Call #: QA 641.J68

<table>
<thead>
<tr>
<th>Journal/Book Title:</th>
<th>Journal of differential geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume:</td>
<td>20</td>
</tr>
<tr>
<td>Issue:</td>
<td>1</td>
</tr>
<tr>
<td>Month/Year:</td>
<td>1984</td>
</tr>
<tr>
<td>Pages:</td>
<td>237-266</td>
</tr>
<tr>
<td>Article Author:</td>
<td>Huisken, Gerhard</td>
</tr>
<tr>
<td>Article Title:</td>
<td>Flow by mean curvature of convex surfaces into spheres</td>
</tr>
</tbody>
</table>

WARNING CONCERNING COPYRIGHT RESTRICTIONS

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted materials.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research". If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use", that user may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Patron Information

<table>
<thead>
<tr>
<th>Name:</th>
<th>Joel Spruck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username:</td>
<td>jspruck1</td>
</tr>
<tr>
<td>Status:</td>
<td>Faculty</td>
</tr>
<tr>
<td>Department:</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Email:</td>
<td>js@math.jhu.edu</td>
</tr>
<tr>
<td>Delivery Method:</td>
<td>Deliver Electronically</td>
</tr>
</tbody>
</table>

Transaction #: 750545
FLOW BY MEAN CURVATURE OF CONVEX SURFACES INTO SPHERES

GERHARD HUISKEN

1. Introduction

The motion of surfaces by their mean curvature has been studied by Brakke [1] from the viewpoint of geometric measure theory. Other authors investigated the corresponding nonparametric problem [2], [5], [9]. A reason for this interest is that evolutionary surfaces of prescribed mean curvature model the behavior of grain boundaries in annealing pure metal.

In this paper we take a more classical point of view: Consider a compact, uniformly convex n-dimensional surface $M = M_0$ without boundary, which is smoothly imbedded in \mathbb{R}^{n+1}. Let M_0 be represented locally by a diffeomorphism

$$F_0: \mathbb{R}^n \supset U \rightarrow F_0(U) \subset M_0 \subset \mathbb{R}^{n+1}.$$

Then we want to find a family of maps $F(\cdot, t)$ satisfying the evolution equation

$$\frac{\partial}{\partial t}F(\bar{x}, t) = \Delta_x F(\bar{x}, t), \quad \bar{x} \in U,$$

$$F(\cdot, 0) = F_0,$$

where Δ_x is the Laplace-Beltrami operator on the manifold M_0, given by $F(\cdot, t)$. We have

$$\Delta_x F(\bar{x}, t) = -H(\bar{x}, t) \cdot \nu(\bar{x}, t),$$

where $H(\cdot, t)$ is the mean curvature and $\nu(\cdot, t)$ is the outer unit normal on M_0. With this choice of sign the mean curvature of our convex surfaces is always positive and the surfaces are moving in the direction of their inner unit normal. Equation (1) is parabolic and the theory of quasilinear parabolic differential equations guarantees the existence of $F(\cdot, t)$ for some short time interval.

Received April 28, 1984.
We want to show here that the shape of M_t approaches the shape of a sphere very rapidly. In particular, no singularities will occur before the surfaces M_t shrink down to a single point after a finite time. To describe this more precisely, we carry out a normalization: For any time t, where the solution $F(\cdot, t)$ of (1) exists, let $\psi(t)$ be a positive factor such that the manifold \tilde{M}_t given by

$$\tilde{F}(\tilde{x}, t) = \psi(t) \cdot F(\tilde{x}, t)$$

has total area equal to $|M_0|$, the area of M_0:

$$\int_{\tilde{M}_t} d\tilde{a} = |M_0| \quad \text{for all } t.$$

After choosing the new time variable $\tilde{t}(t) = \int_{0}^{t} \psi^2(\tau) \, d\tau$ it is easy to see that \tilde{F} satisfies

$$\frac{\partial}{\partial \tilde{t}} \tilde{F}(\tilde{x}, \tilde{t}) = \Delta_{\tilde{F}} \tilde{F}(\tilde{x}, \tilde{t}) + \frac{1}{n} \tilde{h} \, \tilde{F}(\tilde{x}, \tilde{t}),$$

$$\tilde{F}(\cdot, 0) = F_0,$$

where

$$\tilde{h} = \int_{\tilde{M}_t} \tilde{H}^2 \, d\tilde{a} \int_{\tilde{M}_t} d\tilde{a}$$

is the mean value of the squared mean curvature on \tilde{M}_t (see §9 below).

1.1 Theorem

Let $n \geq 2$ and assume that M_0 is uniformly convex, i.e., the eigenvalues of its second fundamental form are strictly positive everywhere. Then the evolution equation (1) has a smooth solution on a finite time interval $0 < t < T$, and the M_t's converge to a single point \tilde{c} as $t \to T$. The normalized equation (2) has a solution \tilde{M}_t for all time $0 < \tilde{t} < \infty$. The surfaces M_t are homothetic expansions of the M_t's, and if we choose \tilde{c} as the origin of R^{n+1}, then the surfaces \tilde{M}_t converge to a sphere of area $|M_0|$ in the C^∞-topology as $\tilde{t} \to \infty$.

Remarks

(i) The convergence of M_t in any C^∞-norm is exponential.

(ii) The corresponding one-dimensional problem has been solved recently by Gage and Hamilton (see [4]).

The approach to Theorem 1.1 is inspired by Hamilton's paper [6]. He evolved the metric of a compact three-dimensional manifold with positive Ricci curvature in direction of the Ricci curvature and obtained a metric of constant curvature in the limit. The evolution equations for the curvature quantities in our problem turn out to be similar to the equations in [6] and we can use many of the methods developed there.

In §3 we establish evolution equations for the induced metric, the second fundamental form and other important quantities. In the next step a lower bound independent of time for the eigenvalues of the second fundamental form is proved. Using this, the Sobolev inequality and an iteration method we can show in §5 that the eigenvalues of the second fundamental form approach each other. Once this is established we obtain a bound for the gradient of the mean curvature and then long time existence for a solution of (2). The exponential convergence of the metric then follows from evolution equations for higher derivatives of the curvature and interpolation inequalities.

The author wishes to thank Leon Simon for his interest in this work and the Centre for Mathematical Analysis in Canberra for its hospitality.

2 Notation and preliminary results

In the following vectors on M will be denoted by $X = \{ X^i \}$, covectors by $Y = \{ Y_i \}$ and mixed tensors by $T = \{ T^i_{\ j} \}$. The induced metric and the second fundamental form on M will be denoted by $g = \{ g_{ij} \}$ and $A = \{ h_{ij} \}$. We always sum over repeated indices from 1 to n and we use brackets for the inner product on M:

$$\langle T_{\ jk}, S_{\ kl} \rangle = g_{ik} g^l m^s T^s_{\ kj} S^l_{\ ik}, \quad |T|^2 = \langle T_{\ jk}, T_{\ jk} \rangle.$$

In particular we use the following notation for traces of the second fundamental form on M:

$$H = g^{ij} h_{ij}, \quad |A|^2 = g^{ij} g^{kl} h_{ij} h_{kl},$$

$$C = g^{ij} g^{kl} g^{mn} h_{ik} h_{jm} h_{ln}, \quad Z = H C - |A|^4.$$

By (\cdot, \cdot) we denote the ordinary inner product in R^{n+1}. If M is given locally by some F as in the introduction, the metric and the second fundamental form on M can be computed as follows:

$$g_{ij}(\tilde{x}) = \begin{pmatrix} \frac{\partial F(\tilde{x})}{\partial x_i} & \frac{\partial F(\tilde{x})}{\partial x_j} \end{pmatrix}, \quad h_{ij}(\tilde{x}) = -\left(r(\tilde{x}), \frac{\partial^2 F(\tilde{x})}{\partial x_i \partial x_j} \right), \quad \tilde{x} \in R^n,$$

where $r(\tilde{x})$ is the outer unit normal to M at $F(\tilde{x})$. The induced connection on M is given by

$$\Gamma^k_{ij} = \frac{1}{2} g^{kl} \left(\frac{\partial g_{ik}}{\partial x_j} + \frac{\partial g_{jk}}{\partial x_i} - \frac{\partial g_{ij}}{\partial x_k} \right)$$

so that the covariant derivative on M of a vector X is

$$\nabla_j X^i = \frac{\partial}{\partial x_j} X^i + \Gamma^i_{jk} X^k.$$
The Riemann curvature tensor, the Ricci tensor and scalar curvature are given by Gauss’ equation
\[R_{ijkl} = h_{ik}h_{jl} - h_{il}h_{jk}, \]
\[R_{ik} = Hh_{ik} - h_{il}g^{lj}h_{jk}, \]
\[R = H^2 - |A|^2. \]

With this notation we obtain, for the interchange of two covariant derivatives,
\[\nabla_i \nabla_j X^k - \nabla_i \nabla_j X^k = R_{ijk}^k X^k = (h_{ik}h_{jl} - h_{il}h_{jk})g^{lj}X^k, \]
\[\nabla_i \nabla_j Y_k - \nabla_i \nabla_j Y_k = R_{ijk}^k Y^k = (h_{ik}h_{jl} - h_{il}h_{jk})g^{lj}Y^k. \]

The Laplacian \(\Delta T \) of a tensor \(T \) on \(M \) is given by
\[\Delta T_{ik}^j = g^{mn} \nabla_m \nabla_n T_{ik}^j, \]
whereas the covariant derivative of \(T \) will be denoted by \(\nabla_T = \{ \nabla_i T_{ik}^j \} \). Now we want to state some consequences of these relations, which are crucial in the forthcoming sections. We start with two well-known identities.

2.1 Lemma. (i) \(\Delta h_{ij} = \nabla_i \nabla_j H + Hh_{ij}g^{mn}h_{mj} - |A|^2 h_{ij}. \)
(ii) \(\tfrac{1}{2} |A|^2 = \langle h_{ij}, \nabla_i \nabla_j H \rangle + |\nabla A|^2 + Z. \)

Proof. The first identity follows from the Codazzi equations \(\nabla_i h_{kl} = \nabla_k h_{il} = \nabla_i h_{kl} \) and the formula for the interchange of derivatives quoted above, whereas (ii) is an immediate consequence of (i).

The obvious inequality \(|\nabla H|^2 \leq n|\nabla A|^2 \) can be improved by the Codazzi equations.

