 
way, onto the disk A. If ?D0 is any component of A' - r(Y), then @D and @D' can 
be chosen as the intersection of oR and DR' with r'(D0) 

Assume y # 0. Thenw ny # 0. Let OuR" = (OR - A) U gD' and observe 
that OR" again minimizes area for the boundary Ym1- k* However, due to the 
isolated nature of the points of tangency of oR and DR' the surface 9Y must 
meet the surface 9Th ~D at an angle <ir almost everywhere along the "seam" 
)D. By deforming the surface slightly in a neighborhood of one of these points 
we can easily construct a parametric surface having boundary Ym-lk and area 
strictly less than the area of DR. This contradicts the minimality of OR. Thus 
v = 0, which is what we were to prove. 

Of course the methods of ? 4 already apply to the other vertices of 7m,k, 

and it follows that indefinite reflection of the surface Rrm k produces a com- 
plete, non-singular minimal submanifold which we denote 12m,k. Since the gen- 
erators of Gmk leave the graph Sknk invariant, we have that 12m,k is compact. 

THEOREM 4. To each ordered pair of positive integers (m, k), where k 
is odd, there corresponds a compact, non-orientable minimal surface 12m,k 

containing Ym,k and having Euler characteristic 1 - mk. 
We recall that by Corollary 1.6 the real projective plane cannot be mini- 

mally immersed into S3. However, by Theorems 2 and 4 we have the follow- 
ing 

THEOREM 5. Every compact surface but the real projective plane can be 
minimally immersed into S3. For orientable surfaces the immersions can 
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be chosen without self-intersections. 
PROOF OF THEOREM 4. Let OR,, be the surface obtained by reflecting 9TCmk 

across the arc P2Q2. We observe as before that two successive reflections at 
P2 (resp. Q2) constitute a rotation of 27r/(m + 1) (resp. 27r/(k + 1)) about C1 
(resp. C2). These rotations are precisely the maps (a) and (b) given by (6.1) 
and (6.2). They generate the subgroup Go = Zm+i X Zk+l of Gmk' 

We now consider the subset 2' of '2m,k defined by 

'2' UgeGo g(9Ro) . 

This set can also be constructed by reflecting rm Ik (2m + 2) times at P2 and 
then reflecting the resulting configuration k + 1 times at Q2. 

Let ro, * * *, r3 denote the reflections across the geodesics containing P2Q2, 
P2Q1, Q2P1(- Q2), and (- Q2)Q1, respectively. It is straightfoward to check that 

(8.1) rkark = a-l 

(8.2) rkbrk = b- 

for k- 0, 1, 2. 
We now show that 2' is invariant under ro, r, and r2. Since ORO is invari- 

ant under ro, we have 2' = UgeGO go rJ(9O), and thus by (8.1) and (8.2) 2' is 
invariant under r,. For r, and r2 we observe that 

9to U r1(T0) = Toh U a(9TO) def 

def. 
9to U r2(DT0) = MOR U b(1t0) -OR2. 

Hence '2' = U {g(190k); g X Go} for k = 1 or 2, and since ORk is rk-invariant, it 
follows from (8.1) and (8.2) that 2' is also rk-invariant. Hence 2' is invariant 
under the group G, generated by Go and the elements r., r,, rip 

Since k is odd we have that r3 (= rotation of ir about C2) is an element of 
G0. Thus G1 coincides Gm k, and therefore (2' = 72m,k. Further, it is evident 
that the subgroup H. of G. given by Ho {g E Go: g(O1{0) = 9RO} is just the 
identity subgroup. Hence by Proposition 4.4 and Remark 4.5 the Euler char- 
acteristic X(02m,k) of 72m,k can be computed as 

2TZX(Ym,k) - (m + 1)(k + 1) 5KdH2 

2(m + 1)(k + 1) KdH2 
)R m, k 

- 2(1 - mk) 

where K is the Gauss curvature function. 
It remains to show that when X(72m,k) is even, 72m,k is still non-orientable. 

This can be verified by considering a simple, non-contractible, closed curve on 
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the piece of surface OT.rmk U r3(rcrm k) U N where N is a small neighborhood 
of Q2 on the surface ?7m,k. Any such circuit is orientation reversing. This 
completes the proof. 

