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The contents of this paper correspond roughly to that of the author's lecture series given at 

Montecatini in July 1987. This paper is divided into five sections. In the first we present the 

Einstein-Hilbert variationM problem on the space of Riemannian metrics on a compact closed 

manifold M. We compute the first and secol~d variation and observe the distinction which 

arises between conformal directions and their orthogonal complements. We discuss varia- 

tional characterizations of constant curvalure metrics, and give a proof of 0ba ta ' s  uniqueness 

theorem. Much of the material in this section can be found in papers of Berger Ebin [3], 

Fischer-Marsden [8], N. Koiso [14], and also in the recent book by A. Besse [4] where the 

reader will find additional references. 

In §2 we give a general discussion of the Yamabe problem and its resolution. We also give a 

detailed analysis of the solutions of the Yamabe equation for the product conformal structure 

on SI(T)  x S~-1(1), a circle of radius T crossed with a sphere of radius one. These exhibit 

interesting variational fea,tures such a.s symmetry breaking and the existence of solutions with 

high Morse index. Since the time of the summer school in Montecatini, the beautiful survey 

paper of J. Lee and T. Parker [15] has appeared. This gives a detailed discussion of the 

Yamabe problem along with a new argument unifying the work of T. Aubin [1] with that of 

the author. 

§3 contains an a priori estimate on arbitrary (nonminimizing) solutions of the Yamabe 

problem in terms of a bound on the energy. The estimate applies uniformly to solutions of 

the subcritical equation, and implies that solutions of the subcritical equation converge in 

C 2 norm to solutions of the Yamabe equation. These estimates hold on manifolds which are 

not conformally diffeomorphic to the standard sphere. We present here the result for locally 

conformally flat metrics. This estimate has not appeared in print prior to this paper although 
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we discovered it some time ago. 

In §4 we discuss asymptotically fiat manifolds and total energy for n-dimensional man- 

ifolds. We discuss the positive energy theorems which are needed for the Yamabe problem. 

We give a detailed n-dimensional proof of the author's work with S.T. Yau [25], [26] which 

proves the positive energy theorem through the use of volume minimizing hypersurfaces. The 

proof we give works for n _< 7 in which dimensions we have complete regularity of volume 

minimizing hypersurfaces. Along with the locally conformatly fiat, case which is treated in 

[29], this covers all cases which are used in the resolution of the Yamabe problem. We note 

that g. Witten 's  [34] proof implies this theorem under the (topological) assumption that the 

manifold is spin. The n-dimensional proof is given in [2,15]. 

Finally in the last section we discuss weak solutions of the Yamabe equation on ,9 ~ with 

prescribed singular set. We motivate this through the example of §2 which gives the solutions 

with two singular points. We also relate weak solutions to the geometry of locally conformally 

fiat manifolds describing some of the results of [29]. Lastly we give a brief account of the 

author's existence theorem [24] for weak solutions with prescribed singular set. 
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1 The  variational prob lem 

Let J l  I)~, a. smool, h n -d imens iona l  compact mai~ifohl wi thoul  boulidarv. For any smooth  

R iemann ian  nmtric 9 on M we let u'~ a dei~ote the ~olume form of 9; thus if :~,1 . . . .  , a "'~ are local 

coordinates  on M we have 

k 9 = 90 (m) dmid,~: j , toy = -@let(9 u ) d,r I A . . .  A dm '~ . 
i , j= l  

Let ,,t4 deno',e the space of all smooth l l iemamtian  metrics on k'l, and let J ~ l  denote  the 

subset  of M consisting of those metrics of Iota[ x,'oluntc one: lltat is, 

V°l(9)  .... i d,,:j = I .  
1'~. ! 

Let. I l iem (9), Ric (9), /i'(9) denote the l/iema.nn curval ure tensor, the I/icci tensor, and the 

scalar curva ture  respectively, In local coordina.tes we have 

Riem (9) = ~ R0~J(dm; A d:H)::?0 (d,r ~ A dm ~') 
i , j ,k , (  

Ric (9) = ~ 1~,~ (LHd,ri. tfi~ ~ 9ktI~ih.ge 
id  g'.r 

se(,j) - ~.¢J /~,j . 
~,.I ) 

The ((qliptic) Einstein equat ions tl~en express i lie coixdilion lhal the trace free part  of the 

Ricci tensor vanishes, that  is 

Ric(9 ) =  I R(9), 9. (1.1) 
17 

The contrac ted  second Bianchi ident i ty  implies 

'~ 1 
~ g J k ( l ? i J  ~ [~(9)9U);~< = O, { i . . . .  ,,~ 
j,k 

where the  semi colon denotes t, he covaria.nt derixative of a tensor with respect to the Levi 

Civi ta  connect ion of 9- Thus  for 7z > 3 we se~' that (1.1) implies 

t 7 ( 9 ) -  '~ (.<D (1.2) 

where T~.(9 ) = V o I ( 9 ) - l f M  R(9)da,'g. It was shown by I l i tbert  that  equat ion (1.1) arises as 

the Euler  Lagrange equat ions for the functional  "R.(9) on the space .A41. This  may  seem 

surpris ing since (1.1) is a second order equat ion for 9 while the in tegrand t~(9 ) of 7E(9 ) also 

involves second derivatives of 9. To see that  this is correct, let 9 C J ~ l  and let h be any 

smooth symmet r ic  tensor of type (0, 2) on j ~ .  We then set 9(/,) 9 + *1~ for * E ( - e ,  e), and 

this gives us a family of iRiemannian metrics. The normalized family g(/,) = V( l ) -2 / '~9 ( t ) ,  
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W'(t) -- Vo] (9 + th) is then a path in JM,. We have tile [ormulae 

P~ - F~ \ - ' (P~ I'~' - FjeI ki) ]~ij = i)/,. ki . j  -}- Z ~ t  j M' .ji 

1 
9 (gu'.j + 9.#:,i - 9ij,e) 

where the comma denotes the p~rtial derivat.ive in a local coordinate system. Using an "upper 

(lot" to denote the derivative with respect to ~, we have 

k (1,3) 

Therefore we find that  /~ has the expression 

= - ~ hi~Ria + divergence terms 
i,3 

where h i-i = ~k,e 9ikgJeha.e. Upon integration we find 

d 1 
~t~ £ 1 R ( g ( ~ ) ) d w g ( t )  = - £ s ( h , R i c ( g ( l ) ) } g ( t ) d ~ g ( o  ÷ ~ ~ R(g(t))Trg(o(h)dco~(,  , 

where we have used Stoke's theorem together with the formulas 

1 ~  
.dLv(t ) - -  ~ lrg(o(D)wg(O' 

%(,)(s,.) : ~ t ( 0 ~ . % , .  
z,,? 

Now we have 'n(y(t))  = V(O(></'~ h ,  t~(v(~))U,~(,), and hence we ~nd 

~7 ']-~.(g(7~)) -- V ( ~ ) (2-' ' ) In J~4( ],, ]7'(,(j( [ ) ) )g(~.)do39(f.) where 
i .,~ - 2 ~ ( g ) g .  

F(v)  : mc  (v) - 7 R(v)v + ~-  

To derive this expression we have used, in addition to our computat ion above, the formula 
1 l / ( t )  = 7 fM(h,g(t)}~(O&°n(t)  • Therefore, if 9 is a crii, ical point for g ( - )  on ,M~ we find, sett ing 

l = O, that  F ( g )  - O. In particular,  it follows that the trace-free part  of Ric (g) vanishes and 

hence (1.1) holds. 

Now suppose g is a solution of (1.1) so that  iu part icular  F ( g )  - O. We compute  the 

second variation of ~ ( - )  at g. We have 

~ N . ( y ( Q )  ,=o : - ~ , ( t , , £ h , ) . d w ~  (1,4) 
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whero £h  = F'(9(0))~ Thus/.2 is a lineal' operator on symmetr ic  (0,2) tensors given by 

1 
~,]l  = ]@IC (g)  -- ~ g  --  JV~h (1 .5)  

which R]c(g),  t'{ may he computed from (1.3) and we have used (1.2) and the fact that  

7~.(g) = 0. \¥e write the space of symmetr ic  (0,2) tensors as a sum of three subspaces So, S~, $2 

where 5% denotes those h which may be wriIten h = LX9 (Lie derivative) for some vector 

field X on M, that  is, 

]~ j  = X i : j  -}- X j ;  i . 

(The fact that  this decomposition of smooth (0,2) tensors is valid is shown in [8].) The 

subspace Sl denotes the pure trace tensors, that  is, the h of the form h = 71g where 7 l is 

a smooth function on ]]/./. Fin~lly S; denotes those h which are orthogonal to both So and 

Sa, that  is, those h satisfying Trg(h) = 0 and Ej,kg.ikhq;k. = 0. Tensors h 6 52 are referred 

to as transverse traceless tensors. Note that  the subspace So consists of those infinitesimal 

deformations of 9 which arise from diffeomorphisms of M. It follows that  if X is a vector field 

on M and ~ : A1 --+ M is the one parameter  group of diffeomorphisms generated by X, then 

we have for each l E R,  F ( ~ )  = 0. Differentiating and setting t = 0 we have £h  = 0 where 

h = Lxg .  Thus/.2 ~ 0 on So. We now compute £h  for h G $1. Suppose h = t?g where 7 l is a 

smooth function. We then have from (1.3), (1.5) 

£ h  - ~ - " 2  1 9 ( ( A ' / +  - Rrl)g - Itess(r/)) (1.6) 

where Hess (r/) ..... ~ i . j  7hij dxidzj  is the Hessian of 7]. Now we have Hess (r/) E So, so we see 

that  So + $1 is ir~variant under £.  

Next we show that  £ is a se l~adjo in t  operator.  This may be seen fi'om the variational 

definition of £ by considering two symmetr ic  (0,2) tensors h, k and the two parameter  variation 

g (Ls )  = g + th + s#. Let ~ = V 4 ,  s)-2/'~g(t,s) be the normalized variation. We then have 

fi'om above 
07{(~(t, 8))  

0t 

Differentiating in s and setting t = s = 0 we have 

oso t  ,:.~:o = - (h, z ; k L ~ .  