2.2 Lemma. (i) \(|\nabla A|^2 \geq \frac{3}{n+2} |\nabla H|^2. \)
(ii) \(|\nabla A|^2 - |\nabla H|^2 / n \geq 2(n - 1)|\nabla A|^2 / 3n. \)

Proof. Similar as in [6, Lemma 11.6] we decompose the tensor \(\nabla A \):
\[\nabla_i h_{jk} = E_{ijk} + F_{ijk}, \]
where
\[E_{ijk} = \frac{1}{n+2} \left(\nabla_i H \cdot g_{jk} + \nabla_j Hg_{ik} + \nabla_k H \cdot g_{ij} \right). \]
Then we can easily compute that \(|E|^2 = 3|\nabla H|^2 / (n+2) \) and
\[\langle E_{ijk}, F_{ikl} \rangle = \langle E_{ijk}, \nabla_i h_{jk} - E_{ijk} \rangle = 0, \]
i.e., \(E \) and \(F \) are orthogonal components of \(\nabla A \). Then
\[|\nabla A|^2 \geq |E|^2 = \frac{3}{n+2} |\nabla H|^2, \]
which proves the lemma.

If \(M_{ij} \) is a symmetric tensor, we say that \(M_{ij} \) is nonnegative, \(M_{ij} \geq 0 \), if all eigenvalues of \(M_{ij} \) are nonnegative. In view of our main assumption that all eigenvalues of the second fundamental form of \(M_0 \) are strictly positive, there is some \(\varepsilon > 0 \) such that the inequality
\[(3) \]
\[h_{ij} \geq \varepsilon Hg_{ij} \]
holds everywhere on \(M_0 \). It will be shown in §4 that this lower bound is preserved with the same \(\varepsilon \) for all \(M_i \) as long as the solution of (1) exists. The relation (3) leads to the following inequalities, which will be needed in §5.

2.3 Lemma. If \(H > 0 \), and (3) is valid with some \(\varepsilon > 0 \), then
(i) \(Z \geq ne^2H^2(|A|^2 - H^2/n). \)
(ii) \(|\nabla_i h_{kl} \cdot H - \nabla_i H \cdot h_{kl}|^2 \geq \tfrac{1}{2}e^2H^2 |\nabla H|^2. \)

Proof. (i) This is a pointwise estimate, and we may assume that \(g_{ij} = \delta_{ij} \) and
\[h_{ij} = \begin{pmatrix} \kappa_1 & \cdots & 0 \\ \kappa_2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \kappa_n \end{pmatrix}. \]
In this setting we have
\[Z = HC - |A|^2 = \left(\sum_{i=1}^n \kappa_i \right) \left(\sum_{j=1}^n \kappa_j \right) - \left(\sum_{i=1}^n \kappa_i^2 \right)^2 \]
\[= \sum_{i<j}^n \left(\kappa_i \kappa_j + \kappa_j \kappa_i \right) - \sum_{i<j}^n 2\kappa_i^2 \kappa_j^2 \]
\[= \sum_{i<j}^n \kappa_i \kappa_j (\kappa_i - \kappa_j)^2 \geq e^2H^2 \sum_{i<j}^n (\kappa_i - \kappa_j)^2, \]
and the conclusion follows since
\[|A|^2 - \frac{1}{n} H^2 = \frac{1}{n} \sum_{i<j}^n (\kappa_i - \kappa_j)^2. \]

(ii) We have
\[|\nabla_i h_{kl} \cdot H - \nabla_i H \cdot h_{kl}|^2 \]
\[= |\nabla_i h_{kl} \cdot H - \tfrac{1}{2} (\nabla_i H \cdot h_{kl} + \nabla_k H \cdot h_{il})| \]
\[= |\nabla_i h_{kl} \cdot H - \tfrac{1}{2} (\nabla_i H \cdot h_{kl} + \nabla_k H \cdot h_{il})|^2 + \tfrac{1}{2} |\nabla_i H \cdot h_{kl} - \nabla_k H \cdot h_{il}|^2 \]
\[> \tfrac{1}{2} |\nabla_i H \cdot h_{kl} - \nabla_k H \cdot h_{il}|^2, \]
which proves the lemma.
since $\nabla_i h_{ij}$ is symmetric in (i, k) by the Codazzi equations. Now we have only to consider points where the gradient of the mean curvature does not vanish. Around such a point we introduce an orthonormal frame e_1, \cdots, e_n such that $e_i = \nabla H / |\nabla H|$. Then
\[
\nabla_i H = |\nabla H|, \quad i = 1, \quad 0, \quad i \geq 2,
\]
in these coordinates. Therefore
\[
\frac{1}{4} \sum_{i, k, l = 1}^n \left(\nabla_i H \cdot \nabla_k H - \nabla_k H \cdot \nabla_i H \right)^2
\geq \frac{1}{4} \left(\nabla_1 H \cdot \nabla_2 H - \nabla_2 H \cdot \nabla_1 H \right)^2 + \frac{1}{4} \left(\nabla_2 H \cdot \nabla_2 H - \nabla_1 H \cdot \nabla_2 H \right)^2
= \frac{1}{2} h^{ij}_1 |\nabla H|^2 \geq \frac{1}{4} \kappa^2 |\nabla H|^4,
\]
since any eigenvalue, and thus any trace element of h_{ij} is greater than κH.

3. Evolution of metric and curvature

In this and the following sections we investigate equation (1) which is easier to handle than the normalized equation (2). The results will be converted to the normalized equation in §9.

3.1 Theorem. The evolution equation (1) has a solution $M(t)$ for a short time with any smooth compact initial surface $M = M_0$ at $t = 0$.

This follows from the fact that (1) is strictly parabolic (see for example [3, III.4]). From now on we will assume that (1) has a solution on the interval $0 \leq t < T$.

Equation (1) implies evolution equations for g and A, which will be derived now.

3.2 Lemma. The metric of M, satisfies the evolution equation
\[
\frac{\partial}{\partial t} g_{ij} = -2H h_{ij}.
\]

Proof. The vectors $\partial F / \partial x_i$ are tangential to M, and thus
\[
\left(\nu, \frac{\partial F}{\partial x_i} \right) = 0, \quad \nu_{ij} = \left(\frac{\partial}{\partial x_i} \nu, \frac{\partial F}{\partial x_j} \right) = \left(\frac{\partial}{\partial x_j} \nu, \frac{\partial F}{\partial x_i} \right).
\]

From this we obtain
\[
\frac{\partial}{\partial t} g_{ij} = \frac{\partial}{\partial t} \left(\frac{\partial F}{\partial x_i}, \frac{\partial F}{\partial x_j} \right)
= \left(\frac{\partial}{\partial x_i} (-H \nu), \frac{\partial F}{\partial x_j} \right) + \left(\frac{\partial F}{\partial x_j}, \frac{\partial}{\partial x_i} (-H \nu) \right)
= -H \left(\frac{\partial F}{\partial x_i}, \frac{\partial F}{\partial x_j} \right) - H \left(\frac{\partial F}{\partial x_i}, \frac{\partial F}{\partial x_j} \right)
= -2H h_{ij}.
\]

3.3 Lemma. The unit normal to M, satisfies $\partial \nu / \partial t = \nabla H$.

Proof. This is a straightforward computation:
\[
\frac{\partial}{\partial t} \nu = \left(\frac{\partial}{\partial t} \nu, \frac{\partial F}{\partial x_i} \right) \frac{\partial F}{\partial x_j} \nu_{ij}
= \left(\nu, \frac{\partial}{\partial x_i} (H \nu) \right) \frac{\partial F}{\partial x_j} \nu_{ij}
= \frac{\partial F}{\partial x_j} \nu_{ij} = \frac{\partial F}{\partial x_j} H = \nabla H.
\]

Now we can prove

3.4 Theorem. The second fundamental form satisfies the evolution equation
\[
\frac{\partial}{\partial t} h_{ij} = \Delta h_{ij} - 2H h_{ij} g^{lm} h_{mj} + |A|^2 h_{ij}.
\]

Proof. We use the Gauss-Weingarten relations
\[
\frac{\partial^2 F}{\partial x_k \partial x_j} = \Gamma^k_{ij} \frac{\partial F}{\partial x_k} - h_{ij} \nu, \quad \frac{\partial}{\partial x_j} \nu = h_{jm} g^{lm} \frac{\partial F}{\partial x_m}
\]

to conclude
\[
\frac{\partial}{\partial t} h_{ij} = -\frac{\partial}{\partial t} \left(\frac{\partial^2 F}{\partial x_i \partial x_j}, \nu \right)
= -\left(\frac{\partial^2}{\partial x_i \partial x_j} (H \nu), \nu \right) - \left(\frac{\partial^2 F}{\partial x_i \partial x_j}, \frac{\partial}{\partial x_i} H \frac{\partial F}{\partial x_m} g^{lm} \right)
= -\frac{\partial^2}{\partial x_i \partial x_j} H + H \left(\frac{\partial}{\partial x_i} h_{jm} g^{lm} \frac{\partial F}{\partial x_m} \right), \nu
\]
\[
= -\Gamma^k_{ij} \frac{\partial F}{\partial x_k} - h_{ij} \nu, \quad \frac{\partial}{\partial x_j} H = \frac{\partial F}{\partial x_j} H = \nabla H.
\]

Then the theorem is a consequence of Lemma 2.1.
3.5 Corollary. We have the evolution equations:

(i) \(\frac{\partial}{\partial t} H = \Delta H + |A|^2 H \),

(ii) \(\frac{\partial}{\partial t} |A|^2 = \Delta |A|^2 - 2|\nabla A|^2 + 2|A|^4 \),

(iii) \(\frac{\partial}{\partial t} \left(|A|^2 \right) = \Delta \left(|A|^2 - \frac{1}{n} H^2 \right) - 2 \left(|\nabla A|^2 - \frac{1}{n} |\nabla H|^2 \right) + 2|A|^2 \left(|A|^2 - \frac{1}{n} H^2 \right) \).

Proof. We get, from Lemma 3.2,

\[\frac{\partial}{\partial t} H = \frac{\partial}{\partial t} \left(g^{ij} h_{ij} \right) = g^{ij} \frac{\partial}{\partial t} h_{ij} + 2 H g^{ik} g^{jk} h_{ki}, \]

and the first identity follows from Theorem 3.4. To prove the second equation, we calculate

\[\frac{\partial}{\partial t} |A|^2 = \frac{\partial}{\partial t} \left(g^{ik} g^{jk} h_{ki} h_{kj} \right) \]

\[= -4H g^{mn} g^{pq} h_{mn} g^{pq} h_{ij} + 2 H \Delta h_{ij} + 2 H \nabla h_{ij} + 2 H |A|^2, \]

\[\Delta |A|^2 = g^{ij} \nabla_i \nabla_j \left(g^{mn} g^{pq} h_{mn} h_{pq} \right) = 2 H g^{mn} g^{pq} h_{mn} \Delta h_{ij} + 2|\nabla A|^2. \]

The last identity follows from (ii) and

\[\frac{\partial}{\partial t} H^2 = 2H (\Delta H + |A|^2 H) = \Delta H^2 - 2|\nabla H|^2 + 2|A|^2 H^2. \]

3.6 Corollary. (i) If \(d\mu_{\epsilon} = \mu (x) dx \) is the measure on \(M_\epsilon \), then \(\mu = \sqrt{\det g_{ij}} \) and \(\frac{\partial \mu}{\partial t} = -H \cdot \mu \). In particular the total area \(|M_\epsilon| \) of \(M_\epsilon \) is decreasing.