Remark 8.1. It is possible to show that when k is even, the surface 2mk 

is orientable and has Euler characteristic 2(1 - mk). To see this it is helpful 
to note that r3 lies in the center of Grm ki 

9. Imbeddings into spherical space forms 

The large groups of self-congruences of the surfaces Mr make it possible 
to construct minimal imbeddings of surfaces into many of the three-dimen- 
sional spherical space forms. It has been shown by T. Frankel [6] that if a 
compact surface M can be minimally imbedded into a space of the type S3/G, 
then there exists a covering p: M' M by a compact orientable surface M' 
such that the sequence 

1 >r w1(M') -* w1(M) - G - 1 

is exact. There are several immediate consequences of this. 
(a) If G # {e}, then M cannot be homeomorphic to S2. 
(b) If G # Z2 then M cannot be the real projective plane. 
( c ) If G is not abelian, then M is also not a torus. If, furthermore, G 

does not have a subgroup RZ X Zm of index 2, then the Euler characteristic 
of M is negative. 

( d ) If M is non-orientable, then G has even order. (The group of orien- 
tation preserving paths at * has index 2 in wr,(M, *) and contains p*(w1(M, *)).) 
Subject to these restrictions it is interesting to see how many imbeddings can 
be achieved. 

The basic observation is the following. Suppose M, is imbedded, and let 
9r be the group of congruences of M, in S3. If 9, contains a subgroup H 
which acts freely on S3 then the minimal surface M,/H is imbedded in the 
space form S3/H. 

Recall that the group of congruences of the surface dm-ik-l in S3 corre- 
sponds to the group of symmetries in 0(4) of the equation 

(9.1) Im (zm + I W Im-kwk) = 0. 

Hence, for each integer n such that n/(m, k) and for each r with (r, n) = 1 we 
have that the surface dm-i k-i is invariant under the group Z?, generated by 
the map 

2ri 2rri 

(9.2) An r(z, w) = (e nz, e n W) . 

Under projection dmik-il covers a compact orientable minimal surface of genus 
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(m - 1)(k - 1) + (n - 1)nk imbedded in the lens space Ln,7. 
If we express the Clifford torus as 

(9.3) .= (ei, ei9) E C2: (0, q) e RI} 

we see that it is invariant under An,,, for all n, r and covers a flat minimal 
torus in Ln,r. Moreover, from (9.3) it is clear that z,,, is also invariant under 
the group Z4n generated by g: C2 C2 where g(z, w) = (aw, z) and a = evils . 
This gives minimal imbeddings of flat Klein bottles into the spaces L4n,, for 
n > 1. 

We now observe that for each odd 1 > 1 the surface n is invariant 
under A2nr whenever (2n, r) = 1. Under projection n covers a surface 
which is non-orientable. (The geodesic joining Q, to Q2 on 9Thn,, becomes 
an orientation reversing loop.) 

Combining the above we have 

THEOREM 6. For each set of integers n, r, m, k > 1 where (n, r) 
1 there exists a compact orientable minimal surface of genus 
(m - 1)(k - 1) + (n - 1)mk imbedded in the lens space Lnr. For each set 
of integers n, r, 1 > 1 where (2n, r) = 1 and 1 is odd there exists a compact, 
non-orientable minimal surface of Euler characteristic 1- l(n - 1) im- 
bedded in L~n~r 

Furthermore there are minimal tori imbedded in each space Lnr and 
minimal Klein bottles in each L4,,,. 

By setting n = 2 and k = 1 and by recalling Theorem 4 we get a result 
for real projective space RP3 analogous to those above for the sphere. 

COROLLARY 9.1. Every compact, orientable surface but the sphere (which 
is prohibited by Frankel's theorem) can be minimally imbedded into RP3. 
The immersion of RP2 is unique and one-to-one. 

We now consider space forms arising from the binary dihedral groups, D*. 
For each integer n > 1, D* is a group of order 4n with presentation 

An = B4 = 1, BAB-1 = A` if n is odd, 
An = 1, An = B2, BAB-1 = A-' if n is even.. 

This group can be represented freely on S3 by defining 

(Anz) (e-zS eyw) if n is odd 
(en z, e,, w) if n is even 

B(z, w) w=- i-r, i) . 

Considering the equation Im {z-mn + woe} = 0 shows that mnm- is invariant 
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under D* for each positive integer m such that 2/mn. Furthermore, the flat 
torus (9.3) is also D* invariant. This gives 

THEOREM 7. For each integer m > 0 such that 2/mn there is a compact 
minimal surface of Euler characteristic m(l - mn/2) imbedded in S3/D*. 

Note that whenever n = 4n', each of the surfaces 7mnni,mnni/D* for odd 
m is non-orientable. 

Remark 9.2. For each non-homogeneous space form of the type S3/H 
where H is a free representation of some Zu, x D* the same methods will 
again produce imbeddings. One simply uses the representations found in [20, 
p. 224]. 

