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The contents of this paper correspond roughly to that of the author’s lecture series given at
Montecatini in July 1987. This paper is divided into five sections. In the first we present the
Einstein-Hilbert variational problem on the space of Riemannian metrics on a compact closed
manifold M. We compute the first and second variation and observe the distinction which
arises between conformal directions and their orthogonal complements. We discuss varia-
tional characterizations of constant curvature metrics, and give a proof of Obata’s uniqueness
theorem. Much of the material in this section can be found in papers of Berger-Ebin [3],
Fischer-Marsden [8], N. Koiso [14], and also in the recent book by A. Besse [4] where the
reader will find additional references.

In §2 we give a general discussion of the Yamabe problem and its resolution. We also give a
detailed analysis of the solutions of the Yamabe equation for the product conformal structure
on SYT) x S*~1(1), a circle of radius 7' crossed with a sphere of radius one. These exhibit
interesting variational features such as symmetry breaking and the existence of solutions with
high Morse index. Since the time of the summer school in Montecatini, the beautiful survey
paper of J. Lee and T. Parker {15] has appeared. This gives a detailed discussion of the
Yamabe problem along with a new argument unifying the work of T. Aubin [1] with that of
the author.

§3 contains an a priori estimate on arbitrary (nonminimizing) solutions of the Yamabe
problem in terms of a bound on the energy. The estimate applies uniformly to solutions of
the subcritical equation, and implies that solutions of the subcritical equation converge in
C? norm to solutions of the Yamabe equation. These estimates hold on manifolds which are
not conformally diffeomorphic to the standard sphere. We present here the result for locally

conformally flat metrics. This estimate has not appeared in print prior to this paper although
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we discovered it some time ago.

In §4 we discuss asymptotically flat manifolds and total energy for n-dimensional man-
ifolds. We discuss the positive energy theorems which are needed for the Yamabe problem.
We give a detailed n~dimensional proof of the author’s work with S.T. Yau [25], [26] which
proves the positive energy theorem through the use of volume minimizing hypersurfaces. The
proof we give works for n < 7 in which dimensions we have complete regularity of volume
minimizing hypersurfaces. Along with the locally conformally flat case which is treated in
[29], this covers all cases which are used in the resolution of the Yamabe problem. We note
that E. Witten’s [34] proof implies this theorem under the {topological} assumption that the
manifold is spin. The n-dimensional proof is given in [2,15].

Finally in the last section we discuss weak solutions of the Yamabe equation on S™ with
prescribed singular set. We motivate this through the example of §2 which gives the solutions
with two singular points. We also relate weak solutions to the geometry of locally conformally
flat manifolds describing some of the results of [29]. Lastly we give a brief account of the

author’s existence theorem [24] for weak solutions with prescribed singular set.
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1 The variational problem

Let M Dbe a sinooth n--dimensional conpact manifold without boundary. For any smooth
Riemanuian metric ¢ on M we let w, denote the vohune form of ¢; thus il ', ..., 2™ are local

coordinates on M we have

g = Z gi, () da'da? wy = q/det{g;) det AL A dat.

i,3=1

Let M denote the space of all smooth Riemaunian metrics on M, and let M, denote the

subset of M consisting of those metrics of total volime one: that is,

Vol{g) = ./\1 dw, = 1.

Let Riem(y), Ric(g), R(g) denote the Riemann curvature tensor, the Ricci tensor, and the

scalar curvature respectively, In local coordinates we have

Riem (g) L Rijiel (dat A da?) @ (da® A dat)

1,0k 0
Ri(f ((j) o Z Rij(l.‘lfz(/.l"/. l{u = Z(juRikﬂ
1] k.t

= Z g .
i

The (elliptic) Einstein equations then express the condition that the trace-free part of the

Riccl tensor vanishes, that is

|
Ric(g) = — R(g)g (11)
n
The contracted second Bianchi identity implies
" 1 ,
g (R~ 5 gl gi)e =0 r=1...n
7.k

where the semi—colon denotes the covariant derivative of a teusor with respect to the Levi-