(ii) If the mean curvature of \(M_\epsilon \) is strictly positive everywhere, then it will be strictly positive on \(M \) as long as the solution exists.

Proof. The first part of the corollary follows from Lemma 3.2, whereas the second part is a consequence of the evolution equation for \(H \) and the maximum principle.

4. Preserving convexity

We want to show now that our main assumption, that is inequality (3), remains true as long as the solution of equation (1) exists. For this purpose we need the following maximum principle for tensors on manifold, which was proved in [6, Theorem 9.1]:

Let \(u^k \) be a vector field and let \(g_{ij}, M_{ij}, N_{ij} \) be symmetric tensors on a compact manifold \(M \) which may all depend on time \(t \). Assume that \(N_{ij} = p(M_{ij}, g_{ij}) \) is a polynomial in \(M_{ij} \) formed by contracting products of \(M_{ij} \) with itself using the metric. Furthermore, let this polynomial satisfy a null-eigenvector condition, i.e. for any null-eigenvector \(X \) of \(M_{ij} \) we have \(N_{ij} X^i X^j \geq 0 \). Then we have

4.1 Theorem (Hamilton). Suppose that on \(0 \leq t < T \) the evolution equation

\[\frac{\partial}{\partial t} M_{ij} = \Delta M_{ij} + u^k \nabla_k M_{ij} + N_{ij} \]

holds, where \(N_{ij} = p(M_{ij}, g_{ij}) \) satisfies the null-eigenvector condition above. If \(M_{ij} > 0 \) at \(t = 0 \), then it remains so on \(0 \leq t < T \).

An immediate consequence of Theorems 3.4 and 4.1 is

4.2 Corollary. If \(h_{ij} > 0 \) at \(t = 0 \), then it remains so for \(0 \leq t < T \).

Proof. Set \(M_{ij} = h_{ij}, u^k = 0 \) and \(N_{ij} = -2H h_{ij} g^{mn} h_{mn} + |A|^2 h_{ij} \).

We also have the following stronger result.

4.3 Theorem. If \(\epsilon H d g_{ij} \leq h_{ij} \leq \beta H d g_{ij} \) and \(H > 0 \) at the beginning for some constants \(0 < \epsilon < 1/n < \beta < 1 \), then this remains so on \(0 \leq t < T \).

Proof. To prove the first inequality, we want to apply Theorem 4.1 with

\[M_{ij} = \frac{h_{ij}}{H} - \epsilon g_{ij}, \quad u^k = \frac{2}{H} \delta^k i \nabla_i H, \]

\[N_{ij} = 2 \epsilon H h_{ij} - 2 h_{im} g^{mn} \epsilon h_{nij}. \]

With this choice the evolution equation in Theorem 4.1 is satisfied since

\[\frac{\partial}{\partial t} \left(\frac{h_{ij}}{H} \right) = \frac{H \Delta h_{ij} - h_{ij} \Delta H}{H^2} - 2h_{im} g^{mn} h_{nij}, \]

\[\Delta \left(\frac{h_{ij}}{H} \right) = \frac{H \Delta h_{ij} - h_{ij} \Delta H}{H^2} - \frac{2}{H} \delta^k i \nabla_k H \nabla_i \left(\frac{h_{ij}}{H} \right). \]

It remains to check that \(N_{ij} \) is nonnegative on the null-eigenvectors of \(M_{ij} \). Assume that, for some vector \(X = \{ X^i \}, \)

\[h_{ij} X^i X^j = \epsilon H X^i X^j - 2 h_{im} g^{mn} h_{nij} X^i X^j. \]

Then we derive

\[N_{ij} X^i X^j = 2 \epsilon H h_{ij} X^i X^j - 2 h_{im} g^{mn} h_{nij} X^i X^j \]

\[= 2 \epsilon H^2 |X|^2 - 2 \epsilon H^2 |X|^2 = 0. \]

That the second inequality remains true follows in the same way after reverting signs.
5. The eigenvalues of A

In this section we want to show that the eigenvalues of the second fundamental form approach each other, at least at those points where the mean curvature tends to infinity (for the unnormalized equation (1)). Following the idea of Hamilton in [6], we look at the quantity

$$|A|^2 - \frac{1}{n} H^2 = \frac{1}{n} \sum_{i<j} (\kappa_i - \kappa_j)^2,$$

which measures how far the eigenvalues κ_i of A diverge from each other. We show that $|A|^2 - H^2/n$ becomes small compared to H^2.

5.1 Theorem. There are constants $\delta > 0$ and $C_0 < \infty$ depending only on M_0, such that

$$|A|^2 - \frac{1}{n} H^2 \leq C_0 H^{2-\delta},$$

for all times $0 \leq t < T$.

Our goal is to bound the function $f_\alpha = (|A|^2 - H^2/n)/H^{2-\alpha}$ for sufficiently small α. We first need an evolution equation for f_α.

5.2 Lemma. Let $\alpha = 2 - \sigma$. Then, for any α,

$$\frac{\partial}{\partial t} f_\alpha = \Delta f_\alpha + \frac{2(\alpha - 1)}{H} \nabla |A|^2 \nabla f_\alpha + \frac{2}{H^{n+1}} \nabla |A|^2 \nabla f_\alpha - \frac{2}{H^{n+2}} |\nabla |A|^2| |\nabla H|^2 - (2 - \alpha) |A|^2 f_\alpha.$$

Proof. We have, in view of the evolution equations for $|A|^2$ and H,

$$\frac{\partial}{\partial t} f_\alpha = \frac{\partial}{\partial t} \left(\frac{|A|^2}{H^n} - \frac{1}{n} H^{2-\alpha} \right)$$

$$= \frac{H \Delta |A|^2 - a|A|^2 \Delta H}{H^{n+1}} - \frac{(2 - \alpha)}{n} H^{1-\alpha} \Delta H$$

$$= - \frac{2}{H^n} |\nabla |A|^2| |\nabla H|^2 + (2 - \alpha) |A|^2 f_\alpha.$$

Furthermore

$$\nabla f_\alpha = H \nabla |A|^2 - a|A|^2 \nabla H = \frac{(2 - \alpha)}{n} H^{1-\alpha} \nabla H,$$

$$\Delta f_\alpha = H \nabla |A|^2 - a|A|^2 \nabla H = \frac{(2 - \alpha)}{n} H^{1-\alpha} \Delta H$$

$$- \frac{2\alpha}{H^{n+1}} \langle \nabla |A|^2, \nabla H \rangle + \alpha(\alpha + 1) \frac{|A|^2}{H^{n+2}} |\nabla H|^2$$

$$- \frac{1}{n} \frac{(2 - \alpha)(1 - \alpha)}{H^n} |\nabla H|^2,$$

and now the conclusion of the lemma follows from reorganizing terms and the identity

$$|\nabla h_{kl} \cdot H - \nabla \nabla \cdot h_{kl}|^2 = H^2 |\nabla A|^2 + |A|^2 |\nabla H|^2 - \langle \nabla |A|^2, \nabla H \rangle H.$$

Unfortunately the absolute term $(2 - \alpha) |A|^2 f_\alpha$ in this evolution equation is positive and we cannot obtain our goal by the ordinary maximum principle. But from Theorem 4.3 and Lemma 2.3(i) we get

5.3 Corollary. For any α the inequality

$$\frac{\partial}{\partial t} f_\alpha \leq \Delta f_\alpha + \frac{2(\alpha - 1)}{H} \langle \nabla |A|^2, \nabla f_\alpha \rangle - r\frac{1}{H^n} |\nabla H|^2 + a |A|^2 f_\alpha$$

holds on $0 \leq t < T$.

The additional negative term in (6) will be exploited by the divergence theorem.

5.4 Lemma. Let $p > 2$. Then for any $\eta > 0$ and any $0 \leq \sigma \leq \frac{1}{2}$ we have the estimate

$$ne^2 \int_0^t H^2 d\mu \leq (2\eta p + 5) \int \frac{1}{H^n} |\nabla f_\alpha|^2 d\mu$$

$$+ \eta^{-\alpha}(p - 1) \int f_\alpha^{p\sigma-2} |\nabla f_\alpha|^2 d\mu.$$

Proof. Let us denote by h_{ij} the trace-free second fundamental form

$$h_{ij} = h_{ij} - \frac{1}{n} g_{ij}.$$
In view of Lemma 2.1(ii), the identity (5) may then be rewritten as
\[
\Delta f_\sigma = \frac{2}{H^a} \left(\langle h_{ij}^0, \nabla, \nabla, H \rangle \right) + \frac{2}{H^a} Z + \frac{2}{H^a \cdot \nabla, H \cdot h_{ij}^0 \cdot H} - \frac{\alpha}{H} f_\sigma \Delta H \\
+ \frac{2}{H^a \cdot \nabla, H \cdot h_{ij}^0 \cdot H} - \frac{2}{H^a} \left(\langle \nabla, H, \nabla, f_\sigma \rangle \right).
\]
Now we multiply the inequality
\[
\Delta f_\sigma \geq \frac{2}{H^a} \left(\langle h_{ij}^0, \nabla, \nabla, H \rangle \right) + \frac{2}{H^a} Z - \frac{2}{H^a} \left(\langle \nabla, H, \nabla, f_\sigma \rangle \right)
\]
by \(f_\sigma^{p-1} \) and integrate. Integration by parts yields
\[
0 \geq (p - 1) \int f_\sigma^{p-2} \nabla f_\sigma^2 \, d\mu + \int \frac{2}{H^a} Z f_\sigma^{p-1} \, d\mu \\
- 2(\alpha - 1) \int \frac{1}{H} f_\sigma^{p-1} \left(\langle \nabla, f_\sigma, \nabla, H \rangle \right) \, d\mu \\
+ 2 \int \frac{1}{H^a f_\sigma^{p-1}} \langle h_{ij}^0, \nabla, H \nabla, H \rangle \, d\mu \\
- \frac{(n - 1)}{n} \int \frac{2}{H^a} f_\sigma^{p-1} \left(\nabla H \right)^2 \, d\mu \\
- (p - 1) \int \frac{2}{H^a} f_\sigma^{p-2} \langle h_{ij}^0, \nabla, H \cdot \nabla, f_\sigma \rangle \, d\mu \\
- \alpha \int \frac{1}{H^2} f_\sigma^{p-1} \left(\nabla H \right)^2 \, d\mu + \alpha p \int \frac{1}{H^a} f_\sigma^{p-1} \left(\nabla, H, \nabla, f_\sigma \right) \, d\mu,
\]
where we used the Codazzi equation. Now, taking the relations
\[
ab \leq \frac{a}{2} + \frac{1}{2a}, \quad \sigma \leq 2,
\]
\[
f_\sigma \leq H^{2 - a}, \quad \left| h_{ij}^0 \right|^2 = \left(|A|^2 - \frac{1}{n} H^2 \right) = f_\sigma H^a
\]
into account, we derive, for any \(n > 0 \),
\[
\int \frac{1}{H^a} f_\sigma^{p-1} Z \, d\mu \leq (2np + 5) \int \frac{1}{H^a} f_\sigma^{p-1} \left(\nabla H \right)^2 \, d\mu \\
+ n^{2} (p - 1) \int f_\sigma^{p-2} \left(\nabla f_\sigma \right)^2 \, d\mu.
\]
The conclusion then follows from Lemma 2.3(i) and Theorem 4.3.