Reversing tile order of differentiation for the smooth function 7t(g(L s)) of two variables we 

get 

jM<h, C~0gd~g = JM<k, Zh)ga~g 
for all h, k. Thus £ is self adjoint.  
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Now since So + $1 is i;-invariant and/2 is self-adjoint it follows that Se = (S0 + $1) ± C/C ~ 

is also £-invariant.  We compute £h  for h E $2 using (l.3), (1.5) 

~ ke 1 1 ~_~g (hik;jg+ hjk.ig) - - R h i j  

where Ah is the trace Laplacian given by 

k,£ 

Using the transverse (divergence free) condition on h we may interchange covariant derivatives 

and write the second term above as a zero order term in h 

= - ,~A],  +/<(1,) £h  (1.7) 

where K ( h )  is the linear term 

(K(h ) ) , j  = - S ]  n ~ ,  h~ + ~ ,~ 
k,t k 

Au important qualitative feature of the variational problem is apparent from (1.6) and (1.7), 

namely that a critical metric g tends to minimize "~ among those metrics conformally equiva- 

lent to g and to maximize 7~ among metrics transversely related to g. In fact, for h = 7/g E $1, 

we denote by t;1 the second variation operator on the conformal class of g- Thus 1;1 is the 

operator/2 followed by projection into -ql- Precisely £1 is the scalar operator 

1 ; , r / =  (n - 1)0z - 2 ) ( A q  + i Ibl). (1.8) 
2n 'n - 1 

Thus if we consider the restricted variational problem for the functional ~R(.) on the conformal 

class [g] of g we have for h = 7/9 

= -7~ q1;l~ldw~ . 

Now the operator - £ 1  has eigenvalues tending to +oo, and hence the metric g locally min- 

imizes ~ in .Ad~ A [g] modulo a finite dimensional space of variations (finite Morse index). 

On the other hand, from (1.7) we see that the operator - £  on $2 has eigenvalues tending to 

- o c  so that T~(.) is locally maximized among variations from ~q'~ modulo a finite dimensional 

subspace. 

This dichotomy for the linearized operator £ suggests the following global procedure for 

finding criticM points of 7~(.) on .A4~. For any go E 34~, let [g0] denote the conformal class of 

g0, that is, 

[go] = {g e M :  g = e~go for some ~, ~ C ~ ' ( M ) } .  

Let [g0], : Yt4~ F/ [g0], and define I(go) by 

I(go) = inf{7~.(g) : g C [g0]l }. 



126 

If g C [go]l realizes the inf imum, 1hen we see from above  tha t  tile Eutor l ,agrange equat ion 

satisfied by g is T ry (F (g ) )  ~ 0, t ha t  is. oquat ion (1.2) holds. If we writo 9 = ,4/(,~ 2)g0 where 

u is a posi t ive  smooth  function then we have the formula 

l~ (  g ) = --~r(  ~ ) - ~ .-( , ,+ 2)/(,,- 2) LozL 

where c(n)  = = - ~  and L0 is the "'conformaI I.al>lacian" for the met r ic  gt~ 4(~-1) 

Thus  our funct ional  R.(.) becomes 'PQ9) .... c(7~) l l~'(~t) where 

E(,.) = / "  [IV:,,,.I ~ + c(,,):~(:/o),/]d~,~o. 
• : A  l 

The volume cons t ra in t  on g lhen h~,,comos .[M u2"/('-e)d~:~:o = 1. The  equat ion (1.2) may  then 

be wr i t t en  

Lou--  c(7~)7~(9),('~+~)/(~-'2) = 0. (1.9) 

Since 

E(u)  > Ao(L0) J/14 ~z~d~"J° ->- rain{0, Ao( Lo)},  

where Ao(Lo) denotes  the lowest eigenvalue of Lo, we see thai  l(go) > - o o  for any qo. We 

then define or(M) to be the suprenmln  of 1(9o) over all go ff ,4//1, 

~(A:)  = sup{(: : , , ) :  ::~, ~ , v~ l ) .  

If we consider  cons tant  cLirvg-lturc l l letrics 90 oll ,5"' normal ized  to have volume one, t h e n  we 

have T~.(90 ) - n ( n -  1)Vol (S'~(1)) ~/" where S~(I )  denotes  the sphere  of radins 1. The  following 

l emlna  tells us tha t  the s t anda rd  metr ic  on ,q"* in fact realizes ¢(,q'") and provides  an t ipper 

hound for c~(M) for any n -d imens iona l  maniik~ld M. 

L e m m a  1.1.  We have o ( S  '~) = r~(n - l )go l  (S '~(I))  2 / ' ,  and  for any  n manifold M we have 

c~(M) < o-(S~)., 

P r o o f :  Let  9o C 3//1 be a met r ic  on M.  We may  show tha t  l(go) < n(n  - 1 )Vol (,q,,)2/, by 

cons t ruc t ing  a met r ic  g E [9], which is a concen t ra ted  spherical  me t r i c  near  a poin t  of M.  We 

omi t  the  detai ls  and refer the  reader  to [I,t5,23]. 

Now let g0 be a cons tan t  curva ture ,  uni t  volume met r i c  on ,5'". The  fact  t ha t  7~,(g0) = 1(go) 

follows f rom a symmet r i za t i on  a rgumen t  ([21,31]) or from the exis tence  theory together  with 

a uniqueness  theorem of M. O b a t a  (see la ter  discussion) as in [15]. Combin ing  these two facts 

we see t ha t  a ( S  ~) = 7¢(g0) > ~ ( M )  for a.~ty ~ -man i fo ld  M.  This  comple tes  the proof  of 

L e m m a  1.1. 

If we have a met r ic  g E Ad~ which realizes ~ ( M ) ,  tha t  is, 7~(g) = l ( g  ) = or(M), we should 

hope t ha t  g is Einstein.  This  is genera l ly  t rue if c~(M) < 0 but  is not clear for a ( M )  > 0. 
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To see this for c~(M) _< 0, we use the fact that  for 1(9o) <_ 0 there is a unique solution of 

(1.9). The existence follows from [32] and uniqueness from the i l laximmu principle. Thus if 

h is a.ny t race-f lee  (0,2) tensor, we consider the deformed metr ic  g(t) = 9 + th. There is then 

a unique function v(0 > 0 such that  (v(O)4/(~-2)g(~) has constant  scalar curvature equal to 

I(g (~)) since I(g (0) < c~(M) <_ O. The family v(0 is smooth as a function of t (see [14]), so we' 
d have 7~ I(9 (0) = 0 at t = 0, and this tells us that  the trace free Ricci tensor of 9 vanishes and 

g is Einstein. 

We now discuss properties of or(M) and various uniqueness theorems. 

L e m m a  1.2. Let M be a smooth, closed n-dimensional manifold. The invariant or(M) is 

positive i f  and only if  M admits a. metric of positive scalar curvature. 

Proof." If a ( M )  > 0, then by definition there is a metric 90 C J~/1 with 1(9o ) > 0. This 

implies that  A0(L0) > 0, and hence the lowest eigenfunctiou u0, which may 1)e taken to be 

positive, satisfies Louo < 0. Thus the metr ic  u~/('~Z:)go has positive scalar curvatnre. 

Conversely, if g0 E Adl has positive scalar curvature, then I(9o ) > 0 (see [1]) and hence 

a ( M )  > 0. This completes the proof of Lemma 1.2. 

Since many topological obstructions are known for manifolds to admit  metrics of positive 

scalar curvature (see [13,28]), Lemma 1.2 indicates that  the invariant <r(M) is quite nontrivial.  

We prove the following uniqueness theorem for constant curvature metrics. 

P r o p o s i t i o n  1.3. 

1. Let M = S ~. Any  metric g E A41 which satisfies T~(g) = I(g) = ~(9) has constant 

positive sectional curvature. 

2. Suppose that M admits a flat metric. Any  metric g ~ A4~ satisfying "~.(9) = I(9) = 

~r(M) is a flat metric. In particular, or(M) = 0 and any flat metric g E J ~  satisfies 

Tg(g ) = I(g) = e*(M). 

P r o o f i  The proof of the first s ta tement  is a consequence of the work ([1,23]) on the Yamabe 

problem which shows that  I(9o ) < a ( S  ~) for any 90 E Ad~ unless g0 has constant curvature 

(M = Sn). S ta tement  2 follows from [13,28] where it is shown that  a flat manifold does not 

admit  a metr ic  of positive scalar curvature (i.e. a ( M )  _< 0), and any scalar fiat metric on M 

is flat. This completes the proof of Proposit ion 1.3. 

There are two obvious uniqueness questions left unresolved for metrics of constant curva- 

ture. The first is whether the constant  posit ive curvature metrics g on non-s imply connected 

manifolds achieve the same character izat ion as the s tandard metrics on S ~, i.e. Tg(g ) = I(9) = 

~r(M). The second question is whether a hyperbolic metr ic  g on M can be characterized sim- 

ilarly. We conjecture that  the answer is yes to these questions. 
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As a final topic in this section we discuss the uniqueness theorem of Obata  [18"] and its 

relevance to our variational problem, l,et 90 C J~/, and let, 9 ..... "u4/t~-2)9o where u is a smooth 

positive function. Let To, 7' denote tile trace free part of the Ricci tensors of g0, g respectively. 

We then have the formula 

T =  To (1.10) 
k J 

which follows from direct computat ion (see [4]). In (1.10) the Hessian and Laplacian are with 

respect to go. Assume go has constant scalar curvature. We then have by the contracted 

Bianchi identi ty ~j,k g~k(T0)q;k = 0 for i = 1 , . . . ,  n. It follows then from Stoke's theorem 

/M (To, [less (,t-2/('~-2))} oo d,.',ao = 0 ,  

Therefore, we mult iply (1.10) by u -2/(''-~) and integrale it.s ironer product with To to get 

/M ~*-2/('~-2)(T'Tb)g°d%° = o£~ ~t-2/('~-2)l{T°ll~°d%°" (1.11) 

Combining (1.11) with the Schwarz inequality we see that  for any constant scalar curvature 

metric 9o and for any 9 = u4/(n-2)go we have 

In part icular ,  if g were Einstein thei1 go would necessarily also he Einstein. 

P r o p o s i t i o n  1.4. For an Einstein metric g (~mit volume) on M we necessarily have 7~(9 ) = 

I(g ). Moreover, any constant scalar cm'vaturc metric go c5 [g]~ is Einstein. We then have 

9o = g un/ess (M, 9) is isometric to a round ,q"~ in which case g0 is a constant curvature metric 

on S ~ which is pointwise contbrmai to g, 

The main step in the proof of this result is (1.12) which shows that  go is Einstein if it has 

constant scalar curvature. The analysis of conh)rmally related Einstein metrics on a closed 

manifold is faMy straightforward (again based on (1.10)) and we omit  the details referring 

the reader to Obata  [18] for the complete proof. 

