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Parabolic equations for curves on surfaces
Part I. Curves with p-integrable curvature

By SiGuRD ANGENENT*

Abstract

This is the first of a two-part paper in which we develop a theory of
parabolic equations for curves on surfaces which can be applied to the so-called
curve shortening of flow-by-mean-curvature problem, as well as to a number of
models for phase transitions in two dimensions.

We introduce a class of equations for which the initial value problem is
solvable for initial data with p-integrable curvature, and we also give estimates
for the rate at which the p-norms of the curvature must blow up, if the curve
becomes singular in finite time.

A detailed discussion of the way in which solutions can become singular
and a method for “continuing the solution through a singularity” will be the
subject of the second part.
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Introduction

In this paper and its sequel we study the motion of curves on a surface
whose normal velocity is a given function of its position and its curvature. A
particular case is the curve shortening problem, or flow by mean curvature for
curves on surfaces. Here, one studies curves whose normal velocity and geodesic
curvature coincide. This case has been examined in great detail in the last few
years by Gage, Gage and Hamilton, Abresch and Langer, Epstein and Weinstein
and M. Grayson. Their papers are listed in the references. Intuitively, the
problem is that of describing the motion of a rubber band on a very sticky
surface, if you assume that the potential energy of the rubber band is propor-
tional to its length, and that the friction between the rubber band and the
surface is so large that it causes the band to move according to the gradient low
of the length function on the space of smooth curves on the surface.

Another special case of the problem we shall be looking at comes from the
theory of phase transitions. M. Gurtin has formulated a model for the evolution
of a two phase system in which both phases are perfect heat conductors. (See
[GuAl) If the system is two dimensional, the free boundary between the two
phases will be a plane curve. If this curve is assumed to be smooth, then its
motion is determined by the law v = ¢(8)k — ¥(8), where @, are given
functions, 6 is the angle the tangent to the curve makes with the x-axis, k is its
curvature and v* is the normal velocity of the curve.

Motivated by these and other examples (such as Gage’s variation on the
curve shortening problem, in which v*=k/R, where R is the Gaussian
curvature of the surface and R is assumed to be positive), we have tried to find
the most general law of motion of the form

(1) vt = V(t, k)

for curves on some surface M with a Riemannian metric g, for which the initial
value problem is well posed for a large class of initial curves.

One cannot expect that the initial value problem for (1) will have a solution
which exists for all time. It is known, for example, that solutions of the curve
shortening problem in the plane always become singular in finite time. When
the initial curve has no self-intersections, Gage and Hamilton, and Grayson have
shown that the solution will shrink to a “round point” in finite time. In fact, the
time it takes is A/2m, where A is the area enclosed by the initial curve. If the
initial curve does have self-intersections, then small loops may contract in finite
time, causing the curvature to become infinite. In this case, one would expect
that the family of curves converges to some singular limit curve which is
piecewise smooth, with a finite number of cusp-like singularities. By drawing
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pictures, one can easily convince oneself that there should be a solution of (1)
which has this singular limit curve as initial value, in some weak sense.

Our ultimate goal in this two-part paper is to find a large class of V’s for
which these expectations can be proved, i.e. for which a detailed description of
the limit curve is possible, and for which the class of allowable initial curves is
so large that it contains the limit curve.

Using the theory of parabolic Ppe’s which has been developed over the last
three decades, it is a fairly straightforward matter to prove short time existence
of solutions to (1) for initial curves which are C?, provided the function V
satisfies some parabolicity condition. Moreover, a very simple trick allows us to
prove that solutions are actually as smooth as the manifold M, its metric g and
the function V: S{(M) X R — R, even in the real analytic context. In fact if M,
g and V are real analytic, then so is any solution of (1.1) (below), and we can
show this without using any of the existing theorems on analyticity of solutions
of parabolic equations!

In this first part we deal with the most general class of V’s for which we
can solve the initial value problem for initial curves whose curvature belongs to
some L, class. The sequel will be devoted to a smaller class of V’s, for which
one can allow locally Lipschitz, and even locally graph-like, curves as initial data
for (1). The methods which are used in Parts I and II are quite different. In Part
I integral estimates and a blow-up argument are our main tools; in Part II
estimates for the regularity of solutions of (1) are obtained by more geometrical
arguments, e.g. by comparing general solutions with special solutions, and
counting their intersections. In the next section we give a precise description of
the results obtained here.

1. The initial value problem

We consider a fixed smooth (i.e., C*) two-dimensional oriented Riemannian
manifold (M; g), and denote its unit tangent bundle by

s'(M) = {£ € T(M)|g(£.8) =1}

It is a smooth submanifold of the tangent bundle of M, and therefore carries a
natural Riemannian metric. Moreover, the tangent bundle to the unit tangent
bundle splits into the Whitney sum of the bundle of horizontal vectors and the
bundle of vertical vectors. We can identify the horizontal vectors with the
pull-back of T(M) under the bundle projection 7: S'(M) — M, i.e., T*T(M);
the bundle of vertical vectors is naturally isomorphic to a subbundle of 7*T(M),
namely

Vert = {(t,v) € 7*T(M)|v L t}.
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The orthogonal splitting TS'(M) = 7*T(M) & Vert permits us to decompose
the connection V on S!(M) into two components, one coming from differentia-
tion in the horizontal direction, VP, and its vertical counterpart V". Thus we
have V=V'® Vh

A C' regular curve in our manifold M is, by definition, an equivalence class
of C' immersions of the circle S! into M; two such immersions which only differ
by an orientation-preserving reparametrisation will be considered to be the same
regular curve on the surface.

We let Q(M) stand for the space of all C! regular curves in M. For a given
C' curve we write t and n for its unit tangent and unit normal vectors,
respectively; we shall always assume that {t, n} is a positively oriented basis of
T‘Y(S)(M ).

The geodesic curvature of y € Q(M), if it exists, will be denoted by k., or
just k.

Given a C' family of immersions y(t, - ): S' = M one can decompose the
time derivative y,(t, s) as y,(t, s) = v/t + v n. The second component v* is
independent of the chosen parametrisation of each y(t, - ); it is the normal
velocity of the family of curves.

For any function V: S'(M) X R — R, one can formulate the following
initial value problem. Given a curve y, € (U M), find a family of curves
y(t) € QUUM) (0 < t < t,,, ) which, for t > 0, have continuous curvature, whose
normal velocity satisfies

(1.1) vi=V(t,k)

and whose initial value is y|,_, = v,.

Throughout the paper we shall assume that V satisfies at least the following
conditions:

(V}) V is a locally Lipschitz continuous function,

(V,) A <V /dk < A~ for almost all (t, k) € SY(M) X R,

(Vy) [V(t,0)| < u for almost all ¢t € SY(M)
where A, u > 0 are constants. In addition, we shall often assume that V also has
one of the following properties.

(V,) IV(V)| < @ for almost all (t, k) with k| < 1,

(V) VeoraW)I < v(1 + |k]"**) for almost all (t, k) € S'(M) X R,

(V) IVEV] + [kl IV¥V] < v(1 + |kI?) for almost all (t, k) € S'(M) X R.
Here, as above, i and v are positive constants, and « is a constant in the range
1 <k <o By V(V) we mean the gradient of V with respect to its first
argument t € S}(M), and V'V and V"V denote the vertical and horizontal
components of V(V).
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One can verify that all examples which we mentioned in the introduction
satisfy these conditions, just as does any V of the form V(t, k) = f(Dk + g(t),
where f, g: S'(M) — R are uniformly Lipschitz functions which satisfy A < f(t)
<A land [gV)| < .