Now we can show that high \(L^p \)-norms of \(f_\sigma \) are bounded, provided \(\sigma \) is sufficiently small.

5.5 Lemma. There is a constant \(C_1 < \infty \) depending only on \(M_0 \), such that, for all
\[
p \geq 100 \varepsilon^2, \quad \sigma \leq \frac{\varepsilon^3}{8 \varepsilon^3} \, p^{-1/2},
\]
the inequality
\[
\left(\int f_\sigma^p \, d\mu \right)^{1/p} \leq C_1
\]
holds on \(0 < t < T \).

Proof. We choose
\[
C_1 := \left(|M_0| + 1 \right) \sup_{\sigma \in [0, 1/2]} \left(\sup_{M_0} f_\sigma \right)
\]
and it is then sufficient to show
\[
\frac{\partial}{\partial t} f_\sigma^p \, d\mu \leq 0 \quad \text{on} \quad 0 < t < T.
\]
To accomplish this, we multiply inequality (6) by \(p f_\sigma^{p-1} \) and obtain
\[
\frac{\partial}{\partial t} \int f_\sigma^p \, d\mu + p(p - 1) \int f_\sigma^{p-2} \nabla f_\sigma^2 \, d\mu \\
+ \sigma p \int \frac{1}{H^a} f_\sigma^{p-1} \left(\nabla H \right)^2 \, d\mu + \int H^2 f_\sigma^p \, d\mu \\
\leq 2(\alpha - 1) p \int \frac{1}{H^a} f_\sigma^{p-1} \left(\nabla H \right)^2 \, d\mu + \int H^2 f_\sigma^p \, d\mu
\]
where the last term on the left-hand side occurs due to the time dependence of \(d\mu \) as stated in Corollary 3.6(i). In view of (7) we can estimate
\[
2(\alpha - 1) p \int \frac{1}{H} f_\sigma^{p-1} \left(\nabla H \right)^2 \, d\mu \\
\leq \frac{1}{2} p(p - 1) \int f_\sigma^{p-2} \nabla f_\sigma^2 \, d\mu + 2 \frac{p - 1}{p - 1} \int f_\sigma^{p-1} \left(\nabla H \right)^2 \, d\mu,
\]
and since \(p - 1 \geq 100 \varepsilon^2 - 1 \geq 4 \varepsilon^2 \), \(|A|^2 \leq H^2 \), we conclude
\[
\frac{\partial}{\partial t} \int f_\sigma^p \, d\mu + \frac{1}{2} p(p - 1) \int f_\sigma^{p-2} \nabla f_\sigma^2 \, d\mu + \frac{1}{2} \varepsilon^2 p \int \frac{1}{H^a} f_\sigma^{p-1} \left(\nabla H \right)^2 \, d\mu \\
\leq \sigma p \int H^2 f_\sigma^p \, d\mu.
\]
The assumption (8) on σ and Lemma 5.4 yield
\[
\frac{\partial}{\partial t} \int f_{\sigma}^p \, d\mu + \frac{1}{2} (p - 1) \int f_{\sigma}^{p-2} |\nabla f_{\sigma}|^2 \, d\mu + \frac{1}{2} \tau_{\sigma}^p \int \frac{1}{H^2} f_{\sigma}^{p-1} |\nabla H|^2 \, d\mu \\
\leq \frac{\varepsilon}{\sigma} p^{1/2} (2\eta + 5) \int \frac{1}{H^2} f_{\sigma}^{p-1} |\nabla H|^2 \, d\mu \\
+ \frac{\eta^{1/2}}{8} \tau_{\sigma} \tau_{\sigma}^{p-2} \int f_{\sigma}^{p-2} |\nabla f_{\sigma}|^2 \, d\mu
\]
for any $\eta > 0$. Then (9) follows if we choose $\eta = \varepsilon(p^{-1/2})/4$.

5.6 Corollary. If we assume
\[
p \geq \left(\frac{m}{n} \right)^2 2^k \varepsilon^{-6}, \quad \sigma \leq \frac{n}{16} \varepsilon^3 p^{-1/2},
\]
then we have
\[
\left(\int H^m f_{\sigma}^p \, d\mu \right)^{1/p} \leq C_1
\]
on $0 \leq t < T$.

Proof. This follows from Lemma 5.5 since
\[
\left(\int H^m f_{\sigma}^p \, d\mu \right)^{1/p} = \left(\int f_{\sigma}^p \, d\mu \right)^{1/p},
\]
with
\[
\sigma' = \sigma + \frac{m}{p} \leq \frac{n}{16} \varepsilon^3 p^{-1/2} + mp^{-1/2} \frac{n}{m} \varepsilon^3 \leq \frac{n}{16} \varepsilon^3 p^{-1/2}.
\]

We are now ready to bound f_{σ} by an iteration similar to the methods used in [2], [5]. We will need the following Sobolev inequality from [7].

5.7 Lemma. For all Lipschitz functions v on M we have
\[
\left(\int_M |v|^{n/\alpha} \, d\mu \right)^{\alpha/n} \leq C(n) \left(\int_M |\nabla v|^2 \, d\mu + \int_M |H|^2 |v|^2 \, d\mu \right).
\]

Proof of Theorem 5.1. Multiply inequality (6) by $p f_{\sigma,n}^{p-1}$, where $f_{\sigma,n} = \max(f_{\sigma} - k, 0)$ for all $k \geq k_0 = \sup_{\sigma} f_{\sigma}$, and denote by $A(k)$ the set where $f_{\sigma} > k$. Then we derive as in the proof of Lemma 5.5 for $p \geq 100 \varepsilon^{-2}$
\[
\frac{\partial}{\partial t} \int_{A(k)} f_{\sigma,n}^p \, d\mu + \frac{1}{2} (p - 1) \int_{A(k)} |\nabla f_{\sigma,n}|^2 f_{\sigma,n}^{p-2} \, d\mu \\
\leq \sigma p \int_{A(k)} H^2 f_{\sigma,n}^{p-1} f_{\sigma,n} \, d\mu.
\]

On $A(k)$ we have
\[
\frac{1}{2} (p - 1) f_{\sigma,k}^{p-2} |\nabla f_{\sigma}|^2 \geq |\nabla f_{\sigma,k}^{p-1}|^2,
\]
and thus we obtain with $\sigma = f_{\sigma,k}^{p-1}$
\[
\frac{\partial}{\partial t} \int_{A(k)} v^2 \, d\mu + \int_{A(k)} |\nabla v|^2 \, d\mu \leq \sigma p \int_{A(k)} H^2 f_{\sigma}^p \, d\mu.
\]
Let us agree to denote by C_σ any constant which only depends on n. Then Lemma 5.7 and the Hölder inequality lead to
\[
\left(\int_M v^{2q} \, d\mu \right)^{1/q} \leq c_n \int_M |\nabla v|^2 \, d\mu + C_\sigma \left(\int_{\text{supp } v} H^n \, d\mu \right)^{2/n} \left(\int_M v^q \, d\mu \right)^{1/q},
\]
where
\[
q = \begin{cases} \frac{n}{n - 2}, & n > 2, \\ \frac{n}{2}, & n = 2. \end{cases}
\]
Since supp $v \subset A(k)$, we have in view of Corollary 5.6
\[
\left(\int_{\text{supp } v} H^n \, d\mu \right)^{2/n} \leq k^{-2p/\alpha} \left(\int_{A(k)} H^p f_{\sigma}^p \, d\mu \right)^{2/n} \leq k^{-2p/\alpha} C_\sigma^{2p/\alpha},
\]
provided
\[
p \geq 2^k \varepsilon^{-6}, \quad \sigma \leq \frac{n}{16} \varepsilon^3 p^{-1/2}.
\]
Thus, under this assumption we conclude for $k \geq k_1 = k_1(k_0, C_1, n, \varepsilon)$ that
\[
\sup_{[0, T]} \int_{A(k)} v^2 \, d\mu + C_\sigma \int_0^T \left(\int_{A(k)} v^q \, d\mu \right)^{1/q} \, dt \\
\leq \sigma p \int_0^T \int_{A(k)} H^2 f_{\sigma}^p \, d\mu \, dt.
\]

Now we use interpolation inequalities for L^p-spaces
\[
\left(\int_{A(k)} v^{2q_0} \, d\mu \right)^{1/q_0} \leq \left(\int_{A(k)} v^{2q} \, d\mu \right)^{2/q} \left(\int_{A(k)} v^2 \, d\mu \right)^{(1 - 2/q)},
\]
with $a = 1/q_0$ such that $1 < q_0 < q$. Then we have
\[
\left(\int_0^T \int_{A(k)} v^{2q_0} \, d\mu \, dt \right)^{1/q_0} \leq C_\sigma p \int_0^T \int_{A(k)} H^2 f_{\sigma}^p \, d\mu \, dt \\
\leq C_\sigma p \left(\int_0^T \int_{A(k)} H^2 f_{\sigma}^p \, d\mu \, dt \right)^{1/c},
\]
where \(r > 1 \) is to be chosen and
\[
\|A(k)\| = \int_0^T \int_{A(k)} d\mu dt.
\]
Again using the Hölder inequality we obtain
\[
\int_0^T \int_{A(k)} f_0^p d\mu dt \leq c_\rho \rho \|A(k)\|^{2-1/q_0 - 1/r} \left(\int_0^T \int_{A(k)} H^2 f_\sigma^r d\mu dt \right)^{1/r}.
\]
If we now choose \(r \) so large that \(2 - 1/q_0 - 1/r = \gamma > 1 \), then \(r \) only depends on \(n \) and we may take
\[
p \geq r e^{-\theta} 2^{10}, \quad \sigma \leq e^{6 - 9 - r^{-1/2}}
\]
such that by Corollary 5.6
\[
|h - k|^2 \|A(h)\| \leq C_2(n, C_1, \varepsilon) \|A(k)\|^\gamma
\]
for all \(h > k \geq k_1 \). By a well-known result (see e.g. [8, Lemma 4.1]) we conclude
\[
f_\sigma \leq k_1 + d, \quad d^p = C_2 2^{p/\gamma (\gamma + 1)} \|A(k_1)\|^{-1/\gamma - 1}
\]
for some \(p \) and \(\sigma \) satisfying (10). Since
\[
\int_{A(k_1)} d\mu \leq |M| \leq |M_0|
\]
by Corollary 3.6(i), it remains only to show that \(T \) is finite.