A consequence of Proposition 1.4 is that  any critical point g E A4t of T{.(-) automat ica l ly  

minimizes in its conformal class and hence has conformal Morse index zero. 

We also observe that  for n = 3 inequality (t.12) gives a strong a priori es t imate on solutions 

of the Yamabe equation (1.9). To agree with our earlier notation we let go E 3d~ be a fixed 

metr ic  and let g = u4/('n-2)go have constant scalar curvature. Inequali ty (1.12) then says for 

n = 3 (note that  u of (1.12) becomes u - ' )  

Since n = 3 we also have 
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Therefore  we have  

(£s ( ll Tll~ )3t2 d% ) 213 tL "2 ~l Tit> g) 

since u-6daag = dw,o , ~nd we a.ssume Vol (go) = 1. It follows tha t  the  quan t i ty  fM(llTIIgl2d% 
is a priori bounded (depending only on the background go, hence the  conformal  class) for any 

met r ic  g e [O0] of constant  scala,' curvature .  Note  tha.t fM(llTlig)a/2d.% is a dimensionless  

quan t i ty  for n = 3. 
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2 The  Y a m a b e  prob lem 

In this section we discuss solvability of (1.2), oi" equivalently (1.9). From the previous section 

we know that (1.2), (l.9) is the Euler-I,agrange equation for the functional T¢(.) on [g0]l- An 

approach to producing solutions of this equation would be to construct a minimizer; that is, a 

metric g E [g0]~ such that "g(.q) = l(go). This apI)roach has been successful as we will outline 

here. 

Historically this problem was studied by ft. Yamabe [35] in the early sixties, and was 

claimed to have been solved in [35]. During the sixties there was substantial development 

in partial differential equations, and nonlinear problems were being understood more deeply. 

In particular it was realized [20] that, in many situations, equations such as (1.9) do not 

have positive solutions. In light of these dew4opments, N. Trndinger re examined Yamabe's 

paper and discovered that it contained a serious error. In [32] Trudinger developed analytic 

machinery relevant to (1.9) and showed that a solution (in fact. a minimizer) exists if I(go) <_ 0 

(or if I(go) is r~ot too positive). He also proved regularity of 1/V 1'2 weak solutions of (1.9). This 

left. open the general case with I(go) > 0. The fact that this case is subtle is apparent from the 

example of (S~,90) where go E 3.4, has constant sectional curva.ture. In this case, 90 is itself 

a solution of (1.2) but is by no means the only solution in [go],- In fact, given any conformal 

transformation F : >;" --+ ~<'~ we have F*(go) E [g0]l is another solution of (1.2). Thus if we 

take a divergent, sequence of conformal transformations F, (such as dilations Fi(x) = i .  x in 

stereographic coordinates) we get a divergen~ sequence of minima for the Yamabe problem 

on (S~,g0). In particular, one cannot obtain uniform estimates on solutions such as would 

be required to prove existence by usual analytic methods. It follows that any method which 

produces solutions "with bounds" must distinguish (S'~,9o) from the conformal class o n e  

considers. In 1976, T. Aubin [1] proved a general existence result in the positive case. He 

showed that if n > 6 and g0 is not locally conformally flat then (1.2) has a solution (in fact, 

a minimizer) g E [g0]2. A metric 9o is said to be locally conformally fiat if in a neighborhood 

of any point of M, there exists local coordinate x l , . . . ,  cc ~ such that go is given by 
7~ 

go = A~(,~,) ~ 2 ( d x ' )  ~ 
i = l  

for a locally defined positive function A(z). Alternatively, a metric go is locally conformally 

flat if any point P0 E M has a neighborhood ~ such that (~,g0) is conformally equivalent 

to a subdomain of the standard sphere. |n particular, the assumption that go be not locally 

eonformMly flat should be viewed as requiring (M, go) to be far from the standard sphere 

(which we've seen is a bad case). By a purely locM computation Aubin showed that a manifold 

(M, go) with n > 6 and 9o not 1.c.f. satisfies I(go ) < a (S  ~) and thus one can derive the 

necessary estimates to construct a minimizer. We refer the reader to [t5] for details and merely 

describe developments here in a genera] way. Because Aubin's argument is purely local, there 
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was no chance that  it could work for a locallv conformally fiat rnetric, and all a t t empts  to 

weaken the dimensional restriction (n _> 6) have failed. In t984 (see [23]) we developed a new 

global a t tack on the problem and succeeded in solving (1.9) (again producing a minimizer) for 

7z = 3, 4,.5 and for locally conformally flat metrics. We present here the general idea and refer 

the reader to [15] for details. (In the next section we present an a priori es t imate  for solutions 

of (1.2) which are not necessarily minimizers.) The critical metrics one must consider in the 

Yamabe problem are those which are concentrated near a point P0 of M,  and are very small  

away from the point. If 9 denotes such a metric,  then we may choose a point  p ¢i po, and 

rescale g by multiplication by a large constant so that  9 agrees with our background metr ic  go 

at p. If we imagine a sequence of metrics {gi} C 34, which concentrate near p0 and tend to 

zero at p, then by rescaling we get a sequence {.~i} which are uniformly controlled near p. If 

the scalar curvatures of the .qi were bounded, then the scalar curvatures of 9i tend to zero, and 

we expect the 9i to converge to a metric ~ of zero scMar curvature with ~ being a complete 

metr ic  on M - {P0}. ( W e  rigorously carry out this type of rescaling in the next section.) If 

we write ~ = G4/(~-2)9o as a function times our background 9o, then G satisfies LoG = 0 on 

M - {P0}, and G > 0. Thus G must be a (multiple of) the fundamental  solution of L0 with 

pole at Po- Near Po, the function G has the behavior G(x) = ]xl ~-n + a(z) where c~ has a 

milder singularity at z = 0 than Izl ~-~. Thus near p0, the metric ~ approximates  Ix1-4 ~ dx~ 

which is simply the metric E dy~ on R"  written in the inverted coordinates 5' = fxI -~x- Thus 

( M -  {po},g) is scalar flat and asymptotical ly fiat. In such a situation (in certain cases) there 

is a number which can be at tached to ~ which is referred to as total  energy. The reason for this 

name is that  for n = 3, asymptoticatIy flat manifolds arise as initial da ta  for asymptot ica l ly  

flat spacetimes which model finite isolated gravitat ing systems in general relativity. The scalar 

curvature assumption corresponds to (a special case of) the physical assumption that  the local 

energy density of the mat ter  fields be nonnegative. The total energy of a system measures the 

deviation of g from the Euclidean metric at, infinity, and "positive energy" theorems assert 

that  the total  energy is strictly positive unless (M - {P0},~) is isometric to R ". In [23], it 

is shown that  if go is locally conformally flat or if 7z = 3, 4, 5 the energy term can be used to 

show that  I(go) < a ( S  ~) unless (M, go) is conformally equivalent to the s tandard  S ". This 

implies existence of a minimizer for the Yamabe problem with appropria te  es t imate .  In §4 we 

discuss the positive energy theorems which are needed for the Yamabe problem. 

For a compact,  closed manifold M, let go E J ~ , ,  and let ~ be given by 

~ - =  {~: ~/(~-~g0 ~ 34~, r¢(~-~/(~-~)g0) = ~(go)). 

Thus F is the set of solutions of (1.9) which arise as minimizers for the Yamabe problem. 

The following compactness theorem is a standard consequence (see [23]) of the inequali ty 

I(g0) < ~(s'~). 

P r o p o s i t i o n  2.1. Suppose (M, 9o) is not conforrnally equivalent to the standard sphere. The 
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set F is a nonempty  compact subset of (7~(M), the set of twice continuously diff~rentiable 

functions on iV[ with the usual C 2 norm. 

As we have observed, the above result is false for the standard sphere because the conformal 

group of S n is noncompact. We give a geometric corollary which says that any manifold except 

the standard sphere has a compact conformal group, This result is a theorem of J, Lelong- 

Ferrand [16]. 

C o r o l l a r y  2.2. If (M,9o) is not conformally equivalent to the standard sphere, then the 

group of con formal automorphisms of ( M, 9o) is compact. 

Proof :  L e t / )  be the group of conformal diffeomorphisms of (M,9o). It suffices to show that 

/)  is compact in the C O topology. The main point is that /)  acts on the set .7" by pullback; 

that is, given F E D, t, C .T we have F*(u4/(~*-2)9o ) = (~tF)4/('~-2}90 , It F = tF'I(~-2)/2~LoF c Y .  

Here we write F*9o = IF'12g0 so that IF"] is a function which measures the stretch factor of F 

measured with respect to 90- Thus the compactness of .7- implies that UF <_ c for all F C ID, 

and hence IF'I is uniformly bounded for all F C Z). Therefore, by the Arzela--Ascoli theorem, 

g) is a compact subset of C°(M, M). This completes the proof of Corollary 2.2. 

There are very few (conformal) manifolds on which one can analyze all solutions of (1.2). 