One may show easily, using standard results on parabolic equations and
assuming V,, V, and V, and also some extra smoothness of V (say V € C?), that
the initial value problem will have a local solution (in time) for any initial curve
which is C2%2, i.e., which has Holder continuous curvature. This is done in
Section 3. By means of an approximation argument this result could then be
extended to arbitrary initial curves whose curvature is bounded.

Under assumption V; we can enlarge the class of allowable initial data. We
get the following:

Tueorem A. If V satisfies V| -+ Vg with k > 1, then the initial value
problem has a short time solution for any initial curve vy, whose curvature
belongs to L, i.e. for which

[ k()" ds <
Yo

holds for some p € (k, ). Moreover, if [0,t,,) is the maximal time interval on
which the solution exists, then either t;, = %, or the L, norm of the curvature
becomes unbounded as t — t,,.

The proof is given in Section 8, which uses the pointwise estimates for the
curvature in terms of its L, norm. These estimates are derived in Section 7, by
means of a Nash-Moser-like iteration method.

If we replace Vg by the stronger hypothesis V2, then we get a stronger
statement.

Tueorem B. Let V satisfy V, -+ VS*; then the initial value problem is
solvable for any initial curve which is locally the graph of a Lipschitz function. If
the maximal solution exists for a finite time, say tyq,,, then

o

So in this case a solution can only blow up if it develops a kink of at least
180 degrees. The proof is spread out over Parts I and IL In this part we shall
show that the theorem holds for initial curves whose curvature is p-integrable,
for some p > 1 (this is just Theorem A), and that the description of blow-up

f81k(s, t) ds

So

lim inf { sup

t =ty \IS1— S0l <€

holds for any € > 0.
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holds with “lim inf” replaced by “lim sup” (Theorem 9.1). These restrictions will
be removed in Part II.

The strongest results we get hold in the case where the evolution of the
curve does not depend on its orientation. This is exactly the case if V satisfies
the following symmetry condition:

(S) V(t,k) = —V(—t,— k) forall te SY(M) and k €R.

Tueorem C. Let V satisfy V, - -+ V& and S; then the initial value problem
has a solution for any initial curve which is C* locally graph-like.

We shall call a continuous map y: S' > M a parametrised C' locally
graph-like curve, if 7y is locally a homeomorphism, and if for each ¢ € S, one
can find C! coordinates (x, y) on M near y(¢) such that the image under vy of a
small interval (£ — 8, £ + 8) is the graph of a continuous function y = f(x). A
C! locally graph-like curve is an equivalence class of parametrised C! locally
graph-like curves, where two such curves are equivalent if and only if they differ
by a continuous reparametrisation.

In particular, locally Lipschitz curves are C! locally graph-like, but a C!
locally graph-like curve can also have isolated cusps, and worse singularities.

2. The space of regular curves

Any regular curve admits a constant speed parametrisation y: S' = M, i.e.,
one for which the vector y'(s) € T, (M) has constant length. Since S' = R/Z
has length one, the length of the vector y'(s) is exactly the length of the curve
v. This constant speed parametrisation is unique, up to a rigid rotation of S*. In
other words, if we define

0= {y € C(S', M): |¥'(s)| # 0 is constant},
then we have an S! action on €} given by

(0-v)(s) =v(s +0)
and we can define the space of regular curves in M to be the quotient of { by
this action:

Q(M) =Q/st.
Using the C' topology on ), we get a topology on (M), which turns out to be
metrisable and complete.
One can give (M) the structure of a topological Banach manifold; i.e.,
every point in (M(M) has a neighbourhood which is homeomorphic to an open

subset of a Banach space (C'(S') to be precise). The construction of such
neighbourhoods goes as follows.
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Let vy, € (M) be a regular curve, with parametrisation y,: S' = M. This
parametrisation can be extended to an immersion o: [—1,1] X S' = M, where
al{0} X S' = vy,. Clearly, any regular curve which is C' close to 7y, can be
parametrised as y,(s) = o(s, u(s)) for some C' function u with |u(s)] <1
(s € SY). The correspondence u € C'(S') — y, € Q(M) is the desired homeo-
morphism.

The homeomorphisms we have just defined show that (M) is a topologi-
cal Banach manifold. It turns out that the coordinate transformations that go
with these homeomorphisms are, in general, not C', so that we cannot claim that
we have given (0(M) a differentiable structure.

We shall occasionally talk about the lift or pull-back of a curve under a
local homeomorphism, in which case we shall have the following in mind.

If y: S' > M is a continuous map, and o: S' X [—1,1] &> M is a local
homeomorphism such that y can be lifted to a map I': S' - §' X [-1,1] (i.e,
so that y = o o I'), then we shall write o*(y) for the curve I'. Given ¢ and vy,
the lift o*(y) need not be uniquely determined, unless we choose one specific
value for I'(t,) € o~ '(y(t,)) for one t, € S'. However, once the lift T is
chosen, there is a unique lift ', = o*(7y,) which is close to I, for any curve vy,
close to 7y (in the C° topology).

3. Short time existence for smooth initial data

We shall say that y: [0,t,) = Q(M) is a classical solution, or just a
solution, for short, of (1.1), if

() v € c(o, t,); UM)),

(ii) for each t € (0,¢,), y(¢) has continuous curvature and normal velocity,
and y(t) (of course) satisfies v = V(t, k).

A solution y: [0,t,) = Q(M) will be called maximal, if it cannot be
extended to a classical solution on a strictly larger interval [0, ¢,) D [0, ¢,).

TueoreMm 3.1. Assume V: S'(M) X R — R is a C"! function which satis-

fies

av
Frilke 0 forall (t,k) € S'(M) X R.

Let v, be a regular curve with Holder continuous curvature. Then there exists a
unique maximal solution vy: [0, t,,, ) = Q(M) with initial value y(0) = v,.

If Vis a C™" function, for some m > 1, then the solution y(t) is a C™*%*
curve for any t > 0, and any 0 < a < 1.

If V, the manifold M and its metric g are real analytic, then so is the solution
y(t) for t > 0.
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Proof. As in the previous section, we can extend y,: S' > M to an
immersion & of the annulus [—1, 1] X S' into M, and perturb it slightly, so that
it becomes C* smooth. If we keep this perturbation small enough, then our
curve y, can be parametrised by a small C' function u,: ' - (—1,1), i.e., by
x = o(x,uy(x)). Nearby curves in the C' topology will have a similar
parametrisation. Since our curve has Holder continuous curvature and o is
smooth, the function u, will be C2**, for some 0 < a < 1.

Any classical solution y: [0, ¢,,, ) = Q(M) starts off close to its initial data,
so that we may represent an initial section of this solution as the image under o
of the graph of a function u(¢, x) of two variables, i.e., as y(¢, x) = o(x, u(t, x)).

To compute the curvature of y(¢, ) in terms of u and its derivatives, we
consider the pull-back of the metric g on M under o

o*(g) = (ds)* = A(x,y)(dx)* + 2B(x,y) dxdy + C(x,y)(dy)".
Here A, B and C are C” functions on S' X [—1, 1] which satisfy
D = AC — B% > 0.

If we define [ = A + 2Bu, + Cu?, then the unit tangent t to the curve y(¢, - ) is
the image under do of

T =120, + u,d,),
and the unit normal n is the image of
N = (ID)""*(=(B + Cu,)d, + (A + Bu )}

where the A, B, C and D should be evaluated -at (x, u(¢, x)). Using the Frenet

formulae one then arrives at the following expression for the geodesic curvature
of y(¢,-):

(3.1) k=172D"*(u,, + P+ Qu, + Ru’ + Su?).

Again, P,.Q, R and S are C* functions of (x, y) evaluated at y = u(t, x). They
enter the expression for the geodesic curvature as the covariant derivatives of
the vector fields d, and d,, and can be expressed in terms of the Christoffel
symbols of the metric in the (x, y) coordinates.