Civita connection of g. Thus for n > 3 we see that (1.1) implies
R(g) = R{g) (1.2)

where R{g) = Vol(g)™* [y R(g)dwy. 1t was shown by Ililbert that equation (1.1) arises as
the Euler-Lagrange equations for the functional R(g) on the space M;. This may seem
surprising since (1.1) is a second order equation for ¢ while the integrand R(g) of R(g) also
involves second derivatives of g. To see that this is correct, let ¢ € M, and let h be any
smooth symmetric tensor of type (0,2) on M. We then set g(t) = g + th for ¢t € (—¢,¢), and

this gives us a family of Riemannian metrics. The normalized family g(1) = V(¢ )_2/” g(t),
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V(1) = Vol (g 4+ th) is then a path in M,. We have the formulae
sz: { ik T A1]+Z ‘IJI )}

k
rij:;z Jllj+(/7h’,jz]l)
=L

where the comma denotes the partial derivative in a local coordinate system. Using an “upper

dot” to denote the derivative with respect to £, we have

Z(Iuk ;‘tlj)

k

F:} == Z q fszp, + }?Jf f?.g]';;g) .

i

Therefore we find that R has the expression

- .
= — L R+ divergence terms
]

where 1% = ¥, , g% g*hiy. Upon integration we find

d
di Jm

H

R{g(1)) dwypyy / (h, Rie (g{1))gindiwgpy + 5 / 1) Trgin(h) dwyqe

~ [ o Ric g(t)) = 5 R0 900 st

where we have used Stoke’s theorem together with the formulas

| -

gy = 3 Ty ()wy(y

Mw

Trgy(h) = gty ’]LU

.3

[

Now we have R(g(t)) = V(1)*="/" [}, R(g(1))dw,(s, and hence we find

d

5 RGH) = V(e ﬁ (b P(g(0)) sy where

. . { n—2
F(g) = Ric(g) - 5 R{g)y + S Rig)g -

To derive this expression we have used, in addition to our computation above, the formula
Vit) = ¥ T g(8))g(eydwyqyy. Therefore, if ¢ is a critical point for R(-) on M; we find, setting
t = 0, that F(g) = 0. In particular, it follows that the trace-free part of Ric(g) vanishes and
hence (1.1) holds.

Now suppose g is a solution of (1.1} so that in particular F{g) = 0. We compute the
second variation of R(-) at g. We have

Lo
ERE)

- _A1<11,,c/1,>gdwg (1.4)

=0
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where £h = F(g(0)). Thus £ is a linear operator on symmetric {0,2) tensors given by
. ; 1. 1
Lh = Ric{g) — ERg - ERh (1.5)

which Ric(g), R may be computed from (1.3) and we have used (1.2) and the fact that
R(g) = 0. We write the space of symmetric (0,2) tensors as a sum of three subspaces Sy, 51, 52
where Sy denotes those & which may be written h = Lxg (Lie derivative) for some vector
field X on M, that is,

hy =X+ X

(The fact that this decomposition of smooth (0,2) tensors is valid is shown in [8].) The
subspace Sy denotes the pure trace tensors, that is, the h of the form i = ng where 7 is
a smooth function on M. Finally 5, denotes those h which are orthogonal to both Sp and
S5y, that is, those h satisfying Try(h) = 0 and ;4 ¢%hije = 0. Tensors b € S, are referred
to as transverse traceless tensors. Note that the subspace Sy consists of those infinitesimal
deformations of g which arise from diffeomorphisms of M. It follows that if X is a vector field
on M and ¢, : M - M is the one-parameter group of diffeomorphisms generated by X, then
we have for each 1 € R, F'(®7) = 0. Diflerentiating and setting ¢ = 0 we have Lh = 0 where
h=Lygg. Thus £ =0 on So. We now compute Lh for h € Sy. Suppose h = ng where 7 is a

smooth {unction. We then have from (1.3}, (1.5)
n—2 1 v
Lh=——((An+ = Rn)g — Hess (n)) (1.6)
2 n

where Hess () = 32, ;n4,dz*dz’ is the Hessian of n. Now we have Hess(n) € Sp, so we see
that Sg + S; is invariant under £.

Next we show that £ is a self-adjoint operator. This may be seen from the variational
definition of £ by considering two symmetric (0,2) tensors &, k and the two parameter variation
g(t,s) = g+ 1h + sk. Let § = V{,5)"%/"g(t,s) be the normalized variation. We then have
from above