Besides the standard sphere, where Obata 's  theorem tells us that all solutions are minimizing 

and have constant sectional curvature, the product metrics on S 1 x ,_q~-~ seem to be the only 

manifolds where alt solutions can be analyzed. In particular, on S 1 x S ~-1 we see many 

solutions of (1.2) which are not. minimizing, and we see situations where the most symmetric 

solutions are not the minima. For convenience of notation, we dispense with the volmne 

constraint and normalize solutions of (1.2) so that their scalar curvature is equal to n(n - 1), 

the scalar curvature of the unit 7z sphere. Equation (1.9) then becomes 

,,C~,- 2) 1.0~ + - -  ~L ( ' ~ + 2 ) / ( ' - 2 )  = 0 .  ( 2 . 1 )  
4 

We analyze S 1 x S ~-~ by looking for solutions on the universal covering space 

R x S ~-1, and we choose ,q.,,-1 to have unit radius. If we consider the 7~ sphere to be R'~U {co } 

where the coordinates z E R" arise from stereographic projection, then the rnanifold R x ,q'"-' 

is conformally equivalent to S '~ - {0, co} = R ~ - {0}. The conformal diffeomorphism is given 

explicitly by sending the point .r E R '~ - {0} to the point (log [z], x/l~l)  ~ R × x ,~-~. Thus the 

analysis of solutions of (1.9) on R x S n-~ is completely equivalent to the analysis of solutions 

of (1.9) on R ~ - {0}. An important method was introduced into the subject by Gidas, Ni, and 

Nirenberg [9] which enables one to show that, under suitable conditions, arbitra.ry solutions 

of (1.9) have a maximal amount  of symmetry. For solutions on S '~ - {0, co} it has been shown 

by Caffazelli, Gidas, Spruck [5] that any solution of (1.9) which is singular at either 0 or co 

is necessarily singular at both 0 and co, and such a solution is a radial function, that is, 

a function of Iz[. We are interested in complete metrics on R x S ~-1 and hence we want 



133 

solutions singular at both 0 and oo, We will write (2.1) with respect to the product metric 

go = dt 2 + d4 "2 on R x S '~-~ where (t,{) denote coordinates on R x S "- l ,  and d~ 2 is used to 

denote the metric on the unit S "-*. We then have/~(go) = (n - 1)(n - 2), and for a function 

u(t) (which any global solution will be from the above discussion), equation (2. t) becomes 

d2~ ( , - 2 )  ~ , . ( , - 2 )  
t~ + - -  . , ( ,~+2)/( ,~ 2) = 0 .  ( 2 . 2 )  

dt 2 4 4 

We are interested in positive solutions of (2.2) defined on all of R. There are two obwous 

nonzero solutions of ('2.2). The first is the constant solution 

u(t) ~ u0 = (2.3) 

4/(n--2) Geometrically, u 0 go is that multiple of go having scalar curvature n(7~ - 1). The second 

explicit solution is a solution of constant sectional curvature. The spherical metric gl on R ~ 

takes the form g2 = 4(1 + la,'12) -2 X;{(dz{) 2. Writing this metric a.s a function times g0 we get 

~1 = 4([: ,q + I*] -1  - 2  ) .q0 = (cosht)-2g0. 

Therefore the function ul(t) given by 

,,, (t) = (cosh t) -(~-~)n (2.4) 

is a solution of (2.2). Of' course the metric g~ is not  a complete metric on R x S ~-1. We 

convert (2.2) to a first order system by setting v - ~ ,  and defining the vector field X(u, v) 

in the uv-plane by 

( ( " - 2 ) 2  '~,(r~-2) u(,~+2)/(,-2,) 
x ( ~ , v ) =  v , - 4 -  ~, U - -  

Equation (2.2) then becomes the autonomous system 

d X(~L,v) 
7i(~,,v) . . . . .  

The vector field X has critical points at (0, 0) and (v,0, 0). The linearized equation at (0, 0) is 

gu dv _ ( n  - 2) 2 

dt dt 4 

which has a saddlc point at the origin. At (uo, 0) the ]inearized System becomes 

du dv 
dt v ,  dt (2 - n )~t 

which has a proper node at the origin. The orbit corresponding to the solution u l ( t )  con- 

rains the point (1,0), is symmetric under reflection in the u-axis, and approaches (0,0) as 

t approaches both + ~  and - c~ .  Therefore, this orbit (together with (0,0)) bounds a re- 

gion f/, and the point (u0,0) lies in fL Thus the region f~ is invariant under the flow, and 
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it is elementary that  any orbit  on which , remains posit.ive tk~r all t ime must, lie in ~.  We 

may parametr ize the orbits in ~ by let t ing %([)  denote the orbit  with %(0)  = (a ,0)  where 

o C [u0, []. Thus 7~0(t) ~ (u0,0), and 7,( t )  = 0 q ( t ) , ~ ( t ) ) .  For a, E (u0, 1), there is a first 

positive t ime, which we denote ½ T(o) ,  at which % intersects the ,t-axis. We also see that  if 

we denote the coordinates of %({) by (u~,(t), <,(t)) ,  then we have % ( - t )  = (u~( t ) , -v~( t ) ) .  

Therefore it follows that  %(/.) is periodic with period T(c~). It should be true that  T (a )  is an 

increasing function of cY, but we have not checked this. II is elementary that  lim~ll T (a )  = co, 

and lirral~0 T(c~) = (n - 2)-~/~2n. The qual~tity (~ - 2)1/22r~ is the fundamental  period of 
d 2 the linearized operator  at u0, which is ~ + (n - 2). 

We now summarize the consequences of tile above discussion for solutions of (1,2) on 

S 1 x £,~-1 We normalize the radius of ,g'"~ to be one. and let the length of S x be a parameter  

T, so our manifold is ,Sq(T) × S '~-1. We take our background metric go to be the product  

metric. We assume in this discussion thai  'F(o) is increasing for a E [u0, 1], otherwise one can 

make the obvious modifications. There is a number To = (~ - 2)-1/22rr such that  for T < To 

the manifold SI (T)  × S '~-1 has a unique solution fox (2.1) hence for the Yamabe problem. 

This solution is a constant times go. For 2' C (T0,2T0] equation (2.1) has two inequivalent 

solutions, the constant, solution and also {.lie sotution with fundamental  period T. Actually, 

since the solution with fundamental period 7' is Jlot invariant under rotation about S 1 we' 

actually have an S 1 parameter  family of solutions. For ~l' C (2T0, 3T0] we have 3 inequivalent 

solutions, the constant solution, two periods of the solution with fundamental  period T/2~ and 

the solution with fundamental  period 7'. Again the last two lie in S* parameter  families of 

solutions. Generally, we see that  for 2' C ( ( k -  1 )2b, kT0] we have k inequivalent solutions given 

by the constant solution~ together with i periods of a solution with fundamental  period T/ i  

for i = 1 , . , . ,  k - 1. Each of these (k - 1) solutions lies in an .qu parameter  family of equivalent 

solutions. All of the solutions for T > 7b are variationa.lly unstable except the solutions with 

fundamental  period T, and hence these solutions are minimizing for the Yamabe problem 

(after one normalizes the volume). The instabil i ty of the constant solution is elementary, and 

for a solution consisting of i periods of a solution with fundamental  period T/ i  (i _> 2) we can 

use the following argument:  Let u(/) be such a solution. Then we have u(t + T/ i )  = u(*), and 

hence v(t) = d= has the property that  {i C ,ql(T) : v(t) > 0} consists of at least i disj.oint 7/ 
intervals. On the other hand v satisfies the linearized equation 

Lv = ~d2t' (n(r~ + 2) ~t4/(n-2) (rt -" 4 ~ t, = O. 

It follows from Sturm-Liouvi l le  theory that  there are at least i (>  2) eigenvalues of - L  which 

are less than zero. This implies instabil i ty for the constrained variational problem. 

Since the solution with fundamental period 7' approacl'~es ul as T --~ co, we also see that  

lira I(,5'~(:r) × ,5 ''~-') = ~ ( s " ) ,  
T~c~o 
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and in par t icu lar  we have a ( S  1 x S "-~ ) = r~(,.¢ n) since we ha.re exh ib i t ed  a. maximiz ing  sequence 

of conformal  classes of metr ics  on ~g,1 × S,,~-1. We see that, ~r(,5 q × ,5 ~'-1) is not achieved by a. 

smooth  me t r i c  on S 1 × S n-1. 
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3 A p r i o r i  e s t i m a t e s  o n  n o n m i n i m a l  s o l u t i o n s  

In this section we will derive estimates on metrics ill a given conformal class which satisfy 

a generalization of equation (1.9). It will be essential for theso estimates that (M, go) be 

conformally inequivalent to the standard sphere, as thev are false Oll S ft. While analogues 

of these estimates hold in general, we restrict ourselves here to lnetrics g0 which are locally 

conformally flat. This case contains the main ideas without as many technical complications 

as one encounters generally. We hegin with a geometric Pohozacv- type identity which holds 

in exact form for a locally conforlnally flat metric g. Throughout this section we will assume 

that (M, go) is a locally eonformally flat manifold and g C [go]. Assume that z~, . . .  ,x" are 

local coordinates on M in which g takes the form ~4/("-2)(x)E~(dz~) 2. Let. r 2 = E~(xi) 2 be 

the square of the Euclidean length of x, and let D~ denote the open Euclidean ball centered 

at x = 0 of radius ¢. The following identity holds 

2n ( A_2/(,_2) g) ) 
j D ,  "oR(9)~d% - ,,-2-- ~D,  T " ~ r '  ~ (lEg (3.1) 

where dE~ is surface measure on i-)D~, det.erndned by g and T(.,-) is the trace free Ricci tensor 

of g considered as a symmetric bilinear form on tangent vectors. The identity (3.1) reduces 

to the standard Pohozaev [20] identity for the function t(x).  In this form it is derived in [24, 

Proposition 1.4] where the conformal Killing vector field is X = r 0 the generator of dilations ~r 
centered at 0 (locally defined). Suppose g0 = -~/(n-2)(a:) ~i(dxi) 2 and g --a4/(n-2)go so that 

/~ = ~t.~ 0. We may rewrite (3.1) 

. o," ~ -  2 vo /)',"&" 

where de denotes the volume measure on the unit (n - 1) sphere. Equation (1.10) gives us 

all expressiou for 'F ( ~ ,  ~ )  

( ) o = (,,_ 2)(;o~,)~/(,~_~) ((;o~,)_~/(,~_~)) _ T 2 ,  ~ 

02 where A denotes the Euclidean Laplace operator ~ i  (ax')~ 

1A((Aou) -2/('~-2) )] (3.3) 

A common method of attack on the existence of solutions of (1.9), which was in fact used 

by Yamabe, is to regularize tile problem by lowering the exponent of the nonlinear term. Thus 

one introduces the equation 

I , u + K u  ~ = 0 ,  u > 0  (3.4) 

where K is a positive constant and p C ( 1 , ( n + 2 ) / ( n -  2)]. For p < (n + 2 ) / ( n -  2) 

it is standard to construct a nonzero solution which minimizes the associated constrained 

variational problem. More generally, the associated variational problem satisfies the Palais- 

Smale condition, and hence the methods of nonlinear functional a,lal,,'sis and the calculus of 
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variations anay be applied. We will derive uniform est imates  on solutions of (3.4) which have 

bounded energy. In particular,  these est imates imply that  solutions of (3,4) converge in C ~ 

norm as p T (Tz + 2)/0~. - 2) to solutions of (1.9). We define for A > 0 a set of solutions Sa 

(1 ,"  + 21, < A, K < A}. S ^ = { u :  'u satisfies (3.4) for s o m e p ¢  \ n - 2 J  - - 

We will show that ,  if (M,  9o ) is not conformally equivalent to 5 TM, then ,.CA, is a compact  subset 

of C~(M). We first state,  without giving a detailed proof, a general weak compactness theorem 

for metrics 9 E [90] whose scalar curvatures are controlled. This type  of result is at present 

well known to experts in several areas. An analogous theorem is proven by Sacks Uhlenbeck 

[22] for harmonic maps in two variables, by Uhlenbeck [33] for Yang Mills connections in four 

variables, and by several authors [7], [12], [17] in various contexts. 