10. Polar varieties 

Let A: R >-RI R4 represent a surface in the sense of ? 1. The associated 
Gamss map W*: fR S3 is defined pointwise as the image of the unit normal 
in S3 translated to the origin of R4. In local coordinates 

iF 

(We identify A3 R4 with R' by the *-isomorphism.) This definition is a natural 
generalization of the Gauss map for surfaces in R3. For example, we still have 
the "Weingarten equations" (1.6)(where ( = **), and we have that the rela- 
tive curvature 1 - K I can be interpreted as the ratio of the induced volume 
elements d V;./d V;. Moreover, it is possible to show that A* is conformal if 
and only if * is minimal or parameterizes a constant curvature hypersphere 
[13]. 

Assume that * is minimal. Since 

(10.1) a =1 A A 1A 
iF F 

where $D and q are given by (1.10) and (1.8) we have that <a&V*, D**> 
<a, a**> = 0 and <aD*, Ia*>= (1 - K)F. Hence the metrics induced by 
* and * satisfy 

1 - K. 
ds2 

Furthermore, equation (1.11) and the fact that $D and 4 are complex linearly 
dependent show that 

(10.2) (1 -K)F* 

and we quickly obtain 
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PROPOSITION 10.1. The Gauss map of a minimal surface in S3 again 
describes a minimal surface in S3 with singularities occurring precisely at 
the points where K= 1. The curvature of the gaussian image surface is 
K* =-K/(1 - K). 

Hence, to each minimal surface in S3 the Gauss map associates a second 
generalized minimal surface called the polar variety. It is easy to see that 
taking the Gauss map a second time produces the original surface, i.e. '** * 
A. Hence the Gauss map acts as a pairing of generalized minimal surfaces in 
S3 which is of particular interest in the compact case. 

Observe that each point p E fR where K = 1 corresponds to a branch point 
on the polar variety of degree = 1 + (order of the zero of 1 - K) = 1 + d". 

Hence, by Proposition 1.5 the polar variety is non-singular if and only 
if fR covers a torus or a Klein bottle. 

For any of the surfaces constructed by the methods of ? 4, the polar 
variety can be explicitly exhibited. The general rule is as follows. Let F be 
the geodesic polygon used to construct Mr. Using the surface O9R, choose a 
unit normal vi to F at the vertex vi for 1 < i ? n. Consider 1, . * , ),, as unit 
vectors in R4. Then 1, * * , ,p, naturally describe a geodesic polygon F* on S3. 
The vertex angle of F* at vi will be wcki/(ki + 1) where the angle of F at vi is 
r/(ki + 1). Construct the surface M?*. From Lemma 4.2 we see that M1* will 
have analytically parameterized branch points at vertices where ki # 1. The 
surface M; is the polar variety of Mr. 

With regard to the special surfaces constructed above we note that the 
polar variety of Zk,m is Zm,k (-Zk,m). 

Remark 10.2. Gr = GI*. 

11. Bipolar surfaces and Jacobi fields 

Let A: R SIS3 C R4 be a minimal immersion and let A be its associated 
Gauss map. We view each map as R4-valued and define : fR S5 C R6 by 
,4 = / A *. This mapping is again conformal and induces a metric on fR of 
the form 

ds 2 = (2 - K)F I dz 12 = (2 - K)ds2 . 

Even if we allow the original immersion V to have branch points, this 
immersion can be shown to be non-singular. Moreover, a straightforward 
computation using (10.1) and (10.2) shows that 

(11.1) a88r = -(2 -K)YA 

and thus + is a minimal immersion into SI. We shall call this surface the 
bipolar surface. 
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Evidently + - * Hence the bipolar surface represents a non-singular 
minimal immersion associated uniquely to each polar pair of generalized mini- 
mal surfaces in S3. 

Let OR be any minimal surface in S3 and let ( be a unit normal vector 
field on DR. A Jacobi field on OR is a normal vector field J = wry where the 
function p satisfies the equation Asp =-2(2 - X)9. Here A represents the 
laplacian of OR, and X denotes its Gauss curvature. The nullity of OR is 
simply the dimension of the space of Jacobi fields which vanish on DR. (For 
a discussion of Jacobi fields on minimal surfaces see [19].) 

Note that in a fixed local coordinate z on fR the equations for Jacobi fields 
on ('R) and **( R) have the same form, namely Dp =- (2 - K)F~p. From 
(11.1) we see that each component of + satisfies this equation. In fact we will 
show that the components of + are just the Jacobi fields produced by infini- 
tesimal rotations of S3. 

A function q on a minimal surface in S3 is called a Killing-Jacobi field 
if it represents the normal component of the restriction of a Killing field of S3 
to the surface. Such fields form a vector space Kf whose dimension v (3 < v < 6) 
is called the Killing nullity of the surface. Compact surfaces with v = 3, 4 
and 5 are classified in [10]. 