8R(§(t*5)) AL
TEIEE = V) I [ (b Flg(t,s))ygeadinin -

Differentiating in s and setting t = s = 0 we have

I*R(glt,s))
Js0t

= - dw, .
[ (b k) ydes,

t=s=0

Reversing the order of differentiation for the smooth function R(g(t, s)) of two variables we

get
/MUz,ﬁk)gdwg - /M(k,ﬁh)gdwg
for all A, k. Thus £ is self-adjoint.
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Now since Sp + S is L-invariant and £ is self-adjoint it follows that S, = (So+ S1)tNC*
is also L-invariant. We compute Lh for h € S, using (1.3}, (1.5)
v 1 o~ ke 1
(Lh)ij = =5 (Ah)i; + 5 D g™ (hikse + hykae) = — Rhyj
2 2 n
where Ah is the trace Laplacian given by
(AR); =D ¢  hijine
k.t
Using the transverse (divergence free) condition on h we may interchange covariant derivatives

and write the second term above as a zero order term in A
1
Lh = —QAh + K(h) (1.7)

where K (h) is the linear term
. 1 3 1
(_{X (h))w = — Z Rikﬂ}zk{ + ‘—2' Z(R,g’l? + R}‘kl’lf) - ;R}zgj‘ .
¥ k

An important qualitative feature of the variational problem is apparent from (1.6) and (1.7),
namely that a critical metric ¢ tends to minimize R among those metrics conformally equiva-
lent to ¢ and to maximize R among metrics transversely related to g. In fact, for h = ng € 5,
we denote by £y the second variation operator on the conformal class of g. Thus Ly is the

operator L followed by projection into Sy. Precisely £, is the scalar operator

Lin = W(Av; + L Ry). (1.8)
2n n—1

Thus if we consider the restricted variational problem for the functional R(-) on the conformal

class [g] of g we have for h = ng

d?

E’R(g(t)) = —n /M nLyndw, .

=0
Now the operator —£; has eigenvalues tending to +o0o, and hence the metric ¢ locally min-
imizes R in M; N [g] modulo a finite dimensional space of variations (finite Morse index).
On the other hand, from (1.7) we see that the operator —£ on S; has eigenvalues tending to
~00 so that R(-) is locally maximized among variations from S; modulo a finite dimensional
subspace.

This dichotomy for the linearized operator £ suggests the following global procedure for
finding critical points of R(-) on M;. For any go € My, let [go] denote the conformal class of
do, that is,

[g0] = {g € M : g = eg, for some v € C*(M)}.

Let [go]s = M1 N [go], and define I(go) by

I{go) = inf{R{g): g € lgol:}-
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If ¢ € [go]s realizes the infimum. then we see from above that the Buler-Lagrange equation
satisfied by g is Tr,(F(g)) = 0, that is. equation (1.2) holds. If we write ¢ = u*/" g, where
u 1s a positive simooth function then we have the formula

R(g) = —c{n) =ty B/ 0= g

n-2

where ¢(n) = PTewy

and Ly is the “conformal Laplacian™ lor the metric gy
Low = N, u— c{n)R{go)u.

Thus our functional R(:) becomes R{g) = c{n}~! Z{u) where

E(u) = /M[Ivm)u[z + () R gy ) ldew,, .

The volume constraint on ¢ then becomes [y, /=2 dw, = 1. The equation (1.2) may then
be written

Lou -+ e(n)R{g)u"+H/0=1 — ¢ (1.9)
Since

E() > AO(LU)/ Wiy, > minf{0,o(Lo)}
M

where Ag(Lo) denotes the lowest eigenvalue of Lo, we see that [(gy) > —oo for any go. We

then define (M) to be the supremum of /(g,) over all go € M,
(M) = sup{{go) : 9o € M1}.

If we consider constant curvature metrics go on S™ normalized to have volume one, then we
have R{go) = n{n—1}Vol {S*(1})%/" where S7(]} denotes the sphere of radius 1. The following
lemma tells us that the standard metric on §™ in fact realizes ¢(S™) and provides an upper

bound for o(M) for any n-dimensional manifold M.

Lemma 1.1. We have o{S") = n{n — D)Vol(5™(1))*/", and for any n-manifold M we have

o(M) < o(S7)..

Proof: Let go € M, be a metric on M. We nay show that I{gy) < n{n — 1)Vol (8} by
constructing a metric g € [g], which is a concentrated spherical metric near a point of M. We
omit the details and refer the reader to [1,15,23].

Now let go be a constant curvature, unit volume metric on 5™ The fact that R{go) = {go)
follows from a symmetrization argument {{21,31]) or from the existence theory together with
a uniqueness theorem of M. Obata (see later discussion) as in {15]. Combining these two facts
we see that o(S™) = R(go) > o(M) for any n-manifold M. This completes the proofl of

Lemma 1.1.