P r o p o s i t i o n  3.1. Let {ui} be a sequence of posi t ive C 2 functions on M such that 

{Vol { 

are both uniformly bounded sequences. "/'here is a .~ubsequence {ui,} which converges weakly 

in W t ' 2 (M)  to a l imit  function u. The function ~ is C a on M ,  and there is a finite set of  points  

{p~ , . . . ,pk } such that {u~,} converges in C ~ norm to u o~ compact  subsets  of  M - { p ~ ,  . . . , pk }. 

Since our arguments will be geometric in nature,  it will be convenient to es t imate  

R(zt4/(,~-;2)g0 ) 

for it C SA- This can be done based on "subcritical" estimates.  

P r o p o s i t i o n  3.2. Suppose u E $A. There is a coz~stant C depending only on go, A such that 

max  [t~(tt4/(n-2)go)l < C. Similarly all derivatives of ]~(u4/(r'-2)go ) with respect to go can be 

bounded in terms of  go, A. 

P r o o f :  Let ~ = (n + 2) / (n  - 2) - p where ~t satisfies (:3.4) with exponent p. If 8 -- 0, then 

R(t?/('~-2)g0) = c (n ) -~K  and our result is trivial. Thus we assume 8 > 0, and we derive 

est imates on u keeping track of the ~-dependence. We first derive an upper bound on tt by 

a scaling argument.  L e t g =  max{u(p) : p E  M} and let p E  M b e a p o i n t  with u(~) = g .  

Let x a , . . . ,  x ~ be coordinates centered at p. Observe that  for a > 0 the function u~(x) defined 

(locally) by u~(x) = a~/(P-~)u(ax) satisfies the equation L~u~ + K u~ = 0 where L~ is the 

operator  

L ~ v ( x ) -  ~/detgo(ax)  ~ ~ 

We choose a such that  u~(0) = 1, that  is, we set a = (g)-(~-~)/2. We assume g is large so tha t  

uo is defined on the unit ball in R n. Since x = 0 is the maximum point of u~ in Bx, we have 
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u~ < 1 and standard elliptic est imates imply 

~ta(O) <_ c ( ~  lt:,ff(,~-~2)ctx) '~-2)1(2r~) 

Now from the definition of ~l.~, we have after a change of variable, 

jQ(o) ,,] ''/('~ 2)(Lr av'@~(~-v) iB~,(o),U2'~l("~-2)d:r. 
This then implies 

and hence we have 

maxu  <c{/~',  ~ n + 2 _ = - p .  ( a . 5 )  
M ~z -- 2 

for a constant cl. 

We may derive a lower bound on ~L of a. similar type by observing that  L~L < 0, and so 

standard est imates (see [10]) give us 

f 
r a i n  . > e l  "d~go.  

A'/ J.a, ! 

From (3.5) we have 

,u2,,,/(,~_2)da:~o <_ c~ '-~ J M 4 ~Z dwg o , 

The Sobolev inequality implies 

(f~t~, 2'~/('~ 2)d%o) ('~-'2)/~ _ < cE(u)  = cK fMuP+Id~%. 

Since p + 1 _< 2n/(n - 2) and K < A we have 

[ < c:,\ ( fM, t~2 '~l ("-2)dcc9o)  ~ ?  (p-1) 

Combining the above inequalities we get. 

minzL >_ C21/~ (3.6) 
M 

for a constant c2. Rescaling as above with a = u -0'-1)/2 and with center any given point of 

M we get from elliptic theory IV',,,(0)I _< c u~(0) <_ c which implies in light of (3.5) 

max V u <c~/~.  (3.7) 
3 4  90 - -  

Higher derivatives can be simila, rty est imated.  To complete the proof we observe that  

from (3.4). Therefore (3.5), (3.6), (3.7) imply that  R(u4/('~-2)go) and its first derivative with 

respect to go are bounded. Higher deriva.tives of R(u4/('~-2)go) are similarly bounded, and we 

have completed tile proof of Proposition 3.2. 
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We now prove the main  result of this section. 

T h e o r e m  3.3.  Suppose (M, 9o ) is not. conformally eq~iva.lent to the standard 'l~-sphere and  

go is locally conformally flat. Fbr any A > 0, the set Sa is a bolu:,ded subset  of C3(M).  

Proof: We prove the theorem by contradiction.  Suppose {ui} is a sequence in $A with 

lira II~tillca(a4) = co. From Proposit ion 3.1 we may require the sequence tti to converge weakly 

in WL2(M)  to a l imit  u, and uniformly on compact  subsets of M - { P ~ , . . . ,  Pk} for some 

collection of points P , , . . . , P k  E M. The function u is smooth on M,  and the sequence ui 

converges in C a norm to u on compact subsets of M - { 1 ~ , . . . , 1 ~ }  by elliptic est imates.  If 

we can show that  the sequence ui converges uniformly on all of M,  then we conclude tha t  

m a x ~  are bounded,  and s tandard elliptic theory implies ll~Ilca(M} are lm,mded cont rary  to 

assumpt ion.  

We divide the proof into two steps. We :first show that  u is nonzero. This is where we use 

the global hypothesis  tha t  (M, go) is not  conformally S'L Assume u ~ 0, and choose a point  

Q E M different from P 1 , . . . , P k .  Let si = ui(Q), so by assumpt ion  ] imsi  = 0. Define vi by 

vi = s;- lui ,  and observe that  the vi satisfy the equat ion 

C~,~ + ~ f ' - ' K # p  = 0. (3.8) 

Since {u~} is uniformly bounded on compact  subsets of M - {& . . . .  , Pk}, we have h'om 

(3.4) a Harnack inequal i ty  for ui on compact  subsets of M - { & , . . . ,  P~.}. Thus  the vi 

satisfy a. Harnack inequality,  and vi(Q) = 1. Therefore the v~ are locally' uniformly bounded  

on M - { P 1 , . . . , P k } .  From (3.8) we then get bounds on all derivatives of v, away h 'om 

{ P 1 , - . . ,  P}}. Therefore a subsequence,  again denoted vi, converges in (2:3 no,'m on compact  

subsets of M -  { P ~ , . . . , P k }  to a smooth positiwe solution (; of LC' = 0 on M -  { P ~ , . . . , P k } .  

Since we are assuming R(9o) > O, G must  be singular at one or more of the points  I5 . . . .  , Pk. 

Suppose G is singular at P , , . . . , P e .  It  then Mlows that  G is a posit ive l inear combina t ion  

of (positive) fundamen ta l  solutions Go with poles at [L for c~ = 1 , . . . ,  ('. Tha t  is, there exist 

posit ive constants  at,.  ae such that  G e . . . , : c ' ~  " ,  = ~a=~ a~,G'~. Let x 1, be conibr inal ly  fiat 

coordinates centered at P, .  Let cr > 0 be a number  which will be chosen small,  and apply 

(3.2) with u = u~ on Do. ["or a solution u of (3..4), we have/{(u4/(>-2)g0) = c(n) -~Ku -'s where 

= (n + 2 ) / (n  - 2) - p, and thus the left hand side of (3.2) can be wri t ten 

...... I?('/1) -1K6(p + 1)-'/. r ~(~)(u"+')A~'*/("-2)ur d 92 . 
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= ~ ,  r ~ ,  we may integrate by parts to obtain 

707 \ i o 
- -  f - -  tt p+I  11 @ - -  

JO, 7 ~ -  2 

+ a"f,D= ,,'+'AU('~-~)da. 

7 O log Ao) ;2,d(-,,-2),,,,, 

2~ 7 " ~  > O, and hence (3.2) implies the inequality For ~ small n + ~ a~ 

'2r~ ~ f, ( 0 ,  0 )  
; - - - ?  ,oD~ (A°'u)uT' Orr ~rr d~ > c(,,) 1/x'6(p+ 1)-'c~'~j~D uP+'A2o'~/(n-2)d e f ~  

.2 for any solution u of (3.4). Applying this with ~t = ui and multiplying by e i we get in the 

limit 

c r ~ t  D~ ()'°G)2T ( 0c~r'' Or 0 )  d~>0-  (3.9) 

w h e r e  (0) 7'O,~ 
is given by (3.3) with u = G. Since the metric C4/('~-219o = (AoG) 4/('~-~) ~.i(dxi) 2 has zero 

scalar curvature,  ),0G is a positive Euclidean harmonic function on D~ - {0} which is singular 

at. z = 0. It follows that  (AoG)(x) has the expansion 

(aoC;)(x) = o, ;~,l ~-'~ + A + ~ (~)  

where c~(z) is a harmonic flmction with c~(0) = 0. Using this expression in (3.9) we get 

- A  + O(cr) _> 0 by elementary calculation using (:3.:3). Since a is arbi trar i ly small we get 

A _< 0. On the other hand we have G > (qGl,  and 

Ao6',(.,') = I~?- "  + ," ; ( f , )  ÷ O(Ix l )  

where E(.) is the energy function discussed in §4. Thus d >_ a~ E(Pt) which is str ictly positive 

since (M, go) is not conformally equivalent to ,q'". We discuss this positive energy s ta tement  

in the next section. This contradiction shows that u > 0 on M. 

The second step in our proof deals with the remaining case tt > 0. In this ca~e our 

argument is local. The sequence {u~} must be unbounded near one of the points {P~ , . . . ,  Pk}, 

for otherwise we have uniform convergence. Assume that  lim{supB~(p~ ) ui} = oo for any c~ > 0. 