Killing fields on S3 come naturally from the Lie algebra Bo(4). If we 
represent oo(4) as the skew-symmetric endomorphisms of R4, then we get a 
surjective linear map L: Bo(4) -+ Kf by setting 

(11.2) L(S) = <S(*)g * 

for a minimal immersion 0,. This is because the Killing fields restricted to the 
surface all have the form S(*) for some S E oo(4). 

PROPOSITION 11.1. The coordinate functions of the bipolar minimal im- 
mersion with respect to any orthonormal basis of R6 are the images under 
(11.2) of an orthonormal basis of Bo(4). 

PROOF. Let el, *. * , e4 be an orthonormal basis for R4 and let Sij be the 
skew-symmetric endomorphism of R4 given by 

(11.3) Sij(v) = <ei, v>ej - <ej, v>ei 

for 1 < i < j < 4. Observe that 

L(Sij) = <Sij(V1), A*> = <e, A ep, * A A*>. 
The proposition follows immediately. 

It follows that the bipolar image of a minimal surface in S3 lies non- 
degenerately in SI`. The value of v can be determined from [10]. In partic- 
ular 2(S2) = 3, >(z1,1) 4, *2(Zm,k) = 5 for m > k > 1 and VJ($m,k) = V(72m,k)= 6 
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for m 7 1 and k # 1. Hence we have 

PROPOSITION 11.2. There exist non-singular minimal immersions of 
every surface of negative Euler characteristic into S5 such that none of the 
images lies in a geodesic S4. There is, moreover, a countable family of mini- 
mal immersions of the torus into S4 where none of the images lies in a 
geodesic S3. 

Dual to the immersion * is the minimal immersion 1*+-(1/iF)aD / A + 

which is isometric to A. *+ is the image of + under the *-isomorphism on 
R6 = A2 R4. Since *+ also satisfies (11.1) we have that for any 2-vector a 

(11.4) aa<a, * > -(2-K)F<a,* >. 

This gives 

PROPOSITION 11.3. Let T denote the field of oriented unit tangent planes 
in R4 over a compact minimal surface 9OT in S3. Then for any 2-vector a we 
have that 

5 <T,a>w=O 

where w is the volume from the bipolar metric. If in particular we have 
<T, a> > 0 for some a # 0, then v(9IR) ? 5 and 9OT is totally geodesic or an 
immersed torus. 

PROOF. The first part follows from (11.4) and the divergence theorem. 
For the second part note that <T, a> > 0 -<T, a> 0. This means that 
<+, * a> 0. Let el, *.. , e4 be an orthonormal basis for R4 and write 
*a = ,.<1 aijej A ej. Then 0 = <+, * a> = Y,<, aij<A /\ A*, ej A e;> = 
Ei<. aij<Sij(r), A*> = <S(r), A*> where S = Yaij Sij and Sij is given by 
(11.3). Hence the Killing nullity v(9DT) is ?5, and the rest follows from the 
classification in [10]. 

Note. The kernel of the endomorphism L in oo(4) is a subalgebra cor- 
responding to the group of self-congruences of 9OT in S1. The dimension of this 
group is 6 -. 

12. Intrinsic characterizations of minimal surfaces and 
associated constant mean curvature surfaces 

It was proved by Ricci [2] that sufficient conditions for a riemannian 
metric ds2 = Edx2 + 2Fdxdy + Gdy2 to be realized locally on a surface of 
constant mean curvature H in RK are that the Gauss curvature K satisfy 
K < H2 and that the associated metric ds2 = VH - Kds2 be flat. Ricci's 
observation generalizes to a relevant and interesting statement in this context. 
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Let <t3(c) denote the simply-connected, 3-dimensional space form of 
curvature c. This space can be viewed naturally as a submanifold of R4 as 
follows. 

(12.1) R)3(C) = { *... *, x4) e R4: V1j c q(xl, *.. , x4) - 2x4 = O} 

where 

fxi + . .+ X4 if c > O 

qc(x1, ***, x4)~ =S2 + .. . +2 -24 if C < 0 

and where R4 is assumed to have the metric dc2 q,(dxl, * , dX4). 

THEOREM 8. Let ds2 be a C3 riemannian metric defined over a simply- 
connected surface S and let H2 be any non-negative real number. Suppose 
that the Gauss curvature K of this metric satisfies 

(12.2) K<H2 

and furthermore suppose that the metric 

(12.3) ds^2 = VH2 - Kds2 

is flat. Then for each constant c < H2 there exists a differentiable, 2wU-peri- 
odic family of isometric immersions 

O: S > DR3(C) 06E? 

of constant mean curvature VH2 - c. Moreover, up to congruences the maps 
*cVo; 0 ? 0 < wu represent (extensions of) all local, isometric, constant mean 
curvature immersions of S into T3(c). 

