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The purpose of this paper is to study minimal surfaces in three-dimensional 
manifolds which, on each compact set, minimize area up to second order. If 
M is a minimal surface in a Riemannian three-manifold N, then the condition 
that M be stable is expressed analytically by the requirement that o n  any 
compact domain of M, the first eigenvalue of the operator A+Ric(v)+(AI* 
be positive. Here Ric (v) is the Ricci curvature of N in the normal direction 
to M and (A)’ is the square of the length of the second fundamental form of 
M. 

In the case that N is the flat R3, we prove that any complcte stable 
minimal surface M is a plane (Corollary 4). The earliest result of this type 
was due to S. Bernstein [2] who proved this in the case that M is the graph of 
a function (stability is automatic in this case). The Bernstein theorem was 
generalized by R. Osserman [lo] who showed that the statement is true 
provided the image of the Gauss map of M omits an open set on the sphere. 
The relationship of the stable regions on M to the area of their Gaussian image 
has been studied by Barbosa and do Carmo [l] (cf. Remark 5 ) .  The methods of 
Schoen-Simon-Yau [ 113 give a proof of this result provided the area growth of a 
geodesic ball of radius r in M is not larger than r6. An interesting feature of 
our theorem is that it does not assume that M is of finite type topologically, or 
that the area growth of M is suitably small. 

The theorem for R3 is a special case of a classification theorem which we 
prove for stable surfaces in three-dimensional manifolds N having scalar 
curvature SZO.  We use an observation of Schoen-Yau [8] to rearrange the 
stability operator so that S comes into play (see formula (12)). Using this, and 
the study of certain differential operators on the disc (Theorem 2), we are 
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able to show that any complete noncompact stable surface M in a 3-manifold 
N of non-negative scalar curvature is conformally diffeomorphic to the 
complex plane C or the cylinder A. It was shown in [8] that if M is compact 
and stable, then M is the sphere or a flat totally geodesic torus. We show also 
that if M is a cylinder and either M has finite absolute total curvature or N 
has non-negative Ricci curvature, then M is flat and totally geodesic. We also 
observe that all of the above cases do occur. Finally, we give an intrinsic 
characterization (Theorem 4) for a metric o n  S 2  to  be realized on a stable 
minimal immersion into a compact scalar flat three-dimensional manifold. We 
present a similar characterization for metrics on C to be realized on a stable 
minimal immersion into a complete scalar flat 3-manifold. 

The paper is divided into three sections. In the first section we study the 
operator A - q on a complete Riemannian manifold M of arbitrary dimension. 
Here q is a smooth function on M. We show that the existence of a positive 
function f on M satisfying A f - q f = O  is equivalent to the condition that the 
first eigenvalue of A - q  be positive on each bounded domain in M. This 
result is well known if M is Iw" and was proven by Glazman [9], p. 159. It is 
a fairly easy generalization of the Iw" proof to give a proof in our setting; 
however, since we use the result many times, and since it may be useful in 
other geometric problems, we give a fairly complete proof of the theorem. 

In Section 2 we study the operator A - a K  for conformal metrics on the 
disc, where K is the Gauss curvature function and a is a constant. We show 
that if a 2 1 and the metric is complete, then there is no positive solution f of 
A f -  aKf = 0. The operators A - aK are intimately connected with the stability 
of minimal surfaces, the case a = 2 for surfaces in R3, and the case Q = 1 for 
surfaces in scalar flat 3-manifolds (see Theorem 4). We do not know the 
smallest value of a for which A - a K  has a positive solution. For the PoincarC 
metric on the disc the value is a. In Section 3 we prove our results on minimal 
surfaces. 

We would like to thank S. T .  Yau for his encouragement and interest in 
this work. We also thank Percy Deift for many interesting discussions on the 
Schrodinger operator. 

We have recently learned that the special case of our results for stable 
surfaces in Iw' has also been obtained by do Carmo and Peng by a different 
method. 

1. Some General Results for the Operator A - q 

Let ( M ,  ds2) be an n-dimensional complete noncompact Riemannian 
manifold, and let q be a smooth function on M. Given any bounded domain 
D c M, we let A,(D) C h2(D) S A@) 5. . . be the sequence of eigenvalues of 
A - q acting on functions vanishing on JD. The usual variational characteriza- 
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tion of A,(D) is 

(1) h,(D) = inf {I ((Vfl’+qf) dv : spt f c D, 
D 

where (Vf( denotes the magnitude of the gradient of f taken with respect to 
ds’, and dv denotes the volume element of M. The following lemma is a 
well-known consequence of (1) and the unique continuation property for 
solutions of A-q-th, .  