The vertical velocity of the family of curves y(t, x) is given by the vector
u,d,, so that its normal velocity is given by

vi= U*g(utéy, N) =["12D2q,.

We conclude from these computations that y: [0,t,) = Q(M) satisfies (1.1) if
and only if the function u satisfies

(3.2) u,=F(x,u,u_,u,
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where F is given by
(3.3) F(x,u,u_,u,)=101"*D""?V(do - T,k),

and T, k depend on (x,u,u ,u,,) as above.
Clearly, F is a C"! function of its four arguments; it is well-defined for all
(x,u,u,,u,) with |u| < 1, and it satisfies

d = v
(3.4) aqF(ac,u,p,q) = Py >0,
for any (x,u, p, q) in the domain of F (ie. in S' X [—1,1] X R?). Therefore
(3.2) is a parabolic partial differential equation, as promised.

This construction allows us to appeal to the strong maximum principle for
linear parabolic equations, and to conclude that the classical solution of (1.1) is
indeed unique, if it exists.

We can also apply the existing theory for parabolic initial value problems to
construct local solutions of (3.2). If all ingredients such as V and the initial curve
are smooth, then we can apply the results in Eidelman’s treatise [Ei] (in
particular Theorem 7.3 on page 311) to conclude the existence of a local solution
which is smooth.

We shall now outline an approach due to DaPrato and Grisvard ([DPG)),
and extended in [A1]. As we tried to point out in [Al], one of the advantages of
this approach is the ease with which one can prove smooth and even analytic
dependence of the solution on parameters. This in turn leads to an almost trivial
proof of the smoothing effect of the parabolic equation.

The procedure is as follows: Introduce the Banach spaces

E, = h*(S'); E, = h®**(S")
where hP(S!) denotes the little Holder space of exponent B, i.e., the closure of
C*(S") in the usual Holder space equipped with the usual Hélder norm. Then

when we assume that V, and therefore also F, are C™! functions, the nonlinear
differential operator

F:uc O, - F(x,u,u,,u_) €E,
is a C™~ ! mapping of the open subset
O,={u€E|-1<u<l}

of E, to the Banach space E,. Its Fréchet derivative at a u, € O, is given by
the linear operator

dF(u,) v =Fu, + Fo, + Fu.

Since the operator dF(u,) with domain h®*# generates an analytic semigroup
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in h® for any B € (0, a], we can apply Theorem 4.1 of [DPG] to conclude the
existence of a possibly short-lived solution u: [0,¢,] = E, of (3.2).

Using the uniqueness of the solution, given the initial value vy, one easily
shows that there is a unique maximal solution; indeed, if one orders the solutions
by inclusion (i.e., ¥, < vy, if vy, is obtained from 7y, by restriction to a smaller
time interval), then this ordering is linear, and the maximal solution is nothing
but the union of all possible solutions.

In [Al] we remarked that the construction in [DPG], combined with
the implicit function theorem on Banach spaces, shows that the solution u €
C([0,t,]; E,) depends C™ "' on any parameters which occur in the nonlinear-

ity F. In particular, this implies that equation (3.2) generates a C™ ! local
semiflow

Another trivial consequence of this construction is the smoothing effect of
the equation. Indeed, if we define
u, ,(t,x) = u(at, x + bt),
then for a close to 1 and any b € R, u, , satisfies
u, = Fa’b(x, t,u,u ,u,,),

where F, , = a - F(x — bt,u,u,,u_). The corresponding nonlinear differential
operator u = F, ,(u) is C™~"! both in u and in the parameters a and b.
Hence the solution u,, € C([0,¢,; E,) depends C™ "' on a and b. In
particular, for any t € (0, ¢,], the partial derivatives

j+k
J u,

dalobk

Cgitky

— itk
Atigxk

a=1,b=0
belong to L([0, t,]; C*(S")) for j + k < m, and we have the estimate
3 tky

- —i—k
atIox* = Gkt

c2 +a

Also, if m = w, i.e. if F is real analytic, then so is the solution. Thus, if the
manifold M, the metric g and the velocity function V are real analytic, then all
classical solutions are real analytic. O

4. Bounds for the length and the total curvature

In this section we shall assume that V satisfies Vi, ..., V,. We shall show
that if y: [0,¢,] = Q(M) is a family of curves which evolves according to (1.1),
then the length and total curvature of vy(t¢) remain bounded on finite time
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intervals. More precisely, we prove the following:

Tureorem 4.1. The length L(t) and total curvature K(t) of a classical
solution y: [0, t,) = Q(M) satisfy

L(t) < L(0)e® /4,
K(t) < ¢,(K(0) + L(0))e“,
where the constants c,, c, depend only on A, u, fi, and R*.

One should view these estimates as a generalisation of those of Abresch and
Langer [AL, Theorem B]. Theorem 4.1 will follow from some identities, which
we shall now derive.

Proof. We may assume that V and the solution y are as smooth as we like:
given the estimates for smooth solutions, an approximation argument will prove
that they also hold for the general classical solution.

Let y: [0,t,) = Q(M) be a solution of the initial value problem. Fix a
t, € (0,t,), choose a constant speed parametrisation of y(¢,) and let x,y be
Fermi coordinates near the regular curve y(t,). In other words, extend the
immersion y: ' = M to an immersion o: §* X [—¢&, +&] = M for which the
pull-back of the metric on M has the form

o*g = A(x,y)(dx)* + (dy)’
with A(x,0) = constant.
The scalar curvature of M is given by Gauss’s formula

1 0%/A
VA oy’

and the geodesic curvature of the graph y = u(x, ) is

R=

(4.1) k

=_L{ e A )
(A+p2)3/2 q Ap 2Ap 9y
where p =u,, g =u,,, and A, and A, denote the partial derivatives of A
evaluated at y = u(x).

In these coordinates the curve y(t) (with ¢ close to t,) is given as the graph
of a function y = u(t,x), where u(¢,,x) =0. Thus, at t =, the normal
velocity of the curve is v* = u,; if we differentiate (4.1) with respect to ¢, and
put t = ¢,, then we can eliminate u, from the resulting equation for k,. If we
also use the fact that, at t = t,, u vanishes, so that d/ds = A~1/23 /3x, then we
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find that

ok ot . N

(4.2) PPl + (k* + R)o*.
The time derivative k, can be described without referring to the coordinates x, y
in the following manner. Given the family of curves y: [0, t,) = Q(M), choose a
parametrisation y: S' X [0,t,) = M for which the time derivative vy, is always
orthogonal to the curve; in this way any quantity, such as the geodesic curvature
k, which is defined on the curve, may be considered as a function of (x,¢) €
S' X [0, t,). Then k, is its derivative with respect to time, with x constant.

The time derivative can also be described as the covariant derivative in the
direction of the vector field v* n: k, = V. (k).

If we write

ds = VA + p® dx
for the arclength element along the graph y = u(¢, x), then its time derivative is
d
—ds = —kv™* ds.
at
This implies that the length of the curve grows according to

L'(t)=—| ko*ds.
v(t)

The hypotheses V, and V, imply that kV(t, k) > u?/4A, so that we have
L'(t) < u®/4AL(t), from which the first estimate in Theorem 4.1 follows imme-
diately.

To get the estimate for the total curvature we consider a more general

quantity, which will also be of use later on. Let ¥ € C2(R) be a nonnegative
convex function, and consider

(4.3) V() = j (t;//(k) ds.