If we have a metric ¢ € M; which realizes o(M), that is, R(g) = I(g) = o(M), we should
hope that ¢ is Einstein. This is generally true if o(M) < 0 but is not clear for o(M) > 0.
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To see this for o(M) < 0, we use the fact that for I{gs) < 0 there is a unique sclution of
{1.9). The existence follows from [32] and uniqueness from the maximwn principle. Thus if
h is any trace-free (0,2) tensor, we consider the deformed metric ¢/ = ¢ + th. There is then
a unique function v® > 0 such that (v (=24 has constant scalar curvature equal to
I{g™) since I(g™) < o(M) < 0. The family v(® is smooth as a function of ¢ (see [14]), so we
have £ I(g!9)) = 0 at t = 0, and this tells us that the trace-free Ricci tensor of g vanishes and
g is Einstein.

We now discuss properties of o(M) and various uniqueness theorems.

Lemma 1.2. Let M be a smooth, closed n~dimensional manifold. The invariant o{M) is

positive if and only if M admits a metric of positive scalar curvature.

Proof: If o{M) > 0, then by definition there is a metric go € M; with I(g) > 0. This
implies that Ao(Ls) > 0, and hence the lowest eigenfunction wug, which may be taken to be

a/(n-2 -
4tn=2) 00 has positive scalar curvature.

positive, satishes Loug < 0. Thus the metric u
Conversely, if go € M, has positive scalar curvature, then I{go) > 0 (see [1]) and hence

o(M) > 0. This completes the proof of Lemma 1.2.

Since many topological obstructions are known for manifolds to admit metrics of positive
scalar curvature (see [13,28]), Lemma 1.2 indicates that the invariant o( M) is quite nontrivial.

We prove the following uniqueness theorem for constant curvature metrics.

Proposition 1.3.

1. Let M = S™. Any metric ¢ € M, which satisfies R(g) = I(g) = o(yg) has constant

positive sectional curvature.

2. Suppose that M admits a flat metric. Any metric ¢ € M, satislving R(g) = I(g) =
(M) is a flat metric. In particular, (M) = 0 and any flat metric g € M, satisfies
Rig) = I{g) = o(M).

Proof: The proof of the first statement is a consequence of the work {{1,23]) on the Yamabe
problem which shows that (go) < ¢(S™) for any go € My unless gy has constant curvature
(M = S™). Statement 2 follows from [13,28] where it is shown that a flat manifold does not
admit a metric of positive scalar curvature (i.e. o(M) < 0), and any scalar flat metric on M

is flat. This completes the proof of Proposition 1.3.

There are two obvious uniqueness guestions left unresolved for metrics of constant curva-
ture. The first is whether the constant positive curvature metrics ¢ on non-simply connected
manifolds achieve the same characterization as the standard metricson 5™, i.e. R{g) = I{g) =
o(M). The second question is whether a hyperbolic metric g on M can be characterized sim-

ilarly. We conjecture that the answer is yes to these questions.
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As a final topic in this section we discuss the uniqueness theorem of Obata [18] and its
relevance to our variational problem. Let ¢y € M, and let ¢ = w'/""2)g,; where u is a smooth
positive function. Let Ty, T denote the trace-{ree part of the Ricci tensors of ¢o, g respectively.

We then have the formula

lA(uﬂ/("*?))g (1.10)

T="To+ (n— 2)u?/ "2 []less (w02 _
1

which follows from direct computation (see [4]). In (1.10) the Hessian and Laplacian are with
respect to go. Assume go has constant scalar curvature. We then have by the contracted

Bianchi identity 37, , g3 (To)ije = 0 for i = 1,...,n. 1t follows then from Stoke’s theorem

/<T0,Hess(u"2/(”‘2))> dwg =0,
M Jo

Therefore, we multiply (1.10) by «=%/(*=2 and integrate its inner product with T to get

=2/ TN _] —2/(n~2)
u s dw,, = u
/M { 0>go go v }

Combining (1.11) with the Schwarz inequality we see that {or any constant scalar curvature

Toll;

g . (1.11)

metric gy and for any g = «*/("=2)g; we have

~2/(=2| 7112 dow, / 2 (e
Jw OOl e, < [

In particular, if ¢ were Einstein then gy would necessarily also be Einstein.

' jod“"'yo . (1.12)

Proposition 1.4. For an Einstein metric ¢ (unit volume) on M we necessarily have R{g) =
I{g). Moreover, any constant scalar curvature metric gy € |¢], is Einstein. We then have
go = g unless (M, ¢) is Isometric to a round S™ in which case gy is a constant curvature metric

on S™ which is pointwise conformal to g.