LEMMA 1. If D, D’ are connected domains in M with D c  D’, then 
A,(D)Zh,(D’). I f  D ‘ - o #  0,  then we have A,(D)>A,(D‘). 

We now state the main result of this section. 

THEOKEM 1. The following condition are equivalent: 
(i) A l ( D ) 2 0  for every bounded domain D C  M ;  
(ii) h,(D)>O for every bounded domain D C  M ;  

(iii) there exists a positive function g satisfying the equation Ag - qg = 0 on 
M. 

Proof: ( i ) j ( i i ) .  This is a consequence of Lemma 1 since, for any 
bounded domain D c M and any point xo E M, wc can choose R large enough 
so that the ball BR(x0) ={x E M : dist ( x ,  xo) < R }  satisfies BK(xo) - # 0 and 
we have A,(BR(xO))ZZO by hypothesis. 

(ii)+(iii). To prove the existence of a positive solution g of Ag-qg = O  
we fix a point xo E M. For each R > 0 we consider the problem 

Au-qu=0 on B R ( x O ) ,  
u = 1 on I3BR(x0) . 

Since A~(BR(xO))>O, there is no nonzero solution of Au-qu=O on BK(xo) 
with u = 0  on dBR(xO). The Fredholm alternative ([6],  Theorem 6.15, p. 102) 
thus implies the existence of a unique solution v on B,(xo) of 

A v - ~ u = ~  on BR(xO), 
u = O  on 13BR(xo). 

It follows that u = u + 1 is the unique solution of (2). 
We now prove that u>O on BR(xU). It follows from the strong maximum 

principle ( [6 ] ,  pp. 33-34) that if u 20 on BR(xO), then u>O on BR(x0). 
Suppose now that R={xEB,(x , ) :  u ( x ) < O } t 0 .  Hence O C B ~ ( X ~ )  is a 
bounded domain and thus, by Lemma 1, h,(R)>O. Since Au -qu = O  on R 
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and u = 0 on 80, we would have u = O  in R, contradicting the unique 
continuation property. We have shown that u > 0 on  BR(x0) .  

We now set g R ( x )  = u(x0)-' u ( x )  for x EM. We have seen that gR satisfies 

From the Harnack inequality (see([6], Theorem 8.20, p. 189) it follows that 
on any ball Bm(xo) ,  there is a constant C depending only on cr and M 
(independent of R) such that, for R >2a, 

It now follows from standard elliptic theory ([6], Theorem 6.2, p. 85) that all 
derivatives of gR are bounded uniformly (independent of R )  on compact 
subsets of M. We may therefore choose a sequence Ri .+a so that gR 
converges along with its derivatives on any compact subset of M, and by 
taking a diagonal sequence we can arrange that g R ,  along with its derivatives, 
converges uniformly on compact subsets of M to a function g satisfying 
Ag-qg = O  and g ( x o ) =  1. Since g is not identically zero and gZ0,  the strict 
maximum principle implies that g > 0. This finishes the proof that (ii) j (iii). 

(iii)+(i). If g > O  satisfies A g - q g = O  on M, we define a new function 
w =log g. We now calculate 

Let f be any function with compact support on M. Multiplying (3) by f and 
integrating by parts, we obtain 

- qf2 du + I, IVw12f2 du = 21, f(Vf, V w )  d u .  

Applying the Schwarz inequality and the arithmetic-geometric mean inequality 
we have 

Putting this into the above equation and canceling the terms 

obtain 

-I, qf du IVfl'du. 
M 



STRUCTURE OF SABLE MINIMAL SURFACES 20 3 

If D is any bounded domain and f is any function with support in D, we have 
shown that 

It now follows from (1) that A,(D)ZO. This finishes the proof of Theorem 1. 
The last part of the proof actually yields 

COROLLARY 1. If D c  M is any bounded domain, and if there is a function 
g > O  in D satisfying Ag -qg = 0, then A,@) 20. 

2. The Operator A-aK for Conformal Metria on the Disc 

Let M be the unit disc in the complex plane endowed with the metric 
ds2=p(z)ldz12. We assume ds2 is a complete metric. Let K denote the 
Gaussian curvature of M and A the metric Laplacian, i.e., Af =p- ' ( f rs+fyy) ,  
where z = x + iy. The well-known formula for K is K = -;A log p. We shall 
prove the following theorem. 

THEOREM 2. Assume dS2 is complete. For a L 1, there is no positive solution 
g of Ag-aKg on M. 