Then one has

(4.4) ¥'(¢) = [ (W' (k) (v + (R + k2)o*) — y(k)ko*} ds

v(t)
= [ o9 Rkl + (Ry' (k) + k9 (K) ~ kg (k))o*} ds

=1, +1,.
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If the family of curves evolves according to (1.1), then one has

A%
vsJ-= Vteakn(v) + —k,.

dk
Therefore, since v+ = V(¢, k), one has for any ¢ > 0
N av 5 1 2 )
LN ks = _aTks - ;G(Vt@kn(v)) - 8ks'

If we choose £ = A /2, and recall hypothesis V,, then this leads us to
1 A 2 1 2
(45) Vs ks = Eks - E\_(Vtekn(v)) .

Now let ¢ be a function for which (k) = |k| holds when |k| > 1, and
0 < y"(k) <1 when |[k| <1 (e.g. y(k) =(1 + k?)/2). Then, from (4.5) and
hypothesis V,, we get ¢"(k)vk, < 4?/2A, and therefore

ﬂz
I, < aL(t).

To estimate the second term, we observe that 0 < (k) — k¢'(k) < 1/2, and
that (k) — ky'(k) vanishes for |k| > 1. In addition to this we also have
l'(k)| < 1 for all k, and finally, it follows from V, and V; that [v*| < u + A Yk
Together, these properties of ¢ and V imply the following estimate for I,:

L<[ (u+A""k)R*ds + [ Hkvtids
y(2) k<1

< ATIR*K(t) + ((R* + 3)u +.(22) 7)L(2).

Adding I, and I, together one finds that ¥'(¢) < ¢(K(¢) + L(¢)), and using
K(t) < ¥(t) < K(¢t) + L(t) one can derive the exponential bound on the total
absolute curvature in Theorem 4.1. |

5. The average speed

Using the maximum principle, we shall obtain an upper bound for the
distance a family of curves, which evolves according to (1.1), can cover in a
given time.

We assume in this section that V satisfies V;, V, and V.

Tueorem 5.1. There is a constant t, > 0, which only depends on A, u and
R*, such that for any family of curves y: [0,t,) = Q(M) which satisfies (1.1),
¥(t) © Noyiza (vo)

for 0 <t < min(t,t,).
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(We abuse notation slightly by identifying the curves y(t) with the corre-

sponding subsets of M; N_(A) denotes the closed & neighbourhood of the set
AcCM)

Corovrrary. There are constants a, b > 0 which only depend on A, u and
R* such that

¥(t) € Noyp(7o)
holds for all t > 0.

Proof. We consider an arbitrary point p € M, which does not lie on the
initial curve vy,, and define d(¢) to be the distance from p to the curve y(¢).
Since the family of curves has a C! parametrisation y: (0,t,) X S' = M, this
distance is a Lipschitz continuous function of time.

The exponential map exp,: T,M — M is an immersion on a disk of radius
p = w/VR*. If at some moment in time ¢ the distance function becomes less
than p, then we can choose a point ¢ on y(¢) which minimizes dist(p, q); this
point must lie in the image of the p-disk in T,M under the exponential map.

Let I' be the pre-image of y(t) in the p-disk in T,M under exp,. Choosing
polar coordinates (r, ¢) in the tangent space T,M, we can represent I' near
exp, '(q) as a graph r = u(¢). If g has polar coordinates r = d(t), ¢ = 0, then
u(0) = d(t) and u'(0) = 0. Moreover, u has a local minimum at ¢ = 0, so that
u”(0) > 0. Hence the geodesic curvature of y(t) at q is at least the curvature of
the geodesic circle with radius d(t) and centre p (this follows from (4.1)). See
Figure 5.1.

Ficure 5.1.

If the metric in polar coordinates is given by

(ds)* = (dr)* + A(r, $)(do),

then curvature of the circle r = constant, which we denote by k(r, ¢), and the
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scalar curvature R of M satisfy

1 /A 1 %A

- = R=——7=—5,
VA or VA or?

so that k also satisfies the following Ricatti equation

ak

— =k*>+R.
ar

Our assumption that the scalar curvature R is bounded by |R| < R* then
implies that

k(r,¢) = —VR* coth(rVR*)

(in fact, we only need a lower bound for the scalar curvature for this). Using the
calculus inequality coth(x) < 1 + x~' we therefore find

k(r,¢) = —r~' — VR*.

Recall that V(t, k) > —u + min(0, k) /A (hypotheses V, and V;), so that the
velocity of the curve y(t) at g satisfies

vt> —u — (r~ ' + VR*) /A,
with r = d(t). Therefore the distance function d(t) satisfies
(5.1) d'(t) > —p — A7'WR* — (Ad(t)) ' = —2(Ad(2)) ",
whenever

d(t) <d, =4(Ap + \/R—'*)_l

and d(¢) is less than the immersivity radius of (M, g), which exceeds p. Since
p = w/VR* this automatically holds if d(¢) < d.
Now define

A -
ty = Z()\[.L + \/R_*) 2.

If p lies on y(t) for some 0 < t < t,, then d(¢) = 0, and, by integrating (5.1),
one finds that

0 = d(t)* = d(0)* — 4¢t/A,

which means that p lies in a 2y/t/A neighbourhood of vy,. Since p was any
point on y(t), the theorem follows.

This proof gives us an explicit estimate for ¢, and allows us to estimate the
maximal large scale speed a family of curves obeying (1.1) can have (i.e. the
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coefficient b of the corollary to Theorem 5.1). Indeed, in a time interval t,
the curve cannot travel further than d, = 2/t /A, so that

VR*
)

hb<— <4
*

m o+ O

We conclude this section with two examples, to illustrate the theorem and
its corollary.

In the first example we let (M, g) be the hyperbolic plane, with constant
negative curvature R = —1, and we let V(t, k) = k; in other words, we consider
the standard curve shortening problem. If we choose a circle with radius r(0) as
our initial curve, then it follows from symmetry considerations that correspond-
ing solutions of the initial value problem will also consist of (concentric) circles.

The metric in geodesic polar coordinates is

(ds)® = (dr)® + sinh®(r)(do)>,

so that the geodesic curvature of a circle with radius r is —coth(r). Therefore
the radius of the shrinking family of circles satisfies r'(¢) + coth(r(¢)) = 0, and
thus

r(t) = arcosh(e”’™") (0<t<T),

where T = log cosh r(0).

The point of this example is that initially the curve will shrink with speed
close to one, and that we can make the interval on which this happens as long as
we like by choosing T large enough. The upper bound for the large scale speed
which our theorem gives is b = 4. :

In our other example we choose M = S' X (0, ®), with coordinates (¢, r)
again (identify S’ and R/27Z), and we let the metric be given by

(ds)* = (dr)* + e 2"(d¢)”

where « ‘is a positive constant. As above, we consider the curve shortening
problem, V = k, and determine the evolution of a circle r = r(¢). The geodesic
curvature of such a circle is given by k = ar®~!, so that a circle with radius r(t)
will evolve according to r'(t) = ar®~!. After integrating this equation one finds
that

r(t) = (a(2 — a)t)/™ (0 <a<2)
=e' (a =2)
= (a(2 — a)(T — t))/* @ (a > 2).

Thus, if @ <1 the (large scale) speed of the circle remains bounded, but if
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a > 1 the large scale speed becomes unbounded, and even blows up in finite
time if @ > 2.

On the other hand the scalar curvature of (M, g) is given by
ok

R=——k*=a(a—1)r 2 —a?r?* 2
ar

>

which is bounded from below if and only if a < 1.

6. The limit curve at blow-up time

We assume V satisfies V,,...,V,, and consider a classical solution,
v: [0, t,) = Q(M), of (1.1).

Tueorem 6.1. As t — t,, the curves y(t) converge, in the Hausdorff metric,
to a curve y*, which has finite total absolute curvature.

The limit curve y* need not be smooth, and, in particular, does not have to
belong to Q(M).

Proof. We begin by choosing a parametrisation y: S* X [0,¢,) = M of our
family of curves, which, for each ¢, is a constant speed parametrisation of y(¢).