Since u > 0, the metrics gi = u~/(~-2)go have uniformly bounded curvature away from the 

points P1 . . . .  , Pk. Let z 1 . . . .  , x ~ be conformatly flat coordinates centered at P1. Let Ao(z) > 0 

be such that  go = ,~4/(,~-2) 2(d.~.~)2, and assume Ao is bounded above an£1 below (locally). The 

fimctions wi = Aoui then satisfy 

Aw,  + c(7~)R~w} "+2~//~-2) = 0 
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where A is the Euclidean Laplace operator and Ri = R(gi). In particular, w~ is superharmonic 

and by assumption wi is bounded below on /)Do for i large. Therefore 'wi ha.s a lower bound 

on Do. If the Ricci curvature of gi were bounded in D, ,  then we can use the gradient 

estimate [6] on the solution w; -~ of the equation Lg, (w[ q) = 0. Note that this equation holds 

because w~4/('~-2)gi is the Euclidean metric. The gradient estimate can be applied because of 

Proposition 3.2 which gives us a bound on Ri and lVgoRil. We have 

I%, s-~,l = ,<.~/(,.-~)I%o*<e,I 

which is bounded since ui has a lower bound. The gradient estimate then gives 

[V~,w~-l[ 5 cw~-' . 

Writing this in terms of the Euclidean nietric we have 

where (9 denotes the Euclidean gradient. Note that the gradient bound depends on the geodesic 

distance to ~)Do. Since wi is bounded below we have suPD¢l 2 IO(wT"~l(~-=))l < e~ -~. This 

implies an upper bound on wi near 0 in terms of an upper bound at a fixed small distance 

from 0. Since wi are converging away from 0, we get an upper bound independent of i. This 

contradiction shows that lira{sups), IlPdc Oi)ll~, } = oo for any a > 0. Therefore we can choose 

a sequence of points @ --+ Pa such that 

c.i = sup Ilaic ( g d l b ,  = Ilaic (gDIIAQd 

with ci --+ oo. We then let 9i = cigi, and observe that we have 

t = sup  IImc(~iDtl~, = l l R i c ( ~ D i b , ( Q ~ ) .  
D~ 

(~-2)/4 
Thus we have yl = Ys~/(~-~} ~j(dxJ) 2 where i~i = ci wi. Let ,mi denote the point in D:  

corresponding to Q{, so that  we have lira xi = 0. Let 

~ , ( y )  = & - ~ ) / ' % 0 )  

where we choose A~ = (~&(x~)) -~/('~-2) so that ~(0)  = 1. Notice that A~ ~ 0 so that, v, is 

defined on increasingly large balls in RC Moreover, v~/(n-2)~(dyj) 2 is the pullback of gi 

under the map y ~ Aiy + x,, and hence the scalar curvature and volume of v~/0~-2) ~(dyJ) 2 

are bounded. Thus by Proposition 3.1, a subsequence of {vi} converges uniformly away from 

a finite set of points y~ , . . . ,  y~ E R'L In particular, v~ satisfies a Harnack inequality away from 

Yl , - - . ,  y~. Since the Ricci curvature of v-~/('~-2) E(dyJ)2 is bounded and the metric is complete, 
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the  Harnack inequal i ty  of [6] holds o11 unit geodesic balls. Ill part icular ,  vi remains bounded 

in a uniform neighborhood of :l! = 0, and 0 is dis t inct  f lom !yl . . . .  , yT. Therefore  a subsequence 

of {~i}, again denoted {5i}, converges to a l imit  h. From the construct ion h is a posi t ive  

harmonic  function on R '~ - {:~h . . . .  , ~,,,.} with h(0) = 1. Moreover,  the metr ic  h 4/('~-2) ~(dyJ) 2 

has l-/icci curva ture  of length one at y = 0 and in par t icular  is not flat. It. follows tha t  h has 

at  least two singulari t ies in ,q"~ = R ~ O {co}. Let Yl,---,~/~ denote  the singular points  of h 

in S'L It  follows tha t  h, is a posi t ive l inear combina t ion  of fundamenta l  solutions with poles 

a t / 4 1 , - - . ,  :V~- Thus there  are posi t ive numbers  a l , . . . ,  as such ll~at, h(~j) -- E~=I  aoG~ where 

G~(~j) -- I:q - !]~l 2-~ if 9'~ E R '~ and G(,(iq) - 1 if y~ = co. Assume ~Jl ~ R '* so that  

h ( y )  = a~i~j - ~j~l ~-" + A +  ,:~(~j) 

where a ( y l )  = 0 and A > 0 because s > 2. Now the  same a rgument  as in the previous step, 

using (3.2), gives us a contradic t ion.  This  shows tha t  our initial assumption of nonconvergence 

of {~ti} is violated and we have comple ted  the proof of Theorem 3.3. 

The re  is an obvious quest ion which is left unresolved by Theorem 3.3, and this is the 

quest ion of whether  one can remove  the  assumed bound on the energy E(~t) which is required 

in Theorem 3.3. It seems likely tha t  the energy of solutions of (1.9) will be bounded by a 

cons tant  depending only on g0. ]nequal i ty  (1.13) gives a very strong a priori integral  estima.te 

on solutions of (1.2) for ~ = 3. It may  be possible to use this in pla.ce of the energy bound in 

T h eo rem 3.3. 
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4 T h e  r e l e v a n t  p o s i t i v e  e n e r g y  t h e o r e m s  

In this section we give a discussion of the the total energy of an asymptot ica l ly  fiat n -man i fo ld  

and discuss the posit ive energy theorems which are relevant  to the Yamabe  problem. Let 

( M'~, 9) be a R i e m a n n i a n  manifold.  (M, g) is said to be as.vmptoticallyflat if there is a compact  

subset  K C M such tha t  M - h" is diffeomorphic to R n - {Izl _< ~}, and a diffeomorphism 

q, : M - K ~ R ~ - {Iz l  _< 1} s u c h  that ,  in the coordinate  chart  defined by ~5, we have 

g = 2i,5 g~j(x) dxidxj where gij(x) = 5~j + 0 (Ixl -v) as x --* oc for some p > 0. We also assume 

that  

Ixl Igij,k(x)l + Ixl~l~j~y(x)l = O (Ixl -~) 

where we use commas  to denote  part ial  derivatives a.s in ~1. Assuming that  IR(g)l = o ( i x l - %  

q > n, and p > (n - 2) /2  it is possible to define the total  energy of M.  To do this we recall 

the expression for R(g) in the x coordinates 

R ( g ) = ~ g i J ( F  ~ - F  ~ X-',F~ [,. ~ -F j~F ~k) )  i j ,k  i k , j  q- / ' . t  k~ ij  k 2. 

i , j ,k  e 

1 km 

m 

Using the asympto t ic  assumpt ions  we find 

R(g) = ~ ( g i J , l . i -  .~J,..,)+ O (Ixl - ~ - ~ )  . 
1 , j  

Since 2p + 2 > ~ we therefore have the divergence term absolutely  integrable near  infinity. 

Thus  the divergence theorem implies the existence of the following l imit  

{lxl=~,} ~'J 

where u = c - i x  is the Eucl idean uni t  norn~al to {1:~,1 = ~,} and ~t~(~) denotes the Eucl idean 

area e lement  on {Ixl = ~}. Moreover, the family of spheres S~ = {Ixl = G} may  be replaced 

by any sequence of boundar ies  which go uniforlnly to infinity, and the l imit  will exist and have 

the same value (see [2]). We define the total  energy E = ElM,  g) by 

E = (4(n - 1)w~_~)-1 ji~2 £ f .  ~(.q,.i,iu j _ gii,y~'j)d((cr) 

where wn_~ = Vol (S ~-~ (1)). The  basic content  of the posit ive energy theorem, or this special 

case of it, is tha t  if R(g ) >_ 0 on all of M,  then E _> 0. Moreover, E = 0 only i f ( M , g )  is 

isometr ic  to Eucl idean space. 

For a compact  manifold (M,g) with R(g) > 0 we can make the following construct ion.  

Given a point  P C M,  there is a posit ive fu n d ame n t a l  solution G for the conformal LaplaCian 

L with pole at P .  If we normal ize  G so that  

l im d(P, Q),~-2 G'((~) )  = 1 Q~P 
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where d(-,-)  is the R i e m a n n i a n  dis tance function for g, then G is unique.  The  mani tb ld  (M - 

{P},G4/(n-2)g) is then  asymptot ica l ly  flat. If we let y ~ , . . . , y ~  denote  a normal  coordinate  

system for g centered at P ,  then we have gij = 5ij + 0 ([yl-2). It is not  difficult to show 

that  G(y) = lyl ~-~ + O (lylP +~-n) where p is any n u m b e r  less than  two. If we let x = I~j1-2 y, 

then  we have the metr ic  components  of g in the z coordinates given by Ix1-4 g~j(tzl -~ z).  In 

par t icular ,  if we let 

G 41('~-2) g = ~ gff(x) dx~dx~ 

we have yq(x)  = (~,j + O (Ix) -p) as x -+ oc. Also we have R(G4/("-2)9) = 0 since L(; = 0 

on M - {P}.  In par t icular ,  if p > (n - 2)/2,  then the total  energy can be defined. Since 

(n - 2) /2  < 2 for n = 3, 4,5 we see tha.t in these dimensions we can assign to each point  

P E M a n u m b e r  E(P)  which is the total  energy of (M - {P},  G 4/(n-2) g). 

We now let (M ~, 9) denote  a general  asymptot ica l ly  flat manifold.  We are going to present  

the  min ima l  hypersurface proof of the positive energy theorem which is jo in t  with S.T. Yau 

and  appears  in [25], [26]. Our  presenta t ion will s implify the original proofs in a few technical 

respects. It is convenient  to first simplify the asympto t ic  behavior  of g so that  g is conformally 

fiat near  infinity. We carried out this a rgument  for n = 3 in [27], and we present  here the 

n - d i m e n s i o n a l  version. 

P r o p o s i t i o n  4.1.  Let (M,9)  be asymptotically fiat with p > (n - 2) /2  and q > 7~. Assume 

also that R(g) > O. For any  e > 0 there is a metric ~ such that (M,~)  is asymptotically fiat 

and conformatly ttat near  infinity with R(~) - 0 and such that E(y) <_ E(g) + e. 