Proof: We first note that it suffices to prove the theorem for a = 1. This 
follows since for any function f with compact support on M and any a > 1 we 
have 

Thus (1) shows that the positivity of the first eigenvalue on any bounded 
domain D for A-aK implies the positivity of A l  for A- K. Thus by Theorem 
1 the existence of a positive solution of A - a K  for a > 1 implies the existence 
of a positive solution for A-K. 

To prove Theorem 2 for a = 1, we define a function h by h = p-'". We 
see from the definition of K that A log h = K, i.e., 

- K .  Ah (Vh1' 
h h2 

In particular, h satisfies 

(4) 
(Vh12 

h a  
A h = K h +  
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Let D c M be a bounded domain, and let 5 be a smooth function on M with 
compact support in D. We now calculate 

= [(-5A5)h2-2&(VJ, Vh)-  t 2 h A h  + K(5h)*] du. JM 
It follows from (1) that 

Combining (5) and (6),  using (4) and a slight rearrangement we have 

Integration by parts gives 

Now define a smooth function ( ( r )  for rElW which satisfies 

If r measures the metric distance to 0, and R is any positive number, then 
5 ( r )  defines a Lipschitz function on M with support in BR(0) .  A standard 
approximation argument justifies this choice of 5 in (7). Using (8) and the fact 
that du = dx dy we have 

Putting this into (7) we have 

(9) 
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Since ~ ( z )  Idz(’ is a complete metric on the disc, p cannot be a constant 
function. Therefore, (Vh12 is not identically zero on M. Thus, by choosing R 
sufficiently large in (9), we conclude that A1(BR(0))<O. By Theorem 1 this 
implies that there is no positive solution of A - K  on M. This completes the 
proof of Theorem 2. 

The following corollary is a slight strengthening of Theorem 2. 

COROLLARY 2. k t  ds2 = ~ ( z )  ldz12 be a complete metric on the disc. There 
exists a number a, depending on ds2 satisfying 0 6  a,< 1 so that for a S a, 
there is a positiue solution of A -  a, and for a > a, there is no positiue solution. 

Proof: Let S = { a  : there is a g>O satisfying Ag-aKg=O}.  From 
Theorem 2 and the remarks at the beginning of its proof it follows that there 
is an a,, satisfying O S a , S 1  so that S is either (-03, a,) or (-03, a,,]. The 
corollary will follow if we can show that S is a closed set. To see this, suppose 
{a,,} is a sequence in S such that limn- a,, = a,. Let g ,  be a positive solution 
of Ag,, - a,,Kg,, = 0 normalized so that g,(O) = 1. Using the Harnack inequality 
( [6 ] ,  Theorem 8.20, p. 189) and elliptic estimates as in the proof of Theorem 
1 we can assert the existence of a subsequence of { g , }  converging uniformly 
along with its derivatives on compact subsets of M to a positive solution of 
Aha&. This shows that S = ( - m ,  a,] and, since l $ S ,  this completes the 
proof of Corollary 2. 

Remark 1. For the PoincarC metric on the disc we have K = - l ,  and we 
are studying the operator A+a.  In this case it can be shown (cf. [7]) that the 
value of a, in Corollary 2 is i. For metrics of variable curvature we do not 
know the possible values of a,  which can occur. 

The next result is an extension of Theorem 2 which will be used later in 
our study of stable minimal surfaces. The proof follows directly from 
Theorem 1, Theorem 2, and formula (1). 

COROLLARY 3. Let ds2 = p ( z )  ldzI2 be a complete metric on the disc. If a 2 1 
and P is a non-negatiue function, then there i s  no positive solution g of 
Ag-aKg+Pg=O on M. 

3. Complete Stable Minimal Surfaces h 3-Manaolds 

Let N be a complete oriented three-dimensional Riemannian manifold. 
Let M be a two-dimensional complete oriented submanifold minimally 
immersed in N. We say that M is stable if the second variation of the area is 
non-negative on any compact subset of M. More precisely, let e ,  , e2 ,  e3 be a 
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positively oriented orthonormal frame defined locally on M with e l ,  ez 
tangential, and e3 the globally defined unit normal. The second fundamental 
form of M is the symmetric quadratic tensor on M defined by = (v ,e3 ,  e;) 
for 1 d i ,  j S 2,  where is the Riemannian connection of N. The condition 
that M be a minimal surface is 

hi l+h22=0.  

The stability of M is given by the following inequality (see [4]): 

[lVf12-(Ric(e3)+ h:)f-3 d u Z 0 ,  
M i.; = 1 

(10) 

where f is any function having compact support on M and Ric(e,) is the 
Ricci curvature of N in the direction of e3 .  We now do the rearrangement 
described in Schoen-Yau [8]. The Gauss curvature equation 
K = KI2 + hll  hz2 - h:z,  where K is the intrinsic Gaussian curvature 
Kii is the sectional curvature of N for the section determined by 
Using minimality and symmetry of hi we have 

says that 
of M and 
ei and e;. 