5.8 Lemma. \(T < \infty \).

Proof. The mean curvature \(H \) satisfies the evolution equation
\[
\frac{\partial}{\partial t} H = \Delta H + H^3 - \frac{1}{n} H^3.
\]
Then let \(\varphi \) be the solution of the ordinary differential equation
\[
\frac{\partial \varphi}{\partial t} = \frac{1}{n} \varphi^3, \quad \varphi(0) = H_{min}(0) > 0.
\]
If we consider \(\varphi \) as a function on \(M \times [0, T) \), we get
\[
\frac{\partial}{\partial t} (H - \varphi) \geq \Delta (H - \varphi) + \frac{1}{n} (H^3 - \varphi^3)
\]
such that by the maximum principle
\[
H \geq \varphi \quad \text{on} \ 0 \leq t < T.
\]
On the other hand \(\varphi \) is explicitly given by
\[
\varphi(t) = \frac{H_{min}(0)}{1 - \left(2/n\right) H_{min}(0) \cdot t}.
\]
And since \(\varphi \to \infty \) as \(t \to (n/2) H_{min}(0)^{-1} \), the result follows. Moreover, in the case that \(M_0 \) is a sphere, \(\varphi \) describes exactly the evolution of the mean curvature and so the bound \(T \leq (n/2) H_{min}^{-1}(0) \) is sharp. This completes the proof of Theorem 5.1.

6. A bound on \(|\nabla H| \)

In order to compare the mean curvature at different points of the surface \(M_0 \), we bound the gradient of the mean curvature as follows.

6.1 Theorem. For any \(\eta > 0 \) there is a constant \(C(\eta, M_0, n) \) such that
\[
|\nabla H|^2 \leq \eta H^4 + C(\eta, M_0, n).
\]

Proof. First of all we need an evolution equation for the gradient of the mean curvature.

6.2 Lemma. We have the evolution equation
\[
\frac{\partial}{\partial t} |\nabla H|^2 = \Delta |\nabla H|^2 - 2 |\nabla^2 H|^2 + 2 |A|^2 |\nabla H|^2 + 2 \langle \nabla_i H \cdot \nabla_j H, \nabla_i A \rangle + 2 \langle \nabla_i H \cdot h_{mj}, \nabla_j H \rangle + 2 H \langle \nabla_i H, \nabla_i |A|^2 \rangle.
\]

6.3 Corollary.
\[
\frac{\partial}{\partial t} |\nabla H|^2 \leq \Delta |\nabla H|^2 - 2 |\nabla^2 H|^2 + 4 |A|^2 |\nabla H|^2 + 2 H \langle \nabla_i H, \nabla_i |A|^2 \rangle.
\]

Proof of Lemma 6.2. Using the evolution equations for \(H \) and \(g \) we obtain
\[
\frac{\partial}{\partial t} |\nabla H|^2 = \frac{\partial}{\partial t} \left(|g| \nabla_i H \nabla_j H \right)
\]
\[
= 2 H \langle h_{ij}, \nabla_i H \nabla_j H \rangle + 2 g^{ij} \nabla_i (\Delta H) \cdot \nabla_j H + 2 g^{ij} \nabla_i (|A|^2) \nabla_j H.
\]
The result then follows from the relations
\[
|\nabla H|^2 = 2 g^{ij} \Delta (\nabla_i H) \cdot \nabla_j H + 2 |\nabla^2 H|^2,
\]
\[
\Delta (\nabla_i H) = \nabla_i (\Delta H) + g^{ij} \nabla_i (H h_{kj} - h_{km} h_{nj} g^{mn} h_{nj})
\]

6.4 Lemma. We have the inequality
\[
\frac{\partial}{\partial t} \left(\frac{|\nabla H|^2}{H} \right) \leq \Delta \left(\frac{|\nabla H|^2}{H} \right) + 3 |A|^2 \left(\frac{|\nabla H|^2}{H} \right) + 2 \langle \nabla_i H, \nabla_i |A|^2 \rangle.
\]
Proof. We compute
\[
\frac{\partial}{\partial t}\left(\frac{\|\nabla H\|_2^2}{H}\right) \leq \frac{H\Delta\|\nabla H\|_2^2 - \|\nabla H\|_2^2 \Delta H}{H^2} - \frac{2}{H} \|\nabla^2 H\|_2^2 \\
+ 3\|A\|^2 \left(\frac{\|\nabla H\|_2^2}{H}\right) + 2 \left\langle \nabla H, \nabla|A|^2 \right\rangle,
\]
and the result follows from Schwarz' inequality. We need two more evolution equations.

6.5 Lemma. We have
\[
(i) \quad \frac{\partial}{\partial t} H^3 = \Delta H^3 - 6H\|\nabla H\|_2^2 + 3\|A\|^2 \cdot H^2,
\]
\[
(ii) \quad \frac{\partial}{\partial t} \left(\left(\|A\|^2 - \frac{1}{n} H^2\right) H\right) \leq \Delta \left(\left(\|A\|^2 - \frac{1}{n} H^2\right) H\right) - \frac{2(n-1)}{3n} H\|\nabla A\|^2 \\
+ C_3\|\nabla A\|^2 + 3\|A\|^2 H\left(\|A\|^2 - \frac{1}{n} H^2\right),
\]
with a constant \(C_3 \) depending on \(n, C_0 \), and \(\delta \), i.e., only on \(M_0 \).

Proof. The first identity is an easy consequence of the evolution equation for \(H \). To prove the inequality (ii), we derive from Corollary 3.5(iii)
\[
\frac{\partial}{\partial t} \left(\left(\|A\|^2 - \frac{1}{n} H^2\right) H\right) = \Delta \left(\left(\|A\|^2 - \frac{1}{n} H^2\right) H\right) - 2H \left\langle \nabla A, \nabla \left(\|A\|^2 - \frac{1}{n} H^2\right) \right\rangle \\
- 2 \left\langle \nabla H, \nabla \left(\|A\|^2 - \frac{1}{n} H^2\right) \right\rangle \\
+ 3\|A\|^2 H\left(\|A\|^2 - \frac{1}{n} H^2\right).
\]
Now, using Theorem 5.1 and (7) we estimate
\[
2 \left\langle \nabla H, \nabla \left(\|A\|^2 - \frac{1}{n} H^2\right) \right\rangle = 4 \left\langle \nabla H \cdot \nabla_A h_{kl}, \nabla h_{kl} \right\rangle \\
\leq 4 \|\nabla H\|_2 \|\nabla A\|_2 \\
\leq 4nC_3^{1/2} H^{1-\delta/2} \|\nabla A\|^2 \\
\leq \frac{2(n-1)}{3n} H\|\nabla A\|^2 + C(n, C_0, \delta)\|\nabla A\|^2,
\]
and the conclusion follows from Lemma 2.2(ii).

We are now going to bound the function
\[
f = \frac{\|\nabla H\|_2^2}{H} + N\left(\|A\|^2 - \frac{1}{n} H^2\right) H + NC_3\|A\|^2 - \eta H^3
\]
for some large \(N \) depending only on \(n \) and \(0 < \eta \leq 1 \). From Lemmas 6.4 and 6.5 we obtain
\[
\frac{\partial f}{\partial t} \leq \Delta f + 3\|A\|^2 \left(\frac{\|\nabla H\|_2^2}{H}\right) + 2 \left\langle \nabla H, \nabla|A|^2 \right\rangle \\
+ 6\eta H\|\nabla H\|_2^2 - \frac{2(n-1)}{3n} H\|\nabla A\|^2 \\
+ 2NC_3\|A\|^4 + 3N\|A\|^2 H\left(\|A\|^2 - \frac{1}{n} H^2\right) - 3\eta\|A\|^2 H^3.
\]
Since \((1/n)H^2 \leq \|A\|^2 \leq H^2, \|\nabla H\|_2^2 \leq n\|\nabla A\|^2 \) and \(\eta \leq 1 \) we may choose \(N \) depending only on \(n \) so large that
\[
\frac{\partial f}{\partial t} \leq \Delta f + 2NC_3H^4 + 3NH^3\left(\|A\|^2 - \frac{1}{n} H^2\right) - \frac{3}{3n} \eta H^3.
\]
By Theorem 5.1 we have
\[
2NC_3H^4 + 3NH^3\left(\|A\|^2 - \frac{1}{n} H^2\right) \leq 2NC_3H^4 + 3NC_0H^{5-\delta} \leq \frac{3}{3n} \eta H^3 + C(\eta, \delta, n, C_0, C_3)
\]
and hence \(\frac{\partial f}{\partial t} \leq \Delta f + C(\eta, M_0) \).

This implies that \(\max f(t) \leq \max f(0) + C(\eta, M_0)t \), and since we already have a bound for \(T \), \(f \) is bounded by some (possibly different) constant \(C(\eta, M_0) \). Therefore
\[
\|\nabla H\|_2^2 \leq \eta H^4 + C(\eta, M_0) H \leq 2\eta H^4 + \tilde{C}(\eta, M_0)
\]
which proves Theorem 6.1 since \(\eta \) is arbitrary.