P r o o f :  We first observe that  we may take R(g ) - O, since generally, we can solve Lu = 0, 

u > 0 with u ~-, 1 at infinity. In fact, we have-u(x)  = 1 + A Ixl ~'~ + o (t~1 '-~) where A _< 0 

since 0 < u < 1 on M.  (See [2] for the existence and expansion.)  The metr ic  u4/('~-2)g is 

then  scalar flat and  has total  energy given by E(g) + A <_ E(g ). Thus  9 may  be replaced by 
u4/(n-:2)g. 

Now assume R(g) =- O, and deform g near infini ty to the Eucl idean metric.  To accomplish 

this, choose a funct ion k0~(x) with the properties,  kO~(x) = 1 for Ixl _< ~, %(z) = 0 for 
Ixl _> 2~, ~ is a decreasing funct ion of Ixl, and a I~'1 + ~  Iq'~l -< c. Now consider the metr ic  

(°)g given by (°)g = ¢~g + (1 - k0o)~ where ~ = ~i,j  ~ij dxidxj denotes the Eucl idean metric.  

Observe tha t  (~)g = ~ + O (Ixl-p) uniformly in a for ~ large, and also R((~)g) = O (Ix[ -2-~') 

for a _< txl _< 2c~ uni formly  in c~. tn par t icular  we have 

/M I]?~((~'>g)ln/:d~g = O(~- '~P/ : )  ' 

and  so for a large there is a unique  solution uo of Louo = 0, uo > 0, uo --~ 1 as [x I --~ oc. 

(See [2] for the  existence.)  The  metr ic  (°)~ = u~/('~-2)(°)g is then scMar flat and confo~:mally 

Eucl idean near  infinity. We show limo~oo E((~)y) = E(g) and then for c~ sufficiently large the 
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metric (°)~ will give the desired metric. From the uniform decay est imates on uo and (°)g, we 

see that  given c > 0 there is a a0 independent  of a such that  
E 

IE((~)~) - (4(n - 1)w,,_l) -1 / 4-~"V'((~)-~"'"u-' (~)gil,juj)d~(ao)[ <_ -~ 
Sa O ~,3 

i "  
E 

IE(g) - ( 4 ( n -  1 )w~- ' ) - I  ~ [ ~(g,j,iu~ -gi,,jt,j)d~(ao)l < 
S~,O t ,3 

On the other hand, we have l i m o ~  uo = 1 on compact  subsets of M,  and hence the two surface 

integrals above are within e/3 when c~ is sufficiently large. Thus we get IE((v)g) - E(g)l  < e 

for a large. This completes the proof of Proposit ion 4.1. 

Note that  if (M,g)  is asymptot ical ly  flat and conformally flat near infinity we have gij = 

h 4 / ( n - 2 ) ( x ) 6 i j  f o r  Ixl large where h(x) -+ 1 as x -+ oo. If R(g) = O, then h is a harmonic 

function for Ixl large and hence h(x) = t + Elxl 2-~ + 0 ( Ix l l -U  where we have normalized 

the energy so that  E is the energy of the metric h4/('~-2)6. Thus by Proposit ion 4.1 we may 

assume g to be of this form. 

T h e o r e m  4.2. Let (M,g)  be asymptotically flat with p > (n - 2)/2, q > n, and R(g) > 0 on 

M. Then E(g) >_ 0 and E(g) = 0 only if (M,g)  is isometric to (R~,6).  

We will give the proof of this theorem for n < 7. This proof can be extended to arbi- 

t rary dimensions with an addit ional technical complication arising from singular sets of area 

minimizing hypersurfaces which appear  for n > 8. We do not, deal with this here, but leave 

it to a forthcoming work of the author and S.T. Yau. In any case, this is not required for 

the Yamabe problem as the remaining case of locally conformally flat manifolds of arbi t rary  

dimension has been treated by a different argument  in [29]. For the case in which M is a spin 

manifold a different proof of Theorem 4.2 was given by E. Wit ten  [34]. This proof was carried 

over to arbi t rary dimensions in [15]. 

P r o o f  of  T h e o r e m  4.2: We first show that  E > 0. Suppose on the contrary that  E < 0. 

Then by Proposition 4.1 we may assume R(g ) ~ 0 and gij = h4/(~-2)6~j where h(x) has the 

expansion h(x) = 1 + E]xl 2-~ + ([z[ 1-~) for x large. It will be convenient to have R(g) > 0 

on M. This can be accomplished by replacing g by u4/('~-2) 9 where u satisfies Lu = - g  

with 9 > 0 on M,  g small and g decaying rapidly. The solution u will then satisfy u(x) = 

1 +~lz?  -~ + o (1~1 ~-~) with 6 arbi trar i ly small. Thus the negativi ty of the energy is preserved. 

W'e colnpute the divergence of the unit  vector field 7? = h-2/(~-2) 0 with respect to g- We 

find 

divg(r/) = h_2,#(,~_2) 0 (h2,U(,~_2)h_2/(~_2)) 

l 2(n- 1)n_2 E ~gz~c)(ixt2_,,)+O(lxl_,~ ) 

Z n 

= -2(~  - 1)E ~ + O (I.1 -~) 
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In part icular  we see that  dive(q)  > 0 R.* :r '~ .> at~ and div~(---q) > 0 for :r '~ < - a 0  for some 

constant, (L0. Now let Cr he a largo radius, aTtd let 1'~,,, denote  the (Tz - 2) d imensional  sphere 

Let Co denote  the (~z - 1) dimensional  cylin&,r C~ = {(: / , , r  ~) : laz.'I = cQ. We orient  r . , .  

as the boundary  of the port ion of ('o lying l:~elow 1'~, .... Let, ~ .... be an ('~ - 1) -dimensional  

surface of least area with OE~,. = 1"~,~,. Tho <'yli~Mer (':~ 1)otm<ts an interior region f~, in M,  

and E~,. C fL,. Since 7z < 7, E .... will be freo of singulari t ies (see [t 1,30] for relevant  results 

on the Pla teau problem).  For any a,  Iet~ 

V ( ~ , ) = m i . { V o l ( ~ . , , ) :  a C  [-"0,~'0]} 

where we note tha t  the function a H Vot(V~.~) is cotltilluotts. We now assert tha t  there 

exists a = a(c~) C ( - a 0 ,  ao) such that  \ :o1(2 . , . )  = /'(c~). To show that  a (o)  < a0, write 

~ , .  = (Of~o,o) N f~. where ~ .... is the subregion of f~. lying below 2~,~. Let 

where ~5 is chosen so small  tha i  div.v(q) > 0 for it" > .{) - b. We show that  (,~,~ = 0 by 

applying the divergence theorem in ('~ ..... ,Sluice q is tmlgel,t to ('~, we get 

~,):, a ~  - \ . ' o l  ( ~  .... c~ {:, = a0 - ~ 5 } )  > 0 

'A.,.n{~-,, _>~,0 ,s} 

provided Uo,. ¢ ~. t tere l/ denotes the uni t  l~ormal of 2~,~,. Tiros we may apply the Schwarz 

inequal i ty  to assert 

Vol (~ , . , ,  n {.~"~ - a0 - e l )  < \ 'ol  ( ~  .... (~ {,~'" > ~0 - Q ) -  

Therefore, if lf~,~ ¢; ~), then the }Wi)ersmface }2 giw'i1 by 

,2 = O(~L,,s r~ {:r" < a~,-  ~}) n ~L, 

has smal ler  vo lume than ~ . ,  and 0 2  = I'~.~,, where a~ = ra in{a,  (~o - o~}. Th is  cont rad ic t ion  

shows that  ff~,~ = ~ a.nd in par t icu lar  a(~)  ~ a0 .... b;. An analogous argument  shows that  

a(~)  > - a o  + t~ for some ~ > O. 

Let Eo -- E~,~,(~,) be one of the itypersurfaces which realizes the m i n i m u m  volume V(c@ 

c, outs ide a compact  set. Let X0 Let X~ be a fixed vector field on M which is equal to ~>.7 

be a vector field of compact  support ,  and let X ::= X0 + c'~Xl where e~ ~ R.  Let F~ be 

the one parameter  group of diffeomorphisms generated by X (or a l te rna t ive ly  any  curve of 

diffeomorphisms whose t angen t  vector at I = 0 is X).  It'~7 is sufficiently large that  the support  

of Xo is compact ly  conta ined in f~o, then X gives a valid variation of Eo; tha t  is, we have 

d (F~(2~)) d~ ( / ' i ( ? ; . ) )  
d~ Vol = 0,  77F~ \:ol _> 0. 

~=O O 
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The second variation is the integral of the [unction tix,~ given by 

F x , , ( e )  = ~ ' 

where Tp2~, denotes the oriented tangent, pla.ne of £o at P,  and ( iq) .  denotes tile differential 

of the map Ft. For larl large we have ];'x,~,(x) = O (l:r[ -~) uniformly in c~ because of the decay 

proper ty  which is assumed on 9. The regularity theory implies that  outside a fixed compact  set 

No is the graph of a f imct ion .I~ (a:'), :r' = ( : r ' , . . . ,  :r '~-' ) having bounded gradient .  We choose 

a sequence Cri -~ oo such thai, {2o,} converges to a limiting area minimizing hypersurface 

~2 C M. Because of the uniform decay condition on F x  .... we get fe F x dH~-I  -> 0 where 

(/~ II ,=0 F x ( r ' )  = ~ F  I I ( F , ) , ( r ~ )  

and X = X0 + c~Xl for vector fields X0 of compact  support  and X 1 fixed as above. Outside a 

compact  subset of M the surface E is represented as tile graph of a function ./(x')  of bounded 

gradient.  In fact, we easily get {0./[(.r) = ( Ix ' l - ' )  from the regularity theory since we have a 

uniform bound on f ,  kY(z')l < a0. On the other hand f satisfies the minirnal surface equation 

'~ .f,u + + 1Oil 2 
0 

~Sij log h = 0 j1 
I ÷ tO.f P) 

where 

and 
t , ( , )  = I+ FI.d ~-'~ + O (]~:1 ~-'~) , 

,,o = (1 + IOf l~ ) - ' - /~ (  o.f, 1) 

is the Euclidean unit nornlM vector. Applying linear theory (see [10]) we get f ( x ' )  = a + 

O (lx'l z-'~) for n > 4, and f ( x ' )  = a + O (I,r'l -~ ) for n = 3 for some constant, a. Tile function 