If, furthermore, the metric ds2 was originally induced by an immersion 
of constant mean curvature H' into T3(c), then setting H = V(H')2 + c we 
have that 

(12.2') K< H2, 

the metric (12.3) is flat, and all the above conclusions hold. 
Remark 12.1. If the hypothesis (12.2) is weakened to (12.2') for general 

metrics, the above imbedding theorem does not hold. To see this consider the 
metric ds2 = (1 + I Z 12a)2 I dz 12, defined over the complex plane, where a is a 
non-integer >3. The curvature K of this metric is given by 

K= 2a2 I z2 IC-1 
(1 + I z2 a)4 

and together with H= 0 satisfies (12.2'). Moreover, away from the point 

z = 0 the metric V-Kds2 = V 2 a I z 16-1 a dz 12 is flat. However, the plane 
with this metric cannot be (isometrically) minimally immersed into R3. This 
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is seen as follows. Let f8ij be the second fundamental form of any such im- 
mersion. Then the function f(z) = fl - ifi2 would be a well defined holo- 
morphic function in the plane satisfying the equation 

If 12 --K(1 + IZ2 a,)4- =22 IZ2la-. 

This is impossible. 
PROOF OF THEOREM 8. Assume that S is not the 2-sphere. By uniformi- 

zation we can assume that S is either the unit disk or the plane and that the 
metric has the form ds2 = F(dx2 + dx2). The fact that the Gauss curvature 
of ds2 is identically zero means that 

(12.4) A log [(H2 - K)F2] 0. 

Hence there exists a holomorphic function f(x1 + ix2), determined up to a 
multiplicative constant eta and defined everywhere on S, such that 

(12.5) I f 12= F2(H2-K) . 
We now define a two-parameter family of second fundamental forms 

'3j(0, c) on S by 

,811(O, c) = Re {eif } + VHH2 - cF 

i922(0 C) =-Re {e8f } + VH - -cF 

i912(0 c) = Im {ei8f} -= f21(0, c) 

Observe that for each pair of numbers (0, c) (c < H2) the forms ds2 and ,8(0, c) 
together satisfy the equations 

(12.6) (c - K)F2 = '822- 11D22 

(12.7) Rij;k(0, c) = Rik;j(0, C); 1 < , j, k < 2 

where the semi-colon denotes covariant differentiation with respect to the 
designated coordinate vector field. (The first equation is obvious; the second 
follows from a straightforward computation.) 

Equations (12.6) and (12.7) are respectively the Gauss curvature and 
Mainardi-Codazzi equations for the first and second fundamental forms on a 
surface in Dl3(c). These equations are well known to be the integrability 
conditions necessary and sufficient for finding these forms on a surface in 
9h3(c). Moreover by using the model (12.1) of RI3(c) it is possible to write 
down, as in [12, p. 192], a first order, linear system of ordinary differential 
equations 

(12.8) X'(t) = A(0, q, t)X(t) 

(where the matrix A is class C-) which govern the imbedding of the curve 
{teis e S: t e R} of S into RI3(c) C R4. From this picture the smooth dependence 
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on a is clear. 
The uniqueness of the immersions is clear. Moreover, from (12.4) and 

(12.6-7) we can see that for fixed c there is only one number H' such that ds2 
can be found on a surface of constant mean curvature H' in DR3(c). 

The case where S is homeomorphic to the sphere S2 is easy. Equation 
(12.4) gives rise to a differential form f(z)dz2 (f as above) which is holomor- 
phic in the conformal structure of the surface. This form must vanish, and 
thus by (12.5) we have K -H2 contrary to assumption. 

For each c < H2 there is a standard immersion of S2 into 't3(c) with 
constant mean curvature VH2 - c [12]. This immersion is, moreover, unique. 
In fact, any conformal immersion of S2, considered as a Riemann surface, into 
'f3(c) with constant mean curvature H =v H2 - c induces a second funda- 

mental form ,C such that the associated form ot = (,, - HCF - ifS2)dz2 (where 
du2 = Fdz2 is the induced metric) is holomorphic on S2. Hence c) = 0, , = H~ds2 
and K -H2; and the immersion is standard. 

For the second part of the theorem we assume that ds2 was inherited 
from an immersion r of S into DR3(c0) with constant mean curvature VH2 - c0. 