By Theorem 5.1 all the y(¢) lie in some bounded, and hence compact,
region of M. Moreover, their lengths are uniformly bounded, so that the y(¢, - )
are equicontinuous maps from S' to M. The Ascoli-Arzela theorem allows us to
extract a uniformly convergent subsequence vy(t,,:), whose limit y* is a
Lipschitz continuous map from S' to M. The bound for the total absolute
curvature, which we derived in Section 4, implies that y* also has finite total
absolute curvature. In other words, except at a finite number of points, y* is
locally the graph of a Lipschitz continuous function, whose derivative is of
bounded variation.

Clearly, the sequence y(t,) converges in the Hausdorfl metric on compact
subsets of M to y*. We complete the proof by showing that all the (t)
converge to y* when t — ¢,

Let € > 0 be given, and choose a ¢, for which y(¢,) C N, ,(y*), and
t, <t,— Ae>/16 holds. If £ is small enough then we also have t, — t, <t,, so
that we can apply Theorem 5.1. We find that for any ¢, <t < ¢,

and also (choosing ¢ = ¢,, and letting k — ),
y* © N, ,5(y(#)) € N.((¢)).

Since £ > 0 is arbitrary we may conclude that the y(¢) do indeed converge in
the Hausdorff metric. a
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Let y: [0, ty,) = Q(M) be a maximal classical solution, and choose a
parametrisation I': S' X [0, ¢,,,.) & M of y whose time derivative T, is always
orthogonal to the curve y(t). For this particular parametrisation the following

holds.

Tueorem 6.2. As t = ty,., ['(t, ) converges uniformly to a continuous
map T* € C°(S; M).

Proof. If we denote the coordinate on S' by u, then arclength on y(t) is
given by

ds = J(u,t)du,

where J(u,t) is the length of I'(u,t). In Section 4 we observed that J, =
—ko™ J. This implies that e "#**/4"] is a nonincreasing function of ¢, so that its
limit for ¢t — t,,,, must exist. Dividing by the exponential we see that J(u,t)
converges pointwise to some function J*(u) as t = ty,..

From our bound on the total absolute curvature we get

ftM“"/ Ik(“’t)l.,(fht) dudt < .
0 st

Fubini’s theorem implies that for almost every u € S*,

(6.1) /Ot“ﬂk(u,t)u(u,t) dt < .

Since |I',| = J is bounded from above, the I'(-, t) are uniformly Lipschitz,
and it suffices to prove pointwise convergence of the I'(-,t). We may also
assume that the length of y(¢) is bounded away from zero, for otherwise the
arguments of the previous theorem show that I'(-,¢) converges uniformly to a
constant.

Let u, € S' be given, and assume (6.1) holds for this u,. If J*(uy) > 0,
then J(u,,t) is bounded from below on [0, t,,.). Now (6.1), together with the
inequality |I,| = |o*| < u + |k/A|, imply that

ft"'”|l“t(u0, t)|dt < .
0

Hence I'(u,, t) converges as t = ty,,.

If (6.1) does not hold for u,, or if J*(u,) = 0, then, for any given £ > 0 we
can find a u; < u, such that

fuoj*(u) du < g,

and for which both (6.1) and J*(u,) > 0 hold (here we use the assumption that
the length of the curve y(¢) does not vanish as t = ¢,;,.).



PARABOLIC EQUATIONS I 469
By the dominated convergence theorem there will be a § > 0 such that

dist(T(u,,t), T(u,,t)) < fuol(u,t) du < ¢

and
dist(T'(u,,t), T(u,,s)) <e

hold for ¢\, — 8 <t,s <ty
The triangle inequality then implies

dist(T(ugy, t), T(u,, s)) < 3¢

for t,, — 8 <t,s <ty sothat I'(u,,t) also converges. ad

7. Integral bounds for the curvature

The results in Section 3 imply that, if y: [0,¢,,) = M is a maximal
solution of (1.1), whose lifespan t,,,, is finite, the Holder norm of the curvature
k(t, - ) of y(t) must blow up as ¢ — ¢, . Indeed, if the h* norm of k remained
bounded, for some a > 0, then the family of curves y(¢) (0 <t <t ) would
be precompact in the h®>*# topology for any B < a; the limit y* of the y(t)
which exists, according to Theorem 6.1, would be an h?*# curve, and we could
continue the solution beyond t,,,..

The next theorem improves upon this observation.

Tueorem 7.1. Let V be as in Theorem 3.1. If y:[0, ., ) = M is a maximal
solution of (1.1), and if its lifespan is finite, i.e., ty, < ©, then the maximal
curvature of y(t) becomes unbounded as t — t,,,, .

Proof. We argue by contradiction: Let y(¢) be a maximal solution with a
finite lifespan, whose curvature satisfies |k| < ¢ for some constant c. Since y(t)
satisfies (1.1), a bound on the curvature implies a bound on the normal velocity
v*, so that y(t) — y* for some limit curve y*. This limit curve will also have
bounded curvature, and we may assume that the y(¢) converge in the C'
topology to y* (by compactness, and uniqueness of the possible limit). As in
Section 3 we may represent y*, and the y(t) for ¢ close to t,,,,, as the image
under some smooth immersion o: S' X [—1, +1] > M of the graph of a
function y = u(¢, x). This function is a solution of the parabolic equation (3.2),
and the boundedness of the curvature of the y(¢) implies that ¢ = u_, is
uniformly bounded. Differentiating (3.2) twice with respect to x leads to
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in which b = F, + Fu, + Fu,, . Since u, u, and u,, are all bounded, this
equation is uniformly parabolic and the term b is bounded, so that we can apply
the results in [LLSV], in particular Theorem III.10.1; the conclusion is that g is
a-Holder continuous for some a > 0. But this means that the curvature of the
v(t) also remains Holder continuous, and therefore contradicts our assumption
that y(t) was a maximal solution. ]

From here on we shall assume that V satisfies V,, ..., Vq.
For any p > 1, we define the p norm of the curvature

X,(t) = {[ t)lklp ds}l/p

¥(

The following theorem is an analogue of Theorem (4.1), giving an estimate for
the rate at which X, grows.

TueoreM 7.2. If 1 < k < p < «, then
holds for some constant A which depends only on A, u, v, k, R*, L(0), p and
X,,(O).

If k > 1, then for any A > 0O there is a T, > 0 such that X (0) < A implies

that X (t) < 2A for all t € [0, T,); the constant T, depends only on A, w, v, k,
R*, L(0) and A.

(Recall that L(t) is the length of the curve at time ¢t.)
In addition to this growth estimate, we also have the following pointwise
estimate for the curvature, in terms of the p norm.

Tueorem 7.3. If 1 <k <p <o, and vy: [0,t)) = Q(M) is a classical
solution of (1.1), then one has the following pointwise inequality:
k| < cAP/(P—K)4—1/2p

where A = max(1, sup, ., ., X,(t)) and c is a constant which depends on A, p,
v, k, R*, L(0), t, and p. If p = k = 1, then there is an € > 0, such that

|k| < ct™1/2x

holds for t € (0, t,), provided X (t) < € holds in the same time interval. Again,
the constants ¢ and € only depend on A, w, v, k, R*, L(0), t, and p.