F x  can be calculated in terms of tile geometry of E (see [30]) 

n -  1 

F x = - ~ _ , ( R ( X , c { ) X ,  ei) + d ivMZ + (div MX) 2 

n - I  n - 1  

+ ~ I(&X)ll 2 -  ~ (e~,D~X)(e¢,D~X) 
i = 1  i , j = l  

where Z = D~_~aFI is the acceleration vector field of the deformation, and D is used to denote 

covariant differentiation in M with respect to g. We use the notation 

n - 1  

d ivMX = ~ , ( D ~ , X ,  ei} 
i = 1  

where X is a (not necessaxily tangent) vector field along £ and e l , . . . , e , ~ - i  denotes an or- 

thonormat basis for the tangent  space to E. We write X = X + ~u where J( is tangent  to E 
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and 1/ is tile uni t  normal.  Similarly Z = 2 + ~/,l/. Since E,is min ima l  we have d ivM ~ = 0 

for any fancY;ion X- We then have 

where G is given by 

n - I  n--I 

i=1 i=1 

n--1 

+ div MZ + (div MX) 2 - 2 B ( V ~ ,  X)  + ~ B(e, ,  j~)2 

n--1 n--1 

i,j=l i,j=l 

In these formulas we work in an orthonorma] frame, B(-, .) denotes the second fundam en ta l  

form given by B(V, W) = (DvW, r,} for t angent  vector fields 1., 14/. We let b~j = B(e,, ej)in 
our or thonormal  basis, and for a t angen t  vector field V = ~ l~ei, l//;j denotes the  covariant  

derivative in ~he induced metr ic  on E. Any term which involves Z or 2K must  reduce to a 

boundary  term. If D C E is a bounded  domain,  we see 

i.j ) 

where q is the outward  normal  to OD in E. To see tha t  the interior  terms drop out  one mus t  

use the  Gaufl and Codazzi equat ions as well as the Ricci formula. For ~ > 0, let Do = Ft~ Cl E 

where fL  is the interior  region bounded by C~ as above. From the decay condi t ions  on f and  

h one checks that  each of the boundary  terms above decays faster than  a 2-=, and  hence the  

bounda ry  term tends to zero as a ~ ec. Therefore we conclude 

/ z t R i c ( u , r , )  + IIBII2) ~2d~ ~-' </~ IVpI2dT~ ~-' (4.1) 

where ~ = (X,  r,} and X = X0 + aX1 as above. Since X can be chosen to be a rb i t ra ry  excelbt 

outside a compact  set, we see tha t  ~p is a rb i t ra ry  except  tha t  tha t  X = a o-~ 

~ = c~ < O-~, v> = ah2/(~-2)( l + ,c) f,2)-'/2 

outside a compact  set for a cons tant  a.  Since ~ -  a = O (Iz'l ~-~) we see that  ~ -  a has finite 

energy and therefore we can take p to be any funct ion for which p - a has compact  suppor t  

(or finite energy) for some cons tant  a. As in [28] we can use the Gaug equat ion  to write 

1 1 1 
Ric (u, r , ) +  IIBII = = ;j ]~M - -  ~ R E  Jr- ~ IIBII ~ (4.2) 
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where Rx is the (intrinsic) scalar curvature of E in the induced metric. 

To complete the proof, we first suppose n = 3 and choose ~o - 1 in (4.1) to obtain 

f z  R~ dH 2 > 0 .  Now 1 R:c is simply the Gaussian curvature of E. The decay estimates for 

f ,  h easily imply that the total geodesic curvature of aDo converges to 27r where D~ = Efl  fro. 

Therefore we may apply the Gaug-Bonnet  theorem on D~ and let ~ tend to infinity to get 

-21 fs  R~ dH 2 = 2~rx(E ) - 2~r . 

Since X(E) _< 1 for an open surface E, the right hand side is nonpositive. This contradicts the 

previous inequality and completes the proof for n = 3. 

Now suppose rt > 4, and observe that the induced metric ~ on E satisfies (in terms of 

coordinates z l , . . . ,  z ~-1) 

-Jij = h(x', f(x'))4/('~-2)(Sij + f, i f j )  = 5ij + 0 (Ixl 2-'~) . 

Therefore (E,y)  is asymptotically flat and has energy zero. Inequality (4.1) together with 

(4.2) and the inequality RM > 0 imply that the lowest Dirichlet eigenvalue for L~- on any 

compact domain in E is positive because c(n) = ~ < ~ - ~  i for n >_ 3. Linear theory then 

enables us to solve L~u = 0 on E, u > 0 on E, and u --+ 1 at infinity. Moreover, u has the 

expansion 

~(~') = 1 + E01x'I ~-~ + O (I~'I ~ -~ )  . 

In particular, u - ;1 has finite energy on E, and we may take ~o = u in (4.1). Using (4.2) and 

the fact that  RM > 0 we get 

- ~ Rzu2 dH~-a < 2 ~ [Vu[ 2 ctHn-l<_ c(n)-I ~ [Vu[ 2 dH '~-1 . 

We may then write 

£ IV l' = limo i .  IVu!2 dH" 
a 

= - c ( n )  l i ra  is). R , u '  dH '~-' + lim [ u 0u d X ' - '  
,~oo JOD~, 0 v 

where 77 denotes the outward unit normal to OD~,. From the expansion for u we then find 

E0 < 0. Thus (E,u4/(~-3)g) is asymptotically flat, has zero scalar curvature, and negative 

total energy. The contradiction now follows inductively from n = 3. This completes the proof 

that E >_ 0. The statement that E = 0 only if (M, 9) is isometric to R" is proven in [23, 

Lemma 3 and Proposition 2]. We omit the details. This completes the proof of Theorem 4.2. 
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5 N o n c o m p a c t  m a n i f o l d s  a n d  w e a k  s o l u t i o n s  

One of the results of [29] is that  a s imply colmecied, complete,  locally conformally fiat manifold 

( M , 9 )  with R(g) >_ 0 is conformally difFeomorpllic to a domain  t~ C S '~ with the tIausdorff 

d imens ion  of S" - f~ being at most  (Tz - 2)/2.  In part icular ,  any compact  locally conformMly 

flat manifold  (M, g0) with R(go)  >_ 0 is contbrmal ly  covered by a simply connected domain  

ft C S ~ with d i m ( S  '~ - ft) < (r~ - 2)/2.  Thus  by lifting solutions of (1.9) from M to f/ we get 

s o h t i o n s  u > 0 on f~ of the equat ion 

, ( , -  2) 
Lu ~- .. . . . . . . . . . . . . . .  .(,,+2)/(,~-~) = 0 (5.1) 

-1 

where L u  = / k s ,  u - '~('i : 2 ~ )  u. These solutions satisfy tile "boundary  condit ion" that  

([~l,l, t4/(n-2)go) is a complete  R iemann ian  manifold.  Here we take g0 to be the metr ic  oil the 

uni t  sphere. The  theorem of Oba ta  discussed in §1 classifies the global regular solutions of 

(5.1). The first example  of a domain  f~ arising from the above construct ion is X ~ - {P, Q} for 

two points  P , Q  E S'L After a conformal t ransformat ion ,  we can take Q = - P  and think of 

S" = R"  U {co} with P = 0, (2 = co. We explicit ly analyzed the solutions of (5.1) for this 

domain  ,Q in §2. In general,  any domain  f~ arising as the universal  cover (or any covering) 

of a compact  manifold is invariant  under  a discrete subgroup F of the conformal group of ~q"~ 

and is the domain  of d iscont inui ty  of this group. From Kleinian group theory we know that  

if the l imit  set A = ~q'" - Q conta ins  more than  two points,  thei1 it lnust  contain a Cantor  set. 

It is a theorem in [29] that  for a domain  f/ which covers a compact  manifohl,  the quot ien t  

manifold f t / F  has a conformal metr ic  of positive scalar curvature  if and only if the Ilausdorff  

dimension of ,q'" - gt is less than  (7~ - 2)/2.  

Generally,  if u is a solution of (5,1) on a domain  fl C e,,, such that (~,'/t4/(Tz--2}(ff0) iS a 

complete  manifold,  then it is shown in [29) that  u is integrable on 5, ' ' '  to the power ( ~ + 2 ) / ( 7 ~ - 2 )  

and  tha t  u defines a global weak solution of (5.1) on ~c,"L Thus  the problem of cons t ruc t ing  

complete  solutions of (5.1) on ~ is closely related to tile problem of cons t ruct ing  weak solutions 

of (5.1) on S" with prescribed singular  set A = S '~ - ft, We have seen that  many  solut ions of 

(5.1) exist  which are singnla.r at two specified points;  in fact, such solutions can be classified. 

The  quest ion of specifying more than  two singular points  has been posed in various contexts  

over the  years. (Solutions do not  exist, with one singular point . )  An obvious approach to this 

problem would be to fix the asymptot ic  behavior  near k specified points of S '~ and to (ons t ruc t  

a solution which is essential ly a compact  pe r tu rba t ion  of a given function with the  correct 

asymptot ics .  The difficulties in this approach are apparen t  from analysis of the solutions 

singular at 0, co. Let :r E R '~, t = log Izl as in §2. Tile simplest  solution of (2.2) is the 

cons tan t  solution u( t )  - uo. This gives rise to the solution v(z)  = ~,01:~,1 -<,~-~)/~ in R ' ~ -  {0} of 

the equation Av + ~ v('~+2)/('-2) = 0 which is equivalent  to equat ion (5.1). If we consider 

solutions which are near Uo on a large piece of 1R × S '~-1, then we would expect the l inearized 
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equation at u0 to dictate  their  behavior. The linearized operator  is £~1 = ATI + (72. - 2)q where 

A is with respect to tile metric dt 2 + d~ "2 on the cylinder. In particular,  we see that  zero 

is embedded in the continuous spectrum for £ on R × ,5 "''-1. Thus controlling £-1 on large 

regions of R × S ~-~ will be a difficult problem. It is not known whether solutions exist with 

asymptot ic  behavior given by the constant solution ~L0. tn [24] we proved a general existence 

theorem for weak solutions which implies that  one can specify any ~: points of S '~ and construct 

solutions singular at these points and asymptot ic  to solutions described in §2 with a near one. 

Roughly speaking, the spectrum of the linearized operator  for such solutions (a, ~ 1) contains 

a small interval near 0, and the spectral subspace corresponding to this interval imposes an 

infinite number of geometric "balancing" conditions on the way in which spherical pieces of 

solutions are at tached,  We refer the reader to [241 for dei.ails. 
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