By the previous remarks we only need to worry when S 0 S2. Choose the disk 
or the plane as global isothermal parameters for S and define a function f in 
these coordinates by f = ,- VH2 - cF - iSC12 where F3ij and fij are the 
first and second fundamental forms of the immersion *. We can now proceed 
exactly as above to construct the family of immersions *,,a. This completes 
the proof. 

Let Mr be a minimal surface in S3 constructed by the methods of ? 4. 
Lift the metric of Mr to the universal covering surface Ur of Mr. By Theorem 8 
there exists for each c < 1 a one-parameter family *,,a of complete, isometric 
constant mean curvature immersions of Ur into 'Y3(c). 

It should be clear that the symmetry of Mr will force a high degree of 
symmetry into the immersions of Ur. In particular let ORlr c Ur be a domain 
mapped one-to-one onto ORr CMr by the covering map. Suppose that OR C Ur 

is similarly mapped onto a domain OR which is the image of DRr under an 
orientation preserving self-congruence of Mr. Then there is an isometry of 
Tt3(c) which takes , onto C and this isometry represents a 
congruence of the whole immersion f This fact follows from the existence 
and uniqueness theorems discussed above. Hence, we have 

PROPOSITION 12.2. Let 9 be the group of orientation-preserving iso- 

metries of Mr which extend to congruences in S3. Let 9 be the extension of 
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9 to isometries of Ur by the deck transformations of the covering. Then each 
element of 9 extends to a congruence of each immersion *,, That is, there 
exists for each (c, 0) a representation of 9 in Isom ((m 3(c)) which makes r 
9-equivariant. 

Remark 12.3. Two interesting directions of inquiry that now arise are: 
(1) Which of the immersions *c,,: U,-,JR3(c) factor to a compact surface? 
(2) What are the properties of the complete surfaces *0,, Ur) of constant 

mean curvature in R3 when Mr = k Zm,k or Ylm,k? 

The following easily proved facts should be useful for such considerations. 
Let r: Ur , Mr be the covering map. 

(a) If y is a great circle of S3 which lies on Mr, then A w-'(z)) is a curve 
of constant curvature 1 - c in (x3(C). 

(b) If Mr is invariant under reflection across a geodesic 2-sphere S in SI 
and if y = Mr n s, then for each component -y/ of w-'(y), we have that ACO('Yo) 
lies in a totally geodesic hypersurface Sa of (x3(c) and the immersion *,,o is 
invariant under geodesic reflection across Sa. 

Note. A simple example of the above phenomena is provided by the 
Clifford torus, zll. For 0 < c < 1, J z>) = {(z, w) e C2: I z 12 = 1 and I w 12 = 
(1/c2) - 1} cS3(1/c). When c = 0, +%0(z l) = the right circular cylinder of 
radius 1 = {(z, w) e C2: I z I2 = 1 and Im (w) = 0}c R3. When c < 0, 

AC O(z',l) = {(z, w) e C2: I z 12 = 1 and Re (w2) =-(1/c2) - 1} 
cR3(c) = {(z, w) e C2 z I2 + Re (w2) =-(1/c2) and Im (w) > 0} e 

Thus as c progresses down, the torus unfolds to a cylinder in R3 and then be- 
comes a geodesic cylinder in hyperbolic space. 

13. Conjugate surfaces and dual reflection principles 

Using Theorem 8 we can generalize that concept of an associate surface 
which is defined for minimal surfaces in R3. 

Let *: R - DR3(c) be a surface of constant mean curvature in 9R3(c). Lift 
f to the universal covering surface a of R and denote by fo: a - DR3(c) the 
immersion koa given by Theorem 8. The surfaces As, 0< 0 < w, are defined 
to be the associate surfaces of *, and the surface +/2 is called the conjugate 
surface of *. Note that in general the surfaces As , are defined only to within 
isometries of ZR3(c). In this sense *,,a is w-periodic in 0, and the conjugate of 
a conjugate surface is just the original surface. For minimal surfaces in R3 
the above definition agrees with the usual one. In the other cases the rela- 
tionship among the associate surfaces is not as beautifully simple as in the 
classical case. However, when the mean curvature is zero there is still an 
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interesting and useful reflection duality for conjugate surfaces. 
Let *: OR --n R3(c) be a surface in 9R3(c) and let y c R be any curve. Then 

Y is called an arc of linear reflection for the surface if * I Y is a geodesic 
arc in WZf(c) and if *(R) is invariant under geodesic reflection across that arc. 
If, on the other hand, +(y) lies in a totally geodesic hypersurface S of t3(c) 
and if *(R) is invariant under geodesic reflection across S, then + I y is called 
an arc of planar reflection for the surface. 