The main step in the proof of this result is {1.12) which shows that ¢g is Einstein if it has
constant scalar curvature. The analysis of conformally related Einstein metrics on a closed
manifold is fairly straightforward (again based on (1.10)) and we omit the details referring
the reader to Obata [18] for the complete proof.

A consequence of Proposition 1.4 is that any critical point g € M; of R(-) automatically
minimizes in its conformal class and hence has conformal Morse index zero.

We also observe that for n = 3 inequality (1.12) gives a strong a priori estimate on solutions
of the Yamabe equation (1.9). To agree with our earlier notation we let go € My be a fixed
metric and let ¢ = u*("=2g; have constant scalar curvature. Inequality (1.12) then says for
n =3 (note that u of (1.12) becomes u™1)

T, < [ Tl

[ ol sy = [ il o,

Since n = 3 we also have



129

Therefore we have

( fM(||THg)s/z(zwg>2/3 < ( /M ,u—e(zwg) v ( /M zRHT]I;dwg)Uz
< ([, 1ol o)

since u™%dw, = dwg,, and we assume Vol (go) = L. It follows that the quantity [5, (|7 |ls)*/*dw,

(1.13)

is a priori bounded (depending only on the background go, hence the conformal class) for any
metric ¢ € [go] of constant scalar curvature. Note that [y,(||T|,)%%dw, is a dimensionless

quantity for n = 3.
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2 The Yamabe problem

In this section we discuss solvability of (1.2}, or equivalently (1.9). From the previous section
we know that {1.2}, (1.9) is the Euler-Lagrange equation {or the functional R(-) on [go}:- An
approach to producing solutions of this equation would be to construct a minimizer; that is, a
metric g € [go]; such that R(g) = I(go). This approach has been successful as we will outline
here.

Historically this problem was studied by H. Yamabe [35] in the early sixties, and was
claimed to have been solved in [35]. During the sixties there was substantial development
in partial differential equations, and nonlinear problems were being understood more deeply.
In particular it was realized [20] that, in many situations, equations such as (1.9) do not
have positive solutions. In light of these developments, N. Trudinger re-examined Yamabe’s
paper and discovered that it contained a serious error. In [32] Trudinger developed analytic
machinery relevant to (1.9) and showed that a solution (in fact a minimizer) exists if /(go) < 0
(or if I(go) is not too positive). He also proved regularity of W% weak solutions of (1.9). This
left open the general case with I(gg) > 0. The fact that this case is subtle is apparent from the
example of (5", go) where go € M, has constant sectional curvature. In this case, go is itself
a solution of {1.2) but is by no means the only solution in [go};. In fact, given any conformal
transformation F : S® — S™ we have F*(gy) € [go}: is another solution of (1.2). Thus if we
take a divergent sequence of conformal transformations F) {such as dilations Fi(z) =¢-z in
stereographic coordinates) we get a divergent sequence of minima for the Yamabe problem
on (5" go). In particular, one cannot obtain uniform estimates on solutions such as would
be required to prove existence by usual analytic methods. It follows that any method which
produces sclutions “with bounds” must distinguish (S™, go) from the conformal class one
considers. In 1976, T. Aubin [1] proved a general existence result in the positive case. He
showed that if n > 6 and gy is not locally conformally flat then (1.2) has a solution (in fact,
a minimizer) ¢ € [go}i. A metric go is said to be locally conformally flat if in a neighborhood
of any point of M, there exists local coordinate z',..., 2" such that go is given by

i .

go = A(x) > _(dz')?

i=1
for a locally defined positive function A(z). Alternatively, a metric go is locally conformally
flat if any point po € M has a neighborhood # such that (9, go) is conformally equivalent
to a subdomain of the standard sphere. In particular, the assumption that go be not locally
conformally flat should be viewed as requiring (M, go) to be far from the standard sphere
{which we've seen is a bad case). By a purely local computation Aubin showed that a manifold
(M, g5) with n 2 6 and go not Lcf. satisfies I{go) < (5"} and thus one can derive the
necessary estimates to construct a minimizer. We refer the reader to [15] for details and merely