7. Higher derivatives of \(A \)

As in [6] we write \(S \ast T \) for any linear combination of tensors formed by contraction on \(S \) and \(T \) by \(g \). The \(m \)th iterated covariant derivative of a tensor \(T \) will be denoted by \(\nabla^m T \). With this notation we observe that the time derivative of the Christoffel symbols \(\Gamma_{jk} \) is equal to
\[
\frac{\partial}{\partial t} \Gamma_{jk} = \frac{\partial}{\partial t} \Gamma_{jk}^{ij} \cdot \left(\nabla_j \left(\frac{\partial}{\partial s} g_{ik} \right) + \nabla_k \left(\frac{\partial}{\partial s} g_{ij} \right) - \nabla_i \left(\frac{\partial}{\partial s} g_{jk} \right) \right) \\
= -g_{ij} \left(\nabla_j (Hh_{ki}) + \nabla_k (Hh_{ij}) - \nabla_i (Hh_{jk}) \right) = A \ast \nabla A,
\]
in view of the evolution equation for \(g = \{ g_{ij} \} \). Then we may proceed exactly as in [6, §13] to conclude

7.1 Theorem. For any \(m \) we have an equation

\[
\frac{d}{dt} |\nabla^m A|^2 = \Delta |\nabla^m A|^2 - 2|\nabla^{m+1} A|^2 + \sum_{i+j+k=m} \nabla_i A \ast \nabla_j A \ast \nabla_k A \ast \nabla_m A.
\]

Now we need the following interpolation inequality which is proven in [6, §12].

7.2 Lemma. If \(T \) is any tensor and if \(1 \leq i \leq m - 1 \), then with a constant \(C(n, m) \) which is independent of the metric \(g \) and the connection \(\Gamma \) we have the estimate

\[
\int |\nabla^i T|^2 \frac{d\mu}{d\mu} \leq C \cdot \max_M |T|^{2(m/i - 1)} \int |\nabla^m T|^2 \frac{d\mu}{d\mu}.
\]

This leads to

7.3 Theorem. We have the estimate

\[
\frac{d}{dt} \int_M |\nabla^m A|^2 \, d\mu + 2 \int_M |\nabla^{m+1} A|^2 \, d\mu \leq C \cdot \max_M |A|^2 \int_M |\nabla^m A|^2 \, d\mu,
\]

where \(C \) only depends on \(n \) and the number of derivatives \(m \).

Proof. By integrating the identity in Theorem 7.1 and using the generalised H"older inequality we derive

\[
\frac{d}{dt} \int_M |\nabla^m A|^2 \, d\mu + 2 \int_M |\nabla^{m+1} A|^2 \, d\mu \leq C \left(\int_M |\nabla^m A|^{\frac{2m+i}{i}} \, d\mu \right)^{\frac{i}{2m}} \left(\int_M |\nabla^{m+j} A|^{\frac{2m+j}{j}} \, d\mu \right)^{\frac{j}{2m}} \left(\int_M |\nabla^{m+k} A|^{\frac{2m+k}{k}} \, d\mu \right)^{\frac{k}{2m}} \left(\int_M |\nabla^m A|^2 \, d\mu \right)^{\frac{1}{2}},
\]

with \(i + j + k = m \). The interpolation inequality above gives

\[
\left(\int_M |\nabla^m A|^{\frac{2m+i}{i}} \, d\mu \right)^{\frac{i}{2m}} \leq C \cdot \max_M |A|^{1-i/m} \left(\int_M |\nabla^m A|^2 \, d\mu \right)^{\frac{1}{2m}},
\]

and if we do the same with \(j \) and \(k \), the theorem follows.

8. The maximal time interval

We already stated that equation (1) has a (unique) smooth solution on a short time interval if the uniformly convex, closed and compact initial surface \(M_0 \) is smooth enough. Moreover, we have

8.1 Theorem. The solution of equation (1) exists on a maximal time interval \(0 < t < T \), \(\max_M |A|^2 \) becomes unbounded as \(t \) approaches \(T \).

Proof. Let \(0 < t < T \) be the maximal time interval where the solution exists. We showed in Lemma 5.8 that \(T < \infty \). Here we want to show that if \(\max_M |A|^2 \leq C \) for \(t \to T \), the surfaces \(M_t \) converge to a smooth limit surface \(M_T \). We could then use the local existence result to continue the solution to later times in contradiction to the maximality of \(T \).

In the following we suppose

\[
(11) \quad \max_M |A|^2 \leq C \quad \text{on} \quad 0 < t < T,
\]

and assume that as in the introduction \(M_t \) is given locally by \(F(\tilde{x}, t) \) defined for \(\tilde{x} \in U \subseteq \mathbb{R}^n \) and \(0 < t < T \). Then from the evolution equation (1) we obtain

\[
|F(\tilde{x}, \rho) - F(\tilde{x}, \sigma)| \leq \int_\sigma^\rho |H(\tilde{x}, \tau)| \, d\tau
\]

for \(0 < \sigma < \rho < T \). Since \(H \) is bounded, \(F(\cdot, t) \) tends to a unique continuous limit \(F(\cdot, T) \) as \(t \to T \).

In order to conclude that \(F(\cdot, t) \) represents a surface \(M_T \), we use [6, Lemma 14.2].

8.2 Lemma. Let \(g_{ij} \) be a time dependent metric on a compact manifold \(M \) for \(0 < t < T < \infty \). Suppose

\[
\int_0^T \max_M \left| \frac{\partial}{\partial t} g_{ij} \right| \, dt \leq C < \infty.
\]

Then the metrics \(g_{ij}(t) \) for all different times are equivalent, and they converge as \(t \to T \) uniformly to a positive definite metric tensor \(g_{ij}(T) \) which is continuous and also equivalent.

Here we used the notation

\[
\left| \frac{\partial}{\partial t} g_{ij} \right| = g^{kl} g^{ij} \left(\frac{\partial}{\partial t} g_{kl} \right) \left(\frac{\partial}{\partial t} g_{kl} \right).
\]

In our case all the surfaces \(M_t \) are diffeomorphic and we can apply Lemma 8.2 in view of Lemma 3.2, assumption (11) and the fact that \(T < \infty \). It remains only to show that \(M_T \) is smooth. To accomplish this it is enough to prove that
all derivatives of the second fundamental form are bounded, since the evolution equations (1) and (4) then imply bounds on all derivatives of F.

8.3 Lemma. If (11) holds on $0 \leq t < T$ and $T < \infty$, then $|\nabla^m A| \leq C_m$ for all m. The constant C_m depends on n, M_0 and C.

Proof. Theorem 7.3 immediately implies

$$\int_{M_t} |\nabla^m A| \, d\mu \leq C_m,$$

since the inequality $\partial g/\partial t \leq cg$ on a finite time interval gives a bound on g in terms of its initial data. Then Lemma 7.2 yields

$$\int_{M_t} |\nabla^p A| \, d\mu \leq C_{m,p}$$

for all m and $p < \infty$. The conclusion of the lemma follows if we apply a version of the Sobolev inequality in Lemma 5.7 to the functions $g_m = |\nabla^m A|^2$.

Thus the surfaces M_t converge to M_T in the C^∞-topology as $t \to T$. By Theorem 3.1 this contradicts the maximality of T and proves Theorem 8.1.

We now want to compare the maximum value of the mean curvature H_{max} to the minimum value H_{min} as t tends to T. Since $|A|^2 \leq H^2$, we obtain from Theorem 8.1 that H_{max} is unbounded as $t \to T$.

8.4 Theorem. We have $H_{\text{max}}/H_{\text{min}} \to 1$ as $t \to T$.

Proof. We will follow Hamilton's idea to use Myers' theorem.

8.5 Theorem (Myers). If $R_{ij} \geq (n-1)Kg_{ij}$ along a geodesic of length at least $\pi K^{-1/2}$ on M, then the geodesic has conjugate points.

To apply the theorem we need

8.6 Lemma. If $h_{ij} \geq \epsilon Hg_{ij}$ holds on M with some $0 < \epsilon \leq 1/n$, then

$$R_{ij} \geq (n-1)\epsilon^2 H^2 g_{ij}.$$

Proof of Lemma 8.6. This is immediate from the identity

$$R_{ij} = Hh_{ij} - h_{mn} R^{mn} h_{ij}.$$

Now we obtain from Theorem 6.1 that for every $\eta > 0$ we can find a constant $c(\eta)$ with $|\nabla H| \leq \frac{1}{2}\eta H^2 + c(\eta)$ on $0 \leq t < T$. Since H_{max} becomes unbounded as $t \to T$, there is some $\theta < T$ with $c(\eta) \leq \frac{1}{2}\eta H_{\text{max}}$ at $t = \theta$. Then

(12)

$$|\nabla H| \leq \eta^2 H_{\text{max}}^2$$

at time $t = \theta$. Now let x be a point on M_θ, where H assumes its maximum. Along any geodesic starting at x of length at most $\eta^{-1} H_{\text{max}}$ we have $H \geq (1 - \eta) H_{\text{max}}$. In view of Lemma 8.6 and Theorem 8.5 those geodesics then reach any point of M_θ if η is small and thus

(13)

$$H_{\text{min}} \geq (1 - \eta) H_{\text{max}}$$

on M_θ.

Since H_{min} is nondecreasing we have

$$H_{\text{max}}(t) \geq \frac{1}{2} H_{\text{max}}(\theta) \quad \text{on } \theta \leq t < T,$$

and hence the inequalities (12) and (13) are true on all of $\theta \leq t < T$ which proves Theorem 8.4.

We need the following consequences of Theorem 8.4.

8.7 Theorem. We have $\int H_{\text{max}}^2(\tau) \, d\tau = \infty$.

Proof. Look at the ordinary differential equation

$$\frac{\partial g}{\partial t} = H_{\text{max}}^2 g, \quad g(0) = H_{\text{max}}.$$

We get a solution since H_{max}^2 is continuous in t. Furthermore we have

$$\frac{\partial}{\partial t}(H - g) \leq H_{\text{max}}^2(H - g)$$

and therefore

$$\frac{\partial}{\partial t}(H - g) \leq H_{\text{max}}^2(H - g) + H_{\text{max}}^2(H - g).$$

So we obtain $H \leq g$ for $0 \leq t < T$ by the maximum principle, and $g \to \infty$ as $t \to T$. But now we have

$$\int_0^T H_{\text{max}}^2(\tau) \, d\tau = \log\{g(t)/g(0)\} \to \infty$$

as $t \to T$.

which proves Theorem 8.7.

8.8 Corollary. If, as in the introduction, h is the average of the squared mean curvature

$$h = \frac{1}{|M|} \int_M H^2 \, d\mu,$$

then

$$\int_0^T h(\tau) \, d\tau = \infty.$$

Proof. This follows from Theorems 8.4 and 8.7 since $H_{\text{min}}^2 \leq h \leq H_{\text{max}}^2$.

8.9 Corollary. We have $|A|^2 / H^2 \to 0$ as $t \to T$.

Proof. This is a consequence of Theorem 5.1 since $H_{\text{min}} \to \infty$ by Theorem 8.4.