Proof of Theorem 7.2. Throughout this proof and the next we shall use the
letter ¢ to denote any constant which depends on A, u, v, k, R*, L(0), ¢,, but
not on p; its precise value may change from line to line.
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For the time being, we shall assume that p > 2, since the case 1 <p <2
turns out to be a little bit more involved. If p > 2, then (k) = |k|? is a C?

convex function, so that we can use (4.4) to compute the rate with which X ()
changes:

d
— P= —p(p—1)[ kI” %k} ds
250" = =pp = D[ Wk,

+ [ (p(R+K2)kI”™? = kI")kv* ds
y(¢)

=1, + I,
Our hypothesis Vg implies that
Veorn(V)” < 202(1 + kIP7*),

so that, by (4.5), we can estimate the first term, I,, as follows:
A 2 v2
L<pp-1)f {——(ks) kP2 4 (k= + |k|p+2k)} ds
y(t) 2 A

< A (k2)ids + op® [ (kP72 4 kPTR) ds.
y(8)

(1)
To estimate the other term we use the bound |R| < R*, and the inequality

2

75
— — < kot < ulk] + A7 YK,
i v- < plk| k|

which follows from the hypotheses on V. One finds that

2
I, < {p(R*|k|"-‘ k[Pt + “—|k|"} ds
() 4

<cpf (kP 1kPT?) ds.
y(8)

We add these two estimates together, and remember that |k|? is a convex
function of p, so that |k|? < 1 + |k|” holds whenever 0 < g < p. The result is

d
250 = —AJ(kP72), | + cp*(L(2) + X213%),

p+2k

where we write ||ul|,, for the L, norm of a function u on y(t). Using our a priori
estimate for L(t) from Section 4, we are led to

d
SX0 s =AJR )+ (1 Xp1)
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(this the only place where the dependence of ¢ on t, and L(0) is introduced).
Using Hoélder’s inequality and the interpolation inequality

lulle < cllully®|lu,llz",
one finds that

2
Xpiae < IkPZ25NkP /215

< ellk? 21 P (k2 )

From the inequality x%y' ™% < e0x + £ 797091 — 0)y with 8 = k/p we get

CK
e RN A L Fa

If we choose & small enough (¢ = A /(2¢%pk)), and combine the inequalities we
have found so far, then we obtain

%Xp(t)p < - %Il(k””)snz + cp2(1 + Xp /=)

and therefore
A N(kP72) 13
“2p X,(t)"!

where x = 2x/(p — k).
The first part of Theorem 7.2 now follows easily by integrating the inequal-
ity one obtains after discarding the first (negative) term in (7.1); i.e.,

dX ‘
(7.2) 5 = ep(X,PX + X)7P).

Indeed, whenever X (t) > 1, one has X/ < cpX, "%, so that integration gives
the following more precise form of the inequality which was claimed:

d 1- 1+
(7.1) Exp(t) < + Cp(Xp(t) Py Xp(t) xp)

Xp(t) < (XP(O)—pX — cpxt

(which only holds when p > 2).

Still assuming that p > 2, we consider the borderline case, p = k. The
constant ¢ in the inequality (7.2) is independent of p, so that we can take the
limit p — k. In this limit, y becomes infinite, and so, if X, <1, we see

dX

K

dt

Therefore, if X, (0) < 1/2, then X (t) < 1/2 + ct, at least as long as this upper

bound is less than 1, i.e., for ¢t < 1/2¢. So the second part of Theorem 7.2 is
true when A = 1/2.

)—I/PX

<c.



PARABOLIC EQUATIONS I 473

To get the same result for arbitrary A, we rescale the metric, ie., we
replace the metric g on M by o~ 2g. The new arclength and curvature of the
curves y(t) become o'ds and ok, respectively. Therefore the new k-norm of
the curvature is o!~'/“X,. This rescaling will change the parameters in the
equation (such as A, u,v) and also the quantities R* and L(0); thus X, will
satisfy (7.2), but with a different constant ¢. By choosing o small enough, we
can make the rescaled value of X, less than 3, and the foregoing argument
shows that the rescaled X, will stay less than 1 for a while (i.e. for T, =
1/2c(0)). This completes the proof in the case p > 2.

When 1 < p < 2, the function |k|” is no longer C? in k; therefore we let
(k) be a smooth convex function which coincides with |k|? for |k| > 1. Then,
defining W(¢) as in (4.3), and working out (4.4), one gets

V() < el + w(t)' ™).

As above, this shows that W(t) < ¢(T, — t)'/2P~1/2% for some constants ¢ and
T,. Since ¥ dominates X, this proves the first part of the theorem. To prove the
second part when 1 < p < 2 and p = k, one again lets p tend to «, and applies
the rescaling argument. O

Proof of Theorem 7.3. The starting point of the proof is inequality 7.1. If we
combine the interpolation inequality ||ull,, < 4|lu|ly’?|lu,|ly’*, which holds for all
periodic functions with a square integrable derivative, with [|ull3 < ||ul|,|lu|l.
then

kP23 1 X

p/2y |2 -

Together with inequality (7.1) this shows that, for p > 2,

dx,, A X2t
73 SR A + ep(X1P 4 X1vex).
(7.3) dt 2p X7, op(X, » )

We observe that, if p > 2k, one has xy = 2x/(p — k) < 2, so that the negative
term on the right-hand side of (7.3) dominates the positive term for large values
of X,,. This will allow us to find an upper bound for X (1) of the form At~ if
we are given a similar bound for X, ,,(¢). By mductlon we shall get a sequence
of estimates of the same form X,,(¢) < A;t”% where we know the a;, and
have a good estimate for the A ;. By taking the limit as j — o we get the desired
pointwise estimate for the curvature, since X, (t) — ||k||, as p — .

So assume that we know that X, ,(¢) < At ® and assume also that p > k.
Then X, (t) will certainly satisfy X, (t) < Bt~ B 1f the function Y,(t) = Bt~ B
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satisfies the reverse inequality to (7.3), for 0 <t < 1,

dy, A Y2
__r - 1- 1+
dt = 2p X2, (Y, 4 1),

This, in turn, is implied by

A
_BBt—B—l > _2_B2p+lA—2pt1+2p(a-[3) + CpBl+pXt_B(l+pX),

where B > 1 is assumed, and we have only considered t € [0, 1], so that the
term Y, ~* could be neglected. Division by Bt~'~# leads to

A (B
(7.4) Bz —— (Z) gl r2ra=B) 4 cpBPx¢!TPXB,

This inequality prompts us to choose B = a + 1/2p. If we assume, for the
moment, that pBy < 1, then (7.4) is implied by
A (B\*
(—) + cpBPX.
A

2p

As we are going to choose B > 1, this inequality only becomes stronger if we
replace —B by —BBPX; therefore (7.4) will certainly hold if

B\** 2p
)= 2206 + o

A

eg., if
2 1 1/2—x)p

(7.5) B = Pl + cp A2/C=X)
A\ 4k

(where we have assumed that B < 1/4k). Now we can make an induction
argument. Let p, > « be given, and assume, as we do in Theorem 7.3, that
X,(t) <A, for 0 <t <1 (without loss in generality we assume that t, = 1).
Then define

p;=2py; =0, a, =a +-—=—(1-27).
J 0 0 j+1 J 2pj 2p0

Clearly, all the a; are less than 1/2p,, and if one defines X; = 2K/(pj - K),
then
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for all j =1,2,3,.... So, if we have an estimate X (t) S At for some

> 1, then the precedmg arguments with p = p,, a =a;_;, B =a;, A=A,
and B = A; show that we have a similar estimate for X p,» in which A 1 and A;
are related by (7.5). For large j the first factor in (7. 5)is 1 + O ]2 ), takmg
logarithms, and using

-1

2 po — 277k
2—x, po—2 U 0k’

one deduces from (7.5)

Po — 27k

logAj —p Yy

log A; |, +0O(j27).