describe developments here in a general way. Because Aubin’s argument is purely local, there
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was no chance that it could work for a locally conformally flat metric, and all attempts to
weaken the dimensional restriction (n > 6) have fatled. In 1984 (see [23]) we developed a new
global attack on the problem and succeeded in solving (1.9) (again producing a minimizer) for
n = 3,4,5 and for locally conformally flat metrics. We present here the general idea and refer
the reader to [15] for details. {In the next section we present an a priori estimate for solutions
of (1.2) which are not necessarily minimizers.}) The critical metrics one must consider in the
Yamabe problem are those which are concentrated near a point py of M, and are very small
away from the point. If ¢ denotes such a metric, then we may choose a point p # po, and
rescale g by multiplication by a large constant so that ¢ agrees with our background metric go
at p. If we imagine a sequence of metrics {g;} € M; which concentrate near py and tend to
zero at p, then by rescaling we get a sequence {§,;} which are uniformly controlled near p. If
the scalar curvatures of the g; were bounded, then the scalar curvatures of g; tend to zero, and
we expect the §; to converge to a metric g of zero scalar curvature with g being a complete
metric on M — {py}. (We rigorously carry out this type of rescaling in the next section.) If
we write § = GY (=g as a function times our background g, then G satisfies LoG = 0 on
M — {po}, and G > 0. Thus G must be a (multiple of) the fundamental solution of Ly with
pole at po. Near py, the function G has the behavior G{z) = |z|>" + a{z) where « has a
milder singularity at z = 0 than |z|?>~™. Thus near po, the metric § approximates |z|=* Y, dz?
which is simply the metric 3" dy? on R™ written in the inverted coordinates y = |z|%z. Thus
{M — {po},7) is scalar flat and asymptotically flat. In such a situation (in certain cases) there
is a number which can be attached to § which is referred to as total energy. The reason for this
name is that for n = 3, asymptotically flat manifolds arise as initial data for asymptotically
flat spacetimes which model finite isolated gravitating systems in general relativity. The scalar
curvature assumption corresponds to (a special case of ) the physical assumption that the local
energy density of the matter fields be nonnegative. The total energy of a system measures the
deviation of g from the Euclidean metric at infinity, and “positive energy” theorems assert
that the total energy is strictly positive unless (M — {po},g) is isometric to R*. In [23], it
is shown that if go is locally conformally flat or if n = 3,4,5 the energy term can be used to
show that I(go) < o(S™) unless (M, go) is conformally equivalent to the standard S™. This
implies existence of a minimizer for the Yamabe problem with appropriate estimate. In §4 we
discuss the positive energy theorems which are needed for the Yamabe problem.

For a compact, closed manifold M, let g, € M;, and let F be given by
F={u: o g ¢ My, R Dgo) = I(g0)} .

Thus F is the set of solutions of (1.9) which arise as minimizers for the Yamabe problem.

The following compactness theorem is a standard consequence (see [23]) of the inequality

I{go) < o(S™).

Proposition 2.1. Suppose (M, go) is not conformally equivalent to the stindard sphere. The
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set F is a nonempty compact subset of ("%(M), the set of twice continuously differentiable

functions on M with the usual C? norm.

As we have observed, the above result is false for the standard sphere because the conformal
group of 5™ is noncompact. We give a geometric corollary which says that any manifold except
the standard sphere has a compact conformal group. This result is a theorem of J. Lelong-
Ferrand [16].

Corollary 2.2. If (M, go) is not conformally equivalent to the standard sphere, then the

group of conformal automorphisms of (M, g¢) is compact.

Proof: Let D be the group of conformal diffeomorphisms of (M, go). It suffices to show that
D is compact in the C? topology. The main point is that D acts on the set F by pullback;
that is, given F' € D, u € F we have F*(u¥/(""Bg) = (up)¥(0=2gg, up = [F|"D/ 20 F € F.
Here we write F*gy = |F'|%gy so that |F"| is a function which measures the stretch factor of F
measured with respect to go. Thus the compactness of F implies that up < ¢ for all F € D,
and hence |F’| is uniformly bounded for all /¥ € D. Therefore, by the Arzela-Ascoli theorem,
D is a compact subset of C°(Af, M). This completes the proof of Corollary 2.2.

There are very few (conformal) manifolds on which one can analyze all solutions of (1.2).
Besides the standard sphere, where Obata’s theorem tells us that all solutions are minimizing
and have constant sectional curvature, the product metrics on S? x §*~! seem to be the only
manifolds where all solutions can be analyzed. In particular, on S' x $*°! we see many
solutions of (1.2) which are not minimizing, and we see situations where the most symmetric
solutions are not the minima. For convenience of notation, we dispense with the volume
constraint and normalize solutions of (1.2) so that their scalar curvature is equal to n(n — 1),

the scalar curvature of the unit n-sphere. Equation (1.9) then becomes
Lou + ﬂn4—“2—)~?z("*'2)/("‘2) =0. (2.1)