Inequality (10) may then be written in the form 

j M [IvfI2- ( S - K + i  i . j  = 1 h:)f2]  d u e o ,  

where S is the scalar curvature of N given by 

S = K , ,  + K 2 3  + K1-3 = KI2 + Ric (e3) . 

According to (l), this inequality is equivalent to Al(D)ZO for every bounded 
domain D c M, where A ,  is the first eigenvalue of the operator 

i.j = 1 

We now classify the stable minimal surfaces in three-manifolds of non- 
negative scalar curvature. 

THEOREM 3. Let N be a complete oriented 3-manifold of non-negatiue 
scalar cumamre. Let M be an oriented complete stable minimal surface in N .  
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There are two possibilities: 
(i) If M is compact, then M is conformally equivalent to the sphere S2 or M 

is a totally geodesic flat torus T2. I f  S > O  on N, then M is conformally 
equivalent to S2. 

(ii) If M is not compact, then M is conformally equivalent to the complex 
plane C, or the cylinder A. If M is a cylinder and the absolute total curvature 
of M is finite, then M is flat and totally geodesic. If the scalar curnature of N is 
everywhere positive, then M cannot be a cylinder with finite total curvature. 

If the Ricci curnature of N is non-negative, then the assumption of finite 
total curvature in (ii) can be removed. 

Remark 2. We feel that the assumption of finite total curvature should 
not be essential in proving that the cylinder is flat and totally geodesic in (ii), 
but so far we have not been able to remove it. 

Before giving the proof of Theorem 2 we state the following corollary for 
the case when N is R3. This implies the classical Bernstein theorem [2] for 
complete minimal graphs in R3. 

COROLLARY 4. The only complete stable oriented minimal surface in R3 is 
the plane. 

Proof: In this case the stability operator (12) becomes A-2K and by 
Theorem 3 we know that M is conformally either Q= or  A. By Theorem 1, 
there is a positive function g on M satisfying Ag -2Kg = 0. If M is conformal 
to A, we may lift g to the universal covering @ of A. In either case we have a 
metric on C with K 10 and a positive g satisfying Ag - 2Kg = 0. Thus Ag 5 0, 
and g is a positive superharmonic function on C which must be constant. 
Therefore K is identically zero and hence CiVj hc= -2K is identically zero. 
Consequently M is a plane. 

Remark 3. Observe that each of the four possibilities of Theorem 3 does 
occur. For example, S 2 X R  has positive scalar curvature and has a stable S2, 
T2xR is flat and has a stable T2.  We can choose a metric on C of positive 
Gaussian curvature and by crossing with R construct a metric of positive 
scalar curvature on R3 having a stable @. Similarly A XR has a flat metric 
with a stable A. 

Remark 4. It is shown by Schoen-Yau [8] that if N is compact with S 20, 
and M is a stable incompressible T2 (i.e., the fundamental group of M injects 
into that of N), then N is flat. We believe it is true that if N has non-negative 
scalar curvature and admits a complete stable or  A, then N is flat. This 
would be an interesting analogue of the splitting theorem of Cheeger- 
Gromoll 131. 
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Remark 5. We point out that Corollary 1 can be used to simplify the 
proof of Theorem 1.2 of Barbosa-do Carmo [l]. The theorem states that if D 
is a domain in a minimal surface M GR3,  and if the area of the Gauss image 
g ( D ) c S 2  is less than 27r, then D is stable. If A l  is the first eigenvalue of 
g(D) for the spherical Laplacian and f l  is the first eigenfunction, then the 
function h = f l o g  is a positive function on D satisfying Ah -A,Kh =O.  By 
Corollary 1 we conclude that the first eigenvalue for A - A ,  K is non-negative 
on D. Since hl  > 2  and K S O ,  it follows that D is stable. 

Case (i) was observed by Schoen-Yau [8 ]  and 
follows by choosing f identically equal to one in inequality (11) to obtain 

PROOF OF ‘ r w 0 - M  3:  

The Gauss-Bonnet theorem now implies that M is the sphere or the torus. In 
the case of the torus, A4 is totally geodesic and S z O  on M. The stability 
operator reduces to A -  K and its first eigenvalue is 

Since A ,  20 by stability and K du = 0, we conclude that A, = 0 and the 

constant function f -  1 satisfies Af- Kf = 0 which implies that K = 0. 
‘To prove case (ii), we first show that the universal covering o f  M is 

conformally equivalent to  @. If this is not true, then M is covered by the disc. 
Using stability and Theorem 1 we have a positive function g on M satisfying 

I, 

Ag-Kg+ S+$Lh:  g = O .  ( i.j ) 
Lifting g to  the disc we obtain a positive solution of this equation on the disc 
endowed with a complete metric. Since S + h: 2 0, this yields a contradic- 
tion to Corollary 3. 