PROPOSITION 13.1. Let f and A* be conjugate minimal surfaces in 9X3(c) 
and let y be a curve on the parameter surface R. Then * I y is an arc of 
linear reflection if and only if f* 1y is an arc of planar reflection. 

PROOF. Suppose c > 0. By making a suitable normalization, we may 
assume that c = 1. Then by Proposition 3.1 it is sufficient to show the follow- 
ing: * I Y is a great circle of S3 if and only if A* 1 y is a curve of orthogonal 
intersection of the surface with a great 2-sphere. 

Consider f and A* as R'-valued functions with = 1. For a 
local coordinate z = xl + ix2 on R the metric has the form ds2 = F I dz 12, and 
we set a = a/lx, log F and b = a/8X2 log F. Under these circumstances * will 
satisfy the system of equations 

=11 a - 
- by,, + ary - F* 

*22 =-a*r,, + b,2 - a -F 

(13.1) =12 b+,l + a*,2 + no7? 

--(acy,,+ ? 1h2) F 

=)2 1=a*,2) F 

where C = (1/F)ik A ,, A *12 and where (a - if)dz2 is a holomorphic form 
on UR. Moreover, A* will satisfy the same system of equations with a replaced 
by -,9 and with ,C replaced by a. We denote this system by (13.1*). 

By conformalizing the metric on a half-neighborhood and reflecting we 
can assume that y is given locally by x2 = 0. Let >(xl) = f(x,, 0) and >*(xl) = 
**(x,, 0). From (13.1) and the fundamental theorem for space curves, we see 
that v is a great circle of S3 if and only if 

(13.2) b(x,, 0) = a(x,, 0) = 0 . 

Similarly v* is an arc of planar reflection if and only if *,2*(XI, 0) has constant 
direction, i.e., the unit vector (1/VF)*,*(x,, 0) is constant. From (13.1*) and 
the fundamental theorem for curves we see that this happens if and only if 
(13.2) holds, and the theorem for c > 0 follows. 
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Proofs for the cases where c < 0 are entirely analogous. 
Remark 13.2. For conjugate minimal surfaces in R3, normalized so that 

the corresponding component functions are conjugate harmonics, one can show 
that the line of (linear) reflection invariance on one surface is normal to the 
corresponding plane of invariance on the conjugate surface. Hence there is a 
tight relationship between the groups of reflection symmetries on conjugate 
surfaces in R3. The lattice groups of the classical Schwartz surfaces are a 
good example of this phenomenon. 

Remark 13.3. By Proposition 13.1 the conjugate surface of a ruled sur- 
face (cf. ? 7) is a "surface of rotation" i.e. it is invariant under the map (z, w) 4 
(ei0z, w) for all 8. Furthermore, by Remark 12.3b each of the immersions C 

associated to a ruled surface has a similar invariance. When c = 0 we obtain 
the classical constant mean curvature surfaces of rotation in R3. 

14. Imbedded, periodic, constant mean curvature surfaces 

Using the above observations it is possible to construct complete, constant 
mean curvature surfaces in a highly controlled way. Begin with a polygon r 
and the surface Or as in ? 4. Let OR* be the conjugate surface. By Propo- 
sition 13.1, OR* is a minimal surface bounded by a geodesic polyhedron r* 
with its boundary meeting the faces of r* orthogonally. By Remark 12.3b 
each surface c for c < 1 lies similarly in a geodesic polyhedron 
r* c ZR3(C). In each case a complete surface is generated by reflections across 
the faces of the polyhedron. 

Hence to understand the structure of Ic,,ri2( Ur) it is useful to study rF,. 
We begin with some elementary observations. 

Let F have vertices vi, ..., v, and edges y1, ..., 'an. 

(a) F* has exactly n faces w1, ..*, w, where each wi contains Aci >/2(Y) 

(b) The face r._1 meets the face rj at an angle equal to the angle of r 
at v;, namely w/(k, + 1). 

(c) Every orientation preserving self-congruence of Mr induces an ori- 
entation preserving self-congruence of *ct12( Ur). 

These observations are not enough to determine IF* completely. For this 
we need to calculate the angle formed by the pair of "lines" r-1 fln j and 
ir n zj+i in each "plane" Wj. 

For these calculations we restrict ourselves to the case c = 0 and prove 
some useful facts. Let y = y, for some j. 

LEMMA 14.1. Let s denote arc length along y and let /3 = <(da/ds), e2> 
where r7 is the unit normal to Or along y and where e2 is the unit tangent 
vector perpendicular to ̂  and interior to Mr. Let (as) be the plane curve 
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*0 r/2 1 lying on rF* C Rc . Then 

(14.1) 9'(s) = (cos B(s), sin B(s)) 
where 

(14.2) B(s) = s- S(t)dt . 