Obviously M_t stays in the region of \mathbb{R}^{n+1} which is enclosed by M_θ, for $t > t_\theta$ since the surfaces are shrinking. By Theorem 8.4 the diameter of M_t tends to zero as $t \to T$. This implies the first part of Theorem 1.1.
9. The normalized equation

As we have seen in the last sections, the solution of the unnormalized equation

\[\frac{\partial}{\partial t} F = \Delta F = -H \nu \]

shrinks down to a single point \(\mathcal{O} \) after a finite time. Let us assume from now on that \(\mathcal{O} \) is the origin of \(\mathbb{R}^{n+1} \). Note that \(\mathcal{O} \) lays in the region enclosed by \(M_t \) for all times \(0 \leq t < T \). We are going to normalize equation (1) by keeping some geometrical quantity fixed, for example the total area of the surfaces \(M_t \). We could as well have taken the enclosed volume which leads to a slightly different normalized equation. As in the introduction multiply the solution \(F \) of (1) at each time \(0 \leq t < T \) with a positive constant \(\psi(t) \) such that the total area of the surface \(M_t \) given by

\[\bar{F} \cdot (\cdot, t) = \psi(t) \cdot F \cdot (\cdot, t) \]

is equal to the total area of \(M_0 \);

\[\int_{M_t} \bar{\mu} = |M_0| \quad \text{on } 0 \leq t < T. \]

Then we introduce a new time variable by

\[\tilde{t}(t) = \int_0^t \psi^2(\tau) \, d\tau \]

such that \(\partial \tilde{t} / \partial t = \psi^3 \). We have

\[\bar{g}_{ij} = \psi^3 g_{ij}, \quad \bar{h}_{ij} = \psi h_{ij}, \]

\[\bar{H} = \psi^{-1} H, \quad |\bar{A}|^2 = \psi^{-2} |A|^2, \]

and so on. If we differentiate (14) for time \(t \), we obtain

\[\psi^{-1} \frac{\partial \psi}{\partial t} = \frac{1}{n} \int \frac{H^2 \, d\mu}{\int d\mu} = \frac{1}{n} h. \]

Now we can derive the normalized evolution equation for \(F \) on a different maximal time interval \(0 \leq \tilde{t} < \tilde{T} \):

\[\frac{\partial \bar{F}}{\partial \tilde{t}} = \psi^{-2} \left(\frac{\partial \psi}{\partial \tilde{t}} F + \psi \frac{\partial F}{\partial \tilde{t}} \right) \]

\[= -\bar{H} \nu + \frac{1}{n} \bar{h} \bar{F} \]

as stated in (2). We can also compute the new evolution equations for other geometric quantities.

9.1 Lemma. Suppose the expressions \(P \) and \(Q \), formed from \(g \) and \(A \), satisfy \(\partial P / \partial t = \Delta P + Q \), and \(P \) has 'degree' \(\alpha \), that is, \(\bar{P} = \psi^\alpha P \). Then \(Q \) has degree \((\alpha - 2) \) and

\[\frac{\partial \bar{P}}{\partial \tilde{t}} = \Delta \bar{P} + \bar{Q} + \frac{\alpha}{n} \bar{h} \bar{P}. \]

Proof. We calculate with the help of (15)

\[\frac{\partial \bar{P}}{\partial \tilde{t}} = \psi^{-2} \left(\alpha \psi^{\alpha - 1} \frac{\partial \psi}{\partial \tilde{t}} P + \psi \frac{\partial P}{\partial \tilde{t}} \right) \]

\[= \psi^{-2} \left(\frac{\alpha}{n} \bar{h} \bar{P} + \psi \Delta P + \psi \bar{Q} \right) \]

\[= \frac{\alpha}{n} \bar{h} \bar{P} + \Delta \bar{P} + \bar{Q}. \]

The results in Theorem 4.3, Theorem 8.4 and Corollary 8.9 convert unchanged to the normalized equation, since at each time the whole configuration is only dilated by a constant factor.

9.2 Lemma. We have

(i) \(\bar{h}_{ij} \geq e \tilde{H} \bar{g}_{ij} \),

(ii) \(\tilde{H}_{\max} / \tilde{H}_{\min} \to 1 \quad \text{as } \tilde{t} \to \tilde{T} \),

(iii) \(\frac{|\tilde{A}|^2}{\tilde{H}^2} \to \frac{1}{n} \quad \text{as } \tilde{t} \to \tilde{T} \).

Now we prove

9.3 Lemma. There are constants \(C_4 \) and \(C_5 \) such that for \(0 \leq \tilde{t} \leq \tilde{T} \)

\[0 < C_4 \leq \tilde{H}_{\min} \leq \tilde{H}_{\max} \leq C_5 < \infty. \]

Proof. The surface \(\bar{M} \) encloses a volume \(\bar{V} \) which is given by the divergence theorem

\[\bar{V} = \frac{1}{n + 1} \int_{\bar{M}} \bar{F} \bar{\nu} \, d\bar{\mu}. \]

Since the origin \(\mathcal{O} \) is in the region enclosed by \(\bar{M} \) for all times as well, we have that \(\bar{F} \bar{\nu} \) is everywhere positive on \(\bar{M} \). By the isoperimetric inequality we have

\[\tilde{V} \leq c_4 |\tilde{M}|^{n-1} = c_4 |M_0|^{n-1}. \]
On the other hand we get from the first variation formula

\[
|M_0| = |\tilde{M}| = \frac{1}{n} \int \tilde{H}(\tilde{F}) \, d\tilde{u} \leq \tilde{H}_{\text{max}} \cdot \tilde{V}_t,
\]

which proves the first inequality in view of Lemma 9.2(ii). To obtain the upper bound we observe that in view of \(h_{ij} \geq \varepsilon \tilde{H}_{\text{min}} \tilde{g}_{ij} \) the enclosed volume \(\tilde{V} \) can be estimated by the volume of a ball of radius \((\varepsilon \tilde{H}_{\text{min}})^{-1}\):

\[
\tilde{V}_t \leq c_n (\varepsilon \tilde{H}_{\text{min}})^{-(n+1)}.
\]

The first variation formula yields

\[
\tilde{V}_t \geq \frac{1}{n+1} \tilde{H}_{\text{max}}^{-1} \int (\tilde{F} \tilde{F}) \tilde{H} d\tilde{u} \geq \frac{n}{n+1} \tilde{H}_{\text{max}}^{-1} |M_0|,
\]

which proves the upper bound again in view of Lemma 9.2(ii).

9.4 Corollary. \(\tilde{T} = \infty \).

Proof. We have \(d\tilde{T}/dt = \psi^2 \) and \(\tilde{H}^2 = \psi^{-2} \tilde{H}^2 \) such that

\[
\int_0^{\tilde{T}} h(\tilde{\tau}) \, d\tilde{\tau} = \int_0^{\tilde{T}} h(\tau) \, d\tau = \infty
\]

by Corollary 8.8. But by Lemma 9.3 we have \(\tilde{h} \leq \tilde{H}_{\text{max}}^2 \leq C_2^2 \) and therefore \(\tilde{T} = \infty \).

10. Convergence to the sphere

We want to show that the surfaces \(\tilde{M}_t \) converge to a sphere in the \(C^\infty \)-topology as \(t \to \infty \). Let us agree in this section to denote by \(\delta > 0 \) and \(C < \infty \) various constants depending on known quantities. We start with

10.1 Lemma. There are constants \(\delta > 0 \) and \(C < \infty \) such that

\[
\int_{S_t} |\tilde{A}|^2 - \frac{1}{n} \tilde{H}^2 \, d\tilde{u}^2 \leq Ce^{-\delta t}.
\]

Proof. Let \(\tilde{f} \) be the function \(\tilde{f} = |\tilde{A}|^2 / \tilde{H}^2 - 1/n \) which has degree 0. Then we conclude as in the proof of Lemma 5.5 that, for some large \(p \) and a small \(\delta \) depending on \(\varepsilon \),

\[
\frac{\partial}{\partial \tilde{t}} \int \tilde{f}^p \, d\tilde{u} \leq -\delta \int \tilde{f}^p |\tilde{A}|^2 \, d\tilde{u} + \int (\tilde{h} - \tilde{H}^2) \tilde{f}^p \, d\tilde{u},
\]

since \(\partial / \partial \tilde{t} \tilde{u} = (\tilde{h} - \tilde{H}^2) \tilde{u} \). In view of Lemma 9.2(ii) and Lemma 9.3 we have for all times \(\tilde{t} \) larger than some \(\tilde{t}_0 \)

\[
\frac{d}{d\tilde{t}} \int \tilde{f}^p \, d\tilde{u} \leq -\delta \int \tilde{f}^p \, d\tilde{u}
\]

with a different \(\delta \). Thus

\[
\int \tilde{f}^p \, d\tilde{u} \leq Ce^{-\delta \tilde{t}},
\]

where \(C \) now depends on \(\tilde{t}_0 \) as well. The conclusion of the lemma then follows from the Hölder inequality \(|M_0| = |M_0| \) and Lemma 9.3.