We analyze S' x §77! by looking for solutions on the universal covering space

R x 5™ 1 and we choose S™""! to have unit radius. If we consider the n—sphere to be R*U{co}
where the coordinates @ € R™ arise {rom stereographic projection, then the manifold R x 577!
is conformally equivalent to 5™ — {0,00} = R"™ — {0}. The conformal diffeomorphism is given
explicitly by sending the point € R"— {0} to the point (loglz|, z/|z]) € R x 5", Thus the
analysis of solutions of (1.9) on R x $"~! is completely equivalent to the analysis of solutions
of (1.9) on R™~{0}. An important method was introduced into the subject by Gidas, Ni, and
Nirenberg [9] which enables one to show that, under suitable conditions, arbitrary solutions
of {1.9) have a maximal amount of symmetry. For solutions on S™ — {0, 0o} it has been shown
by Caffarelli, Gidas, Spruck [5] that any solution of (1.9) which is singular at either 0 or oo
is necessarily singular at both 0 and oo, and such a solution is a radial function, that is,

a function of |z]|. We are interested in complete metrics on R x S and hence we want
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solutions singular at both 0 and co. We will write (2.1) with respect to the product metric
go = dt? + d€” on R x 577 where (1, £) denote coordinates on R x S™71, and dé? 1s used to
denote the metric on the unit $"'. We then have R(go) = {n — 1}{n — 2}, and for a function

u(t) {which any global solution will be from the above discussion}, equation (2.1} becomes

Pu (-2 0l =2) s g, (2.2)

i VR 4 .

We are interested in positive solutions of (2.2) defined on all of R. There are two obvious

nonzero solutions of (2.2). The first is the constant solution

- (n—2)/4
n 2> (2.3)

n

u(t) = ug = (

Geometrically, us/" gy is that multiple of go having scalar curvature n(n — 1). The second
explicit solution is a solution of constant sectional curvature. The spherical metric g; on R®

takes the form ¢, = 4(1 + |z|*)"2 5", (d=")?. Writing this metric as a function times go we get
g1 = 4(Je| + [2]7") g0 = (cosh 1) *go.
Therefore the function u;(t) given by
uy(t) = (cosht)~(n=2)/2 (2.4)

is a solution of (2.2). Of course the metric g; is not a complete metric on R x S*71. We

convert, {2.2) to a first order system by setling v = “;—’;, and defining the vector field X(u,v)

in the uv-plane by

2 ‘
X{u,v) = {v, (n=2) U — nin —2) @t/ =2
4 4
Equation (2.2) then becomes the autonomous system
{
Z}t(u,@) = X(u,v).

The vector field X has critical points at (0,0} and (ug,0). The linearized equation at (0,0) is

du dv  (n—2)* .
e T e T e
dt dt 4
which has a saddle point at the origin. At (ug,0) the linearized system becomes
{ d
(d—;‘-zv, a—::(?—n)u

which has a proper node at the origin. The orbit corresponding to the solution u(t) con-
tains the point (1,0), is symmetric under reflection in the u-axis, and approaches (0,0) as
t approaches both +oo and —co. Therefore, this orbit (together with (0,0)) bounds a re-

gion Q, and the point (ug,0) lies in Q. Thus the region § is invariant under the flow, and
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it is elementary that any orbit on which v remains positive for all time must lie in Q. We
may parametrize the orbits in by letting v,(/) denote the orbit with +4(0) = (a,0) where
o € [uo, 1] Thus 7 (1) = (u0,0), and (1) = (1 (1) 23(1)). For a € (uo,1), there is a first
positive time, which we denote § T'(a), at which 7, intersects the u-axis. We also see that if
we denote the coordinates of v,(t) by (w,{1), v,{t)), then we have v,(~t) = {ua{t), —valt)).
Therefore it follows that +,(t) is periodic with period T'(«r). It should be true that T'(«) is an
increasing function of a, but we have not checked this. It is elementary that limaq 7'(a) = oo,
and limajy, T(@) = (n — 2)"Y22x. The quantity (n — 2)7"/22x is the fundamental period of
the linearized operator at ug, which is di% “+ {n —2).