Hence the limit of the A ; exists, and one has

A = lim. A. < cAPo/(Po—K)
0 ] — >

]—)Cl)

while the @; also converge; their limit is 1,/2p,.
Finally, we see that the maximum norm of the curvature, X_, satisfies the
following inequality:

Xoo(t) < CApO/(pO_K)t—1/2p0’

which completes the proof of the first part of the theorem.
Just as with Theorem 7.2, we can still say something in the borderline case
p = k > 1. In this situation the inequality (7.3) implies that

dX,, A
< | ==X + 2¢x | X1,
dt 4k

So, if X, (t) < & < 8ck?/A, then we get an estimate X, (t) < At~ '/** for small
t > 0, with which we can start the iteration procedure again. As a result we get
the second part of Theorem 7.3. O

8. The initial value problem in W2Q(M)

In this section we use the estimates from Theorems 7.2 and 7.3 to show
solvability of the initial value problems (1.1) for initial curves belonging to
WP2Q(M ), i.e., the subset of Q(M) which consists of all curves whose curvatures
are p integrable:

W2Q(M) = {y € Q(M)|k, € L (ds)}.
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Any curve y € W,fQ(M ) has a Holder continuous tangent (of exponent
1 — 1/p). Hence one easily verifies that the set

Wy = {y € WfQ(M)ﬂength(‘y) <K, ||k7||Lp < K}

with the induced topology of Q(M), i.e., the C' topology, is compact.
The main result in this section is:

TueoreM 8.1. Let V: S'(M) X R — R satisfy V, - V5 and let k < p < o
be given. Then the initial value problem (1.1) has a unique maximal solution
y: [0, ty,,) = W2QUM), for any initial curve vy, € W,2Q(M).

In fact, for each K > 0 there is a ty > 0 such that t\,, > ty whenever
Yo € wg. The map ¢: wg X [0,tx] = QUM), defined by ¢(y,,t) = y(t), where
¥(t) is the solution of (1.1) with initial value v, is continuous.

Proof. Uniqueness of the solution was established in Section 3, so that we
only have to prove the existence and continuity part of the theorem.

Let y, € szﬂ(M ) be given. Then we approximate vy, by smooth regular
curves v,, with ||k7”|| L, uniformly bounded, say vy, € wy for some large enough
K. We can also approximate the function V by smooth functions V, which satisfy
the same hypotheses V, - - - V;, all with the same constants A, u, fi, v and «.

From Section 3 we know that for each of these smooth initial curves there
exists a maximal solution of the corresponding initial value problem (1.1), with
V =V,. By Theorem 7.1 we know that these solutions exist as long as their
curvature remains bounded, and by Theorem 7.3 we know that their curvature
remains bounded as long as the L, norm of their curvature does not blow up.
Finally, from Theorem 7.2 we get a lower bound for the time it takes this L,
norm to blow up (if it does this at all). This estimate only depends on the
constants in the hypotheses on V, R*, the length of the initial curve and its
curvature’s L, norm, so that it is independent of n. Therefore the approximating
solutions 7,(¢) exist on some common time interval [0, ¢,], and their curvatures
are uniformly Hélder continuous on any interval [§, t,] (§ > 0), by Theorem 7.1
and its proof. This allows us to pass to a convergent subsequence, whose limit
will be a classical solution 7y: (0,¢,] > wg, of (1.1), for some K, > K. We
complete the existence proof by showing that y has an initial value, and that this
initial value is 7y,,.

Choose an immersion o: S! X [—1,1] > M and a function u € Wp2(Sl),
with |u(x)| < 1, such that x = o(x, u(x)) parametrises the curve y,. Given any
€ > 0 one can find n_ such that the curves o*(y,) with n > n_ are graphs
y = u,(x) for certain u, € W2(8') with |lu — u,||, < &/2. Using Theorem 5.1
one finds a ¢, > 0, independent of n, such that o*(y,(¢)) € N (o*(y,)) for
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0 <t<t,. When the limit n — o, this leads to o*(y(¢)) c N,(0*(y,)) for
0 <t <t, which shows that the only possible limit point in wy of y(t) as
t > 0 is y,. Since wg is compact, this implies that y(¢) converges to vy, as
t— 0. ‘

A slightly modified version of this argument also shows that the solution
¥(t) € oy, depends continuously on the initial data y, € wg, and time t €
[0, £ ], so that the proof is complete. O

The results of the previous section also allow one to say something about
the rate at which the curvature blows up, if it does blow up at all.

Tueorem 82. Let V satisfy V, -+ Vs, and assume k <p <. If
y: [0, ty) = W2Q(M) is @ maximal solution of (1.1), which blows up in finite
time t,,, < ®, then there is a constant ¢, < ®© such that

“1_(24)"!
(e, )z, = o)ty — ) 0
In particular, for every € > 0 there is a ¢, such that

Ik(t, L. = oty — t)—(zx)-l+s
holds.

Proof. The first inequality follows directly from Theorem 7.2, and the
second follows from the first by the fact that ”k”Lp < L(O)Y7llkllL,. O

The example of the circle in the Euclidean plane, which shrinks according
to its curvature, shows that these estimates are nearly sharp. The radius of this
shrinking circle is r(t) o (tyy,, — t)'/?, so that the L, norm of its curvature is
proportional to (t,,, — t)'/2?~'/2. Since V(t, k) = k, we can let the constant k
have its minimal value x = 1 which yields that Theorem 8.2 is sharp for p < .

9. Blow-up in the scale invariant case

Consider a maximal solution y: [0,t,,,) = QM) of (1.1), and define for
any ¢ > 0 and t € (0, ty,,)

/Slk(s,t)ds .

So

a(t) = sup

|81 =80l <&

Thus a,(t) is the largest angle (s,) and t(s;) can make (measured after one
parallel transports t(s,) from T, (M) to T, (M)) for any s, and s, with
lsg — 51l < €.
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TueoreMm 9.1. Assume that V satisfies V,, V,, V, and VZ*. Let y: [0, ty,,.) —
Q(M) be a maximal solution with t,,,, < %; then for any € > 0,

lim sup ,(t) > 7.

L= Eyax

In addition, there is a constant ¢ > 0 such that
”k*r(l)“Loo > c(tMax - t)_1/2'

Proof. We argue by contradiction: Suppose that for some ¢ > 0 there is an
a, < m such that a,(#) < «, holds for ¢ close enough to t,,.

Introduce an arclength parametrisation y: (0, ty,,) X R = M of the family
of curves y(t). Thus, for 0 <t < t,,., ¥(t, -) is an L(¢) periodic function of
s € R. Since the supremum norm of the curvature must blow up as t — t,,,,
we can find a sequence of points (¢,, s,) such that

|k(t,s)| <|k(t,,s,)] (seRO0<t<t,)
holds for n =1,2,....
Put o, = |k(¢,, s,)|” ', and define a new, rescaled, version of the old metric

by g" = o, 'g. Then the family of curves

n

t
y(t) = 'y(tn + oft) (— 0_—"2 <t< 0)

satisfies (1.1), with V replaced by V", where

Vit k) = a,,V(t, ﬁ)
aﬂ
The curvature of the y" satisfies |k (¢, s) <1 for all £ < 0. One easily
verifies that the rescaled speed functions, V", all satisfy conditions V,,V,,V;
with the same constants A and w. In fact, one can even replace w by u, = o, u.
Similarly, the V" also satisfy a stronger version of V.*, namely

(9.1) VAV + kNVYV < v(0? + [KI).

It follows that the normal velocities of the curves y™(t) with —o%t, <t <0
satisfy [v*"| < A + w. By the same arguments as in the proof of Theorem 7.1, it
follows from the uniform boundedness of k, that the curvatures k, are
uniformly Holder continuous. The normal velocities must therefore also be
uniformly Hélder continuous.