Now let us denote by \(\tilde{h} \) the mean value of the mean curvature on \(\tilde{M} \):

\[
\tilde{h} = \int_{S_t} \tilde{H} \, d\tilde{u} / \int d\tilde{u}
\]

10.2 Lemma. We have

\[
\int (\tilde{H} - \tilde{h})^2 \, d\tilde{u} \leq \int \tilde{H}^2 - \tilde{h}^2 \, d\tilde{u} \leq Ce^{-\delta \tilde{t}}.
\]

Proof. In view of the Poincaré inequality it is enough to show that \(\int |\nabla \tilde{H}|^2 \, d\tilde{u} \) decreases exponentially. Note that the constant in the Poincaré inequality can be chosen independently of \(\tilde{t} \) since we got control on the curvature in Lemma 9.2 and Lemma 9.3. Look at the function

\[
\tilde{g} = |\nabla \tilde{H}|^2 + N(\tilde{H}^2 - 1/n)^2 \tilde{H},
\]

where \(N \) is a large constant depending only on \(n \). The degree of \(g \) is \(-3 \), and from the results in §6 we obtain

\[
\frac{\partial \tilde{g}}{\partial \tilde{t}} \leq \tilde{A} \tilde{g} + 3N|\tilde{A}|^2 \tilde{H}(\tilde{H}^2 - 1/n)^2 \tilde{H} - \frac{3}{n} \tilde{H} \tilde{g}
\]

for all times larger than some \(\tilde{t}_1 \). Here we used that the term

\[
\left(\nabla \tilde{H}, \nabla \left(\left| \tilde{A} \right|^2 - \frac{1}{n} \tilde{H}^2 \right) \right) = 2 \left(\nabla \tilde{H}, \tilde{h} \tilde{h}^0 \right)
\]

becomes small compared to \(H|\nabla \tilde{A}|^2 \) as \(\tilde{t} \to \infty \) since \(|\tilde{h}\tilde{h}^0| = (|\tilde{A}|^2 - \tilde{H}^2/n)^{1/2} \) tends to zero. Now using Lemma 10.1 and \(C_4 \leq \tilde{H} \leq C_5 \) we conclude for \(\tilde{t} \geq \tilde{t}_2 \)

\[
\frac{d}{d\tilde{t}} \int \tilde{g} \, d\tilde{u} \leq -\delta \int \tilde{g} \, d\tilde{u} + Ce^{-\delta \tilde{t}} + \int (\tilde{h} - \tilde{H}^2) \tilde{g} \, d\tilde{u}.
\]

Since \((\tilde{h} - \tilde{H}^2) \to 0 \) as \(\tilde{t} \to \infty \) by Lemma 9.2(ii), we have for all \(\tilde{t} \) larger than some \(\tilde{t}_2 \)

\[
\frac{d}{d\tilde{t}} \left(e^{\delta \tilde{t}} \int \tilde{g} \, d\tilde{u} - \tilde{C} \right) \leq 0,
\]

and therefore

\[
\int |\nabla \tilde{H}|^2 \tilde{H} \, d\tilde{u} \leq Ce^{-\delta \tilde{t}}.
\]
with some constants C and δ depending on t_2, and the conclusion follows from $C_4 < \tilde{H} < C_3$.

To bound higher derivatives of the curvature, we need another interpolation inequality [6, 12, 77].

10.3 Lemma. If T is any tensor on M, then with a constant $C = C(n, m)$ independent of the metric g and the connection Γ we have the estimate

$$\int_M |\nabla^m T|^2 \, d\mu \leq C \left(\int_M |\nabla^{m+1} T|^2 \, d\mu \right)^{1/(m+1)} \left(\int_M |T|^2 \, d\mu \right)^{1-1/(m+1)},$$

for $0 \leq i \leq m$.

We start with Theorem 7.3. The estimate

$$\frac{d}{dt} \int_M |\nabla^m \tilde{A}|^2 \, d\tilde{\mu} + 2 \int_M |\nabla^{m+1} \tilde{A}|^2 \, d\tilde{\mu} \leq C \cdot \max_M |\tilde{A}|^2 \int_M |\nabla^m \tilde{A}|^2 \, d\tilde{\mu},$$

(16)

carries over to the normalized equation since both sides stretch by the same factor, and we have $\max |\tilde{A}| \leq C_2$. Let us now introduce the tensor $\tilde{E} = \{ \tilde{E}_{ij} \}$ given by $\tilde{E}_{ij} = \tilde{h}_{ij} - \frac{1}{n} \tilde{h} \delta_{ij}$. Then $\nabla^m \tilde{A} = \nabla^m \tilde{E}$ for all $m > 0$ and the right-hand side of (16) can be estimated by Lemma 10.3:

$$\int_M |\nabla^m \tilde{A}|^2 \, d\tilde{\mu} \leq C \left(\int_M |\nabla^{m+1} \tilde{A}|^2 \, d\tilde{\mu} \right)^{1/(m+1)} \left(\int_M |\tilde{E}|^2 \, d\tilde{\mu} \right)^{1-1/(m+1)}.$$

By Young's inequality this is less than

$$C \eta \int_M |\nabla^{m+1} \tilde{A}|^2 \, d\tilde{\mu} + C \eta^{-m} \int_M |\tilde{E}|^2 \, d\tilde{\mu}$$

for any $\eta > 0$. Choosing η such that $C \eta \leq 2$ we derive from (16)

$$\frac{d}{dt} \int_M |\nabla^m \tilde{A}|^2 \, d\tilde{\mu} \leq C \int_M |\tilde{E}|^2 \, d\tilde{\mu}.$$

But

$$\int_M |\tilde{E}|^2 \, d\tilde{\mu} = \int_M |\tilde{A}|^2 - \frac{2}{n} \tilde{H} \tilde{h} + \frac{1}{n} \tilde{h}^2 \, d\tilde{\mu}$$

$$= \int_M |\tilde{A}|^2 - \frac{1}{n} \tilde{H}^2 \, d\tilde{\mu} + \frac{1}{n} \int_M (\tilde{H} - \tilde{h})^2 \, d\tilde{\mu},$$

and both integrals decrease exponentially by Lemmas 10.1 and 10.2. Thus we have proven

10.4 Lemma. For every m we have $\int_M |\nabla^m \tilde{A}|^2 \, d\tilde{\mu} \leq C m$ on $0 \leq i < \infty$ with a constant depending on m.

From Lemma 7.2 we deduce immediately that higher L^p-norms of $|\nabla^m \tilde{A}|$ are bounded as well:

$$\int_M |\nabla^m \tilde{A}|^p \, d\tilde{\mu} \leq C_{m,p},$$

and a version of the Sobolev inequality in Lemma 5.7 applied to the function $\tilde{E}_m = |\nabla^m \tilde{A}|^2$ yields $\max_M |\nabla^m \tilde{A}| \leq C$ for a constant $C < \infty$ depending on m. Now we can prove

10.5 Theorem. There are constants $\delta > 0$ and $C < \infty$ such that

$$|\tilde{A}|^2 - \frac{1}{n} \tilde{H}^2 \leq C e^{-\delta i}.$$

Proof. We denote by \tilde{A} the traceless second fundamental form

$$\tilde{A} = \{ \tilde{h}_{ij} \} = \{ \tilde{h}_{ij} - \frac{1}{n} \tilde{H} \delta_{ij} \},$$

such that $|\tilde{A}|^2 = |\tilde{A}|^2 - \tilde{H}^2 / n$. Since $|\nabla^m \tilde{A}|$ is bounded we conclude from Lemma 10.3

$$\int_M |\nabla^m \tilde{A}|^2 \, d\tilde{\mu} \leq C m \left(\int_M |\tilde{A}|^2 - \frac{1}{n} \tilde{H}^2 \, d\tilde{\mu} \right)^{1/(m+1)} \leq C m e^{-\delta i},$$

in view of Lemma 10.1. Then we have from Lemma 7.2

$$\int_M |\nabla^m \tilde{A}|^p \, d\tilde{\mu} \leq C_{m,p} e^{-\delta i},$$

and the conclusion follows once again from the Sobolev inequality.

Theorem 10.5 is the crucial estimate from where we can proceed exactly as in Hamilton's paper [6, §17] to conclude

10.6 Lemma. There are constants $\delta > 0$ and $C < \infty$ such that

(i) $\tilde{H}_{\text{max}} - \tilde{H}_{\text{min}} \leq C e^{-\delta i};$

(ii) $|\tilde{h}_{ij} - \frac{1}{n} \tilde{H} \delta_{ij}| \leq C e^{-\delta i};$

(iii) $\max_M |\nabla^m \tilde{A}| \leq C m e^{-\delta i}, \quad m > 0.$

All surfaces \tilde{M}_t stay in a bounded region around \mathcal{O} since Lemma 9.3 implies a bound on the diameter of \tilde{M}_t. Moreover, by Lemma 9.2(ii) and (iii) we can
pinch \tilde{M}_t arbitrarily close between an interior and an exterior sphere if \tilde{t} is large. This already shows that \tilde{M}_t converges to a sphere in some weak sense. We have the evolution equation
\[\frac{\partial}{\partial t} \tilde{g}_{ij} = \frac{2}{n} \tilde{h} \tilde{g}_{ij} - 2 \tilde{H} \delta_{ij}, \]
and we conclude from Lemma 10.6(ii) and Lemma 8.2 that the metrics $\tilde{g}_{ij}(\tilde{t})$ converge uniformly to a positive definite metric $\tilde{g}_{ij}(\infty)$ as $\tilde{t} \to \infty$. By Lemma 10.6(iii) the metrics also converge in the C^0-topology and thus $\tilde{g}_{ij}(\infty)$ is smooth. Finally, $\tilde{g}_{ij}(\infty)$ is the metric of a sphere by Theorem 10.5. This completes the proof of Theorem 1.1.

References

Australian National University

J. Differential Geometry

Examples of Simply-Connected Symplectic Non-Kählerian Manifolds

Dusa McDuff

1. Introduction

A symplectic manifold (M, σ) is a pair consisting of a $2n$-dimensional manifold M together with a closed 2-form σ which is nondegenerate (that is, σ^n never vanishes). The form σ determines two pieces of topological data: the cohomology class $a = [\sigma] \in H^2(M; \mathbb{R})$ and a homotopy class of reductions of the structural group of the tangent bundle of M to $U(n) = Sp(2n; \mathbb{R})$, and hence a homotopy class $[J]$ of almost complex structures on M. Gromov showed in his thesis that, if M is open, any such pair $(a, [J])$ may be realized by some symplectic form (see [3], [4]). If M is closed, a^n must be a generator of $H^{2n}(M; \mathbb{R})$ which is positive with respect to the orientation defined by $[J]$. But even with this condition, it is not known whether the corresponding statement is true. In fact, very few closed symplectic manifolds are known. Any Kähler manifold is symplectic. Thurston showed in [6] how to construct a non-Kähler closed symplectic manifold. His examples are nil-manifolds and so are not simply-connected. (A similar example was known to Serre. See [10], Problem 42. Thurston's construction is further developed in [9] and [3].)

In [3] Gromov points out that if the symplectic manifold (M, σ) is symplectically embedded in (X, ω), then one can "blow up" X along M to obtain a new symplectic manifold $(\tilde{X}, \tilde{\omega})$. In this note we use this technique together with a symplectic embedding theorem (see [5], [2], [7]) to construct some simply-connected, closed symplectic manifolds which are not Kähler.

Here is one such example. Let (M, σ) be Thurston's 4-dimensional symplectic, but non-Kähler manifold. It is the quotient \mathbb{R}^4/Γ, where Γ is the discrete affine group generated by the unit translations along the x_1, x_2, x_3-axes together with the transformation $(x_1, x_2, x_3, x_4) \mapsto (x_1 + x_2, x_3, x_4 + 1)$. Thus M is a T^2-bundle over T^2. Its symplectic form σ lifts to $dx_1 \wedge dx_2 + dx_3 \wedge dx_4$ on \mathbb{R}^4. Note that σ is integral, that is, $[\sigma] \in H^2(M; \mathbb{Z})$. Further,