PROOF. Choose local isothermal coordinates (xl, x2) for M, so that y cor- 
responds to x2 = 0. The immersion * then satisfies (13.1) where b(x,, 0)= 
a(x,, 0) = 0. Hence the R3-valued map T = *0,/2 satisfies the system 

P,11 = aT,1 - bP,2 + (F - f)H 
P 22 =-aP,1 + bT,2 + (F + f)H 

T112 = bT,1 + aT,2 + aH 

(14.3) H,, = -!((F - fS)P,1 + a,2) 
F 

H,2 =-I(aP,1 + (F + NY) ,2) 
F 

where H = (1/F)TP1 A TP2. Restricting these equations to x2 = 0 and reparam- 
eterizing by s we see that 

(a) (d/ds)T,2(s, 0) 0-. 
(b) cp(s)(=T(s, 0)) lies in the plane r,2(S, 0)' and has normal vector field 

v(s) = H(s, 0). 
(c) (' and v satisfy the equations 

9" if= (1 - V 
(14.4) ' = -(1- ) 

where,8 = (1/F)9. 

The result is now straightforward. 
Consider Y) as an R4-valued unit vector. Then by (13.1) we see that 

dxi - f3e2 
ds 

and therefore 

(14.5) dxi ds 

Observe that as * traces a great circle on S', the Gauss map Y) also traces a 
great circle on S'. 

LEMMA 14.2. For an interval (a, b) over which 3 is never zero the inte- 
gral 
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X 3(s)ds 

is just the distance on S3 from r((a, 0) to rY(b, 0), i.e., the distance between the 
corresponding points on the polar surface. Furthermore, / = 0 only at the 
isolated zeros of the holomorphic form co, i.e., where K = 1. 

PROOF. The first part follows from (14.5); the second from the observa- 
tion that since a(s, 0) = 0, 3= 0 if and only if the second fundamental form 
vanishes. 

Suppose that K # 1 in the interior of 3j. We denote by y the polar image 
of -y6, and by y* the curve *o, 21 / ywhich lies on 7r. For each j we set e, = 
fZ n zj,? where, by convention, wn w, Then the normal to yt in wj, which 
is the normal to the surface, is parallel to ej-, at one end of y- and parallel to 
e, at the other. Hence the angle between ej, and ej is simply the change in 
direction of the normal to yj as it crosses the face wr. This, combined with 
the lemmas above, gives 

PROPOSITION 14.3. The angle between the successive edges ej-1 and ej on 
r* is equal to 

length (7j) + length (y*). 

Consider the polygon ImFk defined in ? 6. In this section it was shown 

m l k 

or 

(a) (b) 

in, k 

or 
(double line) 

(a) (b) 

Figure 7. 
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that K = 1 only at the vertices of Fm,k* It is clear from inspection that for 
each edge y of r we have length (') = length ('y*) = w/2. 

Hence, by Proposition 14.3, the associated polyhedron (Fm k)* c R3 consists 
of four planes which intersect in mutually parallel lines at the successive 
angles r/(m + 1), r/(k + 1), r/(m + 1), r/(k + 1). Observe now that a rota- 
tion of ORtrmk by w about its center line of symmetry is an orientation preserv- 
ing congruence. Hence, there is a rotation by w in euclidean space which 
leaves *%,/I2(9Rpm k) invariant and interchanges opposite vertices. 

Hence a perpendicular cross-section of (Fm,k)0* must be as shown in Figure 7. 
Our final observation is that j9 changes sign as we pass from one edge of 

mFrk 

Figure 8. 
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rm,k to the next. Hence, the change in the normal across the faces of rm,k is 
successively w, 0, w, 0. It follows that only configurations of type (b) in Fig- 
ure 7 are allowed. 

A sketch of a*,kO,(/2DRm k) is given in Figure 8. 
Observe that when m = k = 1 we have a right circular cylinder, and in 

general when m = k we get a complete surface which lies between two planes 
and has a fundamental domain which resembles the surface of an (m + 1)-spoked 
wagon wheel without the rim. For m = k = 2 or 3 the surface is imbedded 
and appears from "above" as shown in Figure 9. 

)00K) 
7n, - k2 

mk =3 

Figure-9. 

Let Umm be the universal riemannian covering of $mms and recall that 
-0,0 = S2. Then we have 
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THEOREM 9. The surfaces fori2(Umm) for m = 0, 1, 2, 3 are complete, 
imbedded surfaces of constant mean curvature 1 in R3 which lie between two 
parallel planes. 
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