Let P, € M denote the point y(¢,, s,). In view of the upper bound for the
displacement of the curve vy(t), derived in Section 5, the curves y(t) stay in
some bounded, and hence compact, subset of M. By passing to a subsequence, if
necessary, we may assume that the P, converge to a point P, € M.
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We consider the disk D, with radius o!/? (in the original metric) and
centre P,. Its radius in the rescaled metric is o, 172 As n — oo, this disk,
equipped with the rescaled metric g”, converges to the flat Euclidean plane.
Looking at the portion of the curve y"(¢) which lies in the disk D,, and using
the uniform Holder continuity of k, and v*", one can extract a subsequence of
y™(t) which converges to a family of curves y*: (—%,0] X R — R2.

These curves may be unbounded since we have no control over the length
of the n™ family of curves. Indeed we shall see that the assumption a, <
forces the limit curves to be unbounded.

As remarked before, the total absolute curvature of a curve does not change
when one rescales the metric. Therefore the y*(t) all have finite total absolute
curvature.

Our assumption that @ (t) < a, for ¢ close to t,,, implies that, for any
t <0and sy s; €R,

fSIk*(t,s)ds

< ag.

Since a, < , this implies that for each t < 0 the curve y*(¢) is the graph of a
function y = u(x), if the x and y axes are chosen in the right direction. In
particular, the limit curves are indeed unbounded.

In addition to the qualitative property of being a graph in the right
coordinates, one also gets the following quantitative result. If the coordinate axes
are chosen properly, then y*(t) is the graph of a Lipschitz continuous function,
whose derivative satisfies

T — a,
lu,| < arctan( )

2

The direction in which one should choose the coordinate axes depends
a priori on the time ¢. However, using the bound on the total absolute curvature,
the fact that the curvature is uniformly Hélder continuous, and the bound on
v*, one shows that t — y*(¢) is continuous in the uniform C' topology.
Therefore, if at t = t,, the curve y*(¢,) is a graph with respect to a particular
choice of coordinate axes, then for t close to t,, y*(¢t) will also have this
property. So, on short time intervals, the limit family y*(¢) may be represented
as the graph of a function y = u(t, x).

The velocity functions V" are all uniformly Lipschitz on bounded sets, due
to V, and (9.1). Therefore, after passing to a subsequence again, if necessary,
we may assume that they converge to a Lipschitz continuous function
W: S!(R?) X R — R, which also satisfies V, - - V;, and

VAW | + k| |IVYW| < v]k|%
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The limit family of curves satisfies v* * = W(t*, k*). Choosing coordinate
axes, and representing the family y* as a graph y = u(t, x), locally in time, we
find that u has to satisfy

uxx
(9.2 u,=y1+u>W|x,u,arctan(u, ), ———
t x x 3/2
(1 +u3)

= (def)F(x,u,u_,u,),

where we have identified S'(R%) with R? X S'. Thus, a unit tangent vector
t € S}(R?) has three coordinates; two (x,y) for its base point, and one angle
6 € S' for its direction, (cos(8),sin(#)). One should compare this with the
discussion in Section 3; (9.2) is a special case of (3.2).

Since |V*(t,0)| < o,u, we have W(t,0) = 0. Therefore there is a function
A(x, u, p, q) such that F(x,u, p,q) = Alx,u, p, q) - q. The coeflicient A satis-
fies (1 + p>)Alx,u, p, q) € (A, A~1) (compare with (3.3)). Differentiating (9.2)
with respect to x, we find that p = u, is a weak solution of

(9.3) r.=(Ap,), (x €R).

On short time intervals, u will remain uniformly bounded, so that (1 + u?)A €
(A, A7Y) implies that (9.3) is uniformly parabolic. One consequence of this is
that the supremum norm of p = u_ cannot increase with time. In particular, if
v*(t,) is a Lipschitz graph in some choice of (x, y) axes, then any y*(¢) with
to <t < 0 will be a graph with respect to the same coordinates. By taking an
arbitrary large negative number for t,, and using the compactness of the set of
orthogonal coordinate systems, one sees that the entire family y*(¢) (¢ < 0), can
be represented as the graph of one function y = u(¢, x).

The x derivative of u, p = u_, is a bounded weak solution of the strictly
parabolic equation (9.3), which is defined for —% <t <0 and x € R. By
Moser’s Harnack inequality ((Mo]) u, must be constant.

On the other hand, the curvature of the curve y"(t), at the point P, and at
time ¢t =0, is +1. Since the curvatures of the y" are uniformly Holder
continuous, they converge uniformly on compact sets to the curvature of y*, so
that

uxx

73 = +1+0.

(1 + “i) (x=0,t=0)

This clearly contradicts the fact that «, must be constant.
To get the rate at which the curvature blows up we note that the evolution
of v* can be obtained by differentiating v* = V(t, k), and using (4.2). The
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result is
v = Vol + V(V)o) + (V:(V) + V(R + kz))vl
Using this equation and hypotheses V, - - V;* one finds that

d 4 s 3
ot (@), < e(U+ ot (2 IL),

which, after integration, shows that ||o*||, must blow up at least as fast as
(tyo — 1)~ '/% By V, and V; the same must be true for ||k ,l_- a

10. Application to a nonlinear parabolic equation

The methods of the last section can be used to prove a global existence
theorem for a certain class of nonlinear parabolic initial value problems. Let
f: S X R® — R satisfy the following conditions:

(F,) f(x,u,p,q) is alocally Lipschitz function of its four arguments,

of

(Fy) A< —<A7h

dq
(F3) | f(x,u,p,0)|<p (x€5u,p€ER)
(F,) £+ 1)+ laf, | < v(1 +1qgl?),

and let a u, € W(S') be given, for some p > 1. Then we can consider the
initial value problem

(10.1) u,=f(x,u,u,,u, (xGSI,O <t<t0)
u(0,x) = u(x) (x €8')

Turorem 10.1. If f satisfies F, - - - F,, then the initial value problem (10.1)
has a solution for any u, € WXS"), and any t, > 0.

In Part II we shall see that the same result holds if the initial data give
merely a Lipschitz function, instead of W(S").

Proof. Just as we found a bound for the total absolute curvature of solutions
of (1.1) in Section 4, we obtain an estimate for the L, norm of u_,, for any
solution u of (10.1), in terms of the constants A, u, t, and the L; norm of ug(x).
We only observe the existence of the following equation for g = u,,:

7} dq
9= 5-\fage

which is analogous to (4.2), and leave the details to the reader.

+f. +fup +f,a),
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The bound for the L; norm of u_, leads to an estimate for the supremum
norm of u,. Indeed, for any periodic function u(-) one has ||u |, <|lull.,
since u, must have a zero somewhere, from which one can start integrating u
to estimate u, at other points.

In view of the bound on u, we may modify the function f(x,u, p, g) in the
region p > sup(||lu (¢, - )||,: 0 < ¢ <t,) in any way we like, without affecting
the solution u of (10.1). In particular, we can change f so that (10.1) has the
form (9.2), i.e., so that it comes from specialising an equation of the form (1.1),
where the manifold M is the cylinder S' X R.

From Theorem 8.1 we know that (10.1), with the modified f, has a solution
if ¢, is small enough. Let t,,, be the lifetime of the maximal solution of (10.1).
Then Theorem (9.1) tells us that, if ¢,,, < o,

limsup a (t) > 7

[2ad 2V PO

In the present situation, where M = S! X R with the flat metric, one can
describe the quantity a(t) as follows. Consider two points on the graph of
y = u(t, - ), whose distance, measured along the graph, is less than ¢; form their
tangents, and compute the angle between these tangents. Then « (t) is the
lowest upper bound for the angles that arise in this way.

If one has an upper bound for u_, say |u, | < Py then interpreting « (t)
as above, one easily finds that

a,(t) < 2arctan(py,,,) < 7.

This contradicts the conclusion of Theorem 9.1, at least if t,, < . So the
solution of (10.1) exists for any positive t,,. O
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