Thus we have shown that M is conformally covered by Q= and hence M is 
either conformally equivalent to @ or M is conformal to a cylinder A. If the 
latter holds we must show that M is flat and totally geodesic. Let z = x + iy be 
a complex coordinate for M so that Idz1” is the flat metric on M, and the 
given metric on M is d s 2 = p ( z )  (dzl’. Fix a point z ~ E M ,  and let r be the 
distance from zo taken with respect to  the flat metric. For any R>O, choose 
t;(r)  satisfying (8). Substituting t; for f in (11) and using (8) and the conformal 
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invariance of the Dirichlet integral we have 

9 
dx dy -I (S - K + i  h@ du 20, 

R 2  B R W  M 

where B,(z,,) is the ball taken with respect to the flat metric. Since 

dxdy has growth bounded by a constant times R, and we are assuming 
BR(ZO) 

J IK( du <m, we can use the dominated convergence theorem to let R tend 
M 

to  infinity to achieve 

IM ( S + $ g  h: )duS&Kdu.  

Since M is topologically the cylinder, the Cohn-Vossen inequality (cf. [5] )  gives 

K d u S O .  We thus conclude that M is totally geodesic and S = O  on M. 

Hence the stability operator reduces to A-K. By Theorem 1 there is a 
positive function g on M satisfying Ag - Kg = 0. Set w =log g. Computing we 
have 

JM 

A W  = K -  ( V W ~  

Choosing 5 as above, we multiply by 5’ and integrate by parts to get 

I V ~ ) ~ [ ’ d u = L [ ~ K d u + 2 ~  M [(V[,Vw)du. 

The Schwarr inequality and the arithmetic-geometric mean inequality imply 

Therefore, 

3 du 5 c2Kdu +41 IV51’ du 4L M 

Letting R -+ 00 as above, we conclude that 
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Thus w is constant, so g is constant and we have K=O.  
In case N has non-negative Ricci curvature, we write the stability operator 

as A+Ric (e3)+1i.i h;, and note that the proof that M is totally geodesic now 
follows as in the previous paragraph (without the assumption of finite total 
curvature). From the previous proof we also get that 

Ric(e3)=KI3+K2,=O on M. 

Since 

Ric ( e l )  = K12 + K13 2 0 and Ric (4 = K , ,  + K23 2 0 , 

we have 

Ric ( e l )  + Ric ( e2 )  = 2KI2 = 2K ZO . 

Thus the Gauss curvature of M is non-negative and, since M is a cylinder, we 
have K=O. This completes the proof of Theorem 3. 

As a final result we note that one can intrinsically characterize the metrics 
on the plane and the sphere which can occur as complete stable surfaces in 
complete three-manifolds of zero scalar curvature. 

THEOREM 4. (i) A metric on S 2  can be realized on a stable minimal 
immersion of S2 into a compact scalar flat three-manifold if and only i f  the first 
eigenvalue of A-  K is non-negative. 

(ii) A complete conformal metric on C can be realized on a stable minimal 
immersion of @ into a complete scalar pat three-manifold if and only if there is 
a function g>O sarisfying Ag - K g  = 0 on @. 

Proof: The proof of (i) is similar to that of (ii) except that it is made 
easier by the compactness of S 2 ;  hence we give only the proof of (ii). If a 
metric on C is realized on a stable immersion into a scalar flat three-manifold, 
then the stability operator A - K +; CiVj h i  has positive first eigenvalue on any 
bounded domain in C. By (1) we see that this implies that the first eigenvalue 
of A - K is also positive on each bounded domain. Thus by Theorem 1 there 
is a positive g satisfying Ag-Kg = O .  

Conversely, if we have a complete metric ds2 on C and a g > O  satisfying 
Ag-Kg = O  on C ,  we define the three-dimensional manifold N = C X S ' ,  and 
we give N the metric 

z2 = ds2 + g 2  dt2 , 
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where t is a coordinate on S’. Direct calculation shows that the scalar 
curvature of is 

S = K - -  Ag 
g 

where A is taken with respect to ds2. We conclude that S = O  on N. The 
completeness of the metric &’ follows directly from that of ds2. This 
completes the proof of Theorem 4. 
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