We now summarize the consequences of the above discussion for solutions of (1.2) on
St x 571 We normalize the radius of $*~' to be one, and let the length of S! be a parameter
T, so our manifold is SY7") x S»~1. We take our background metric go to be the product
metric. We assume in this discussion that 7'(a) is increasing for « € {ug, 1], otherwise one can
malke the obvious modifications. There is a number Ty = (n — 2)72/?2r such that for T < Tp
the manifold S}(T) x $™~! has a unique solution for (2.1) hence for the Yamabe problem.
This solution is a constant times go. For 1" € (T4, 27y equation (2.1) has two inequivalent
solutions, the constant solution and also the solution with fundamental period 7. Actually,
since the solution with fundamental period 7' is not invariant under rotation about S we
actually have an S! parameter family of solutions. For T € (27T, 3Ty) we have 3 inequivalent
solutions, the constant solution, two periods of the solution with fundamental period T'/2, and
the solution with fundamental period 7. Again the last two lie in S' parameter families of
solutions. Generally, we see that for 7" € ({k — 137, kTo] we have k inequivalent solutions given
by the constant solution, together with 7 periods of a sclution with fundamental period T/t
fori=1,...,k—1. Each of these (k—1) solutions lies in an S! parameter family of equivalent
solutions. All of the solutions for T > Ty are variationally unstable except the solutions with
fundamental period T, and hence these solutions are minimizing for the Yamabe problem
(after one normalizes the volume). The instability of the constant solution is elementary, and
for a solution consisting of ¢ periods of a solution with fundamental period T/t (1 > 2) we can
use the following argument: Let u(?) be such a solution. Then we have u(t +1'/1) = u{t), and
hence v(t) = 2% has the property that {t € S'(T') : v(#) > 0} consists of at least i disjoint

intervals. On the other hand v satisfies the lincarized equation

Ly = dv (n(n + 22 Wi (=2) %(TL = 2)2) v=90.

Tl 4 4

It follows from Sturm-Liouville theory that there are at least 7 {> 2) eigenvalues of — L which
are less than zero. This implies instability for the constrained variational problem.
Since the solution with fundamental period 7" approaches u; as T' — oo, we also see that

lim 1(SYT) x S"1) = (5™,

T—rco
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and in particular we have o(S?x S™}) = o(.S™) since we have exhibited a maximizing sequence
of conformal classes of metrics on ' x §771. We see that (5! x 5™71) is not achieved hy a

smooth metric on S1 x §7~1L.
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3 A priori estimates on nonminimal solutions

In this section we will derive estimates on metrics in a given conformal class which satisty
a generalization of equation (1.9). It will be essential for these estimates that (M, go) be
conformally inequivalent to the standard sphere, as they are false on S™. While analogues
of these estimates hold in general. we restrict ourselves here to metrics go which are locally
conformally flat. This case contains the main ideas without as many technical complications
as one encounters generally. We begin with a geometric Pohozacv-type identity which holds
in exact form for a locally conformally flat metric g. Throughout this section we will assume
that (M, go) is a locally conformally flat manifold and g € [g9]. Assume that z’,... 2™ are
local coordinates on M in which ¢ takes the form A/(=2(z)3°,(d2')?. Let »? = 3 ;(z")? be
the square of the Euclidean length of x, and let D, denote the open Euclidean ball centered

at © = 0 of radius 0. The following identity holds

IR(g) . 2n (9 ey O s
/D"7 or d“g_n—‘;)/aoa] 75‘)\ or 4, (3.1)

where dY is surface measure on 9D, determined by g and T(+,-) is the trace free Ricci tensor

of ¢ considered as a symmetric bilinear form on tangent vectors. The identity (3.1) reduces
to the standard Pohozaev [20] identity for the function A(z). In this form it is derived in [24,
Proposition 1.4] where the conformal Killing vector field is X =r E% the generator of dilations
centered at 0 (locally defined). Suppose go = /\g/("_z)(a') 5. (d2*)? and g = ¥/ Dy so that
A = ulg. We may rewrite (3.1)

9R(g) 2n g 0

T Ngu) D) oy = "Au) T o | d 3.2
/07 ar (Aow) TTNT2 Jon,’ (Aou) dr’ Or ¢ (32)
where d¢ denotes the volume measure on the unit (n — 1)-sphere. Equation (1.10) gives us
an expression for 7' (%, (%)

or’ or n

T ( d a) — (n = 2)(Agu)/ D) [éd;_z.(()\ou)ﬂ/(n—?)) _ lA((/\ou)W/(n—?))} (3.3)

a2

where A denotes the Euclidean Laplace operator 7, O

A common method of attack on the existence of solutions of (1.9), which was in fact used
by Yamabe, 1s to regularize the problem by lowering the exponent of the nonlinear term. Thus
one introduces the equation

fu+ Kuw =0, u>0 (3.4)

where K is a positive constant and p € (1,(n + 2)/(n — 2)]. For p < (n + 2)/(n — 2)
it 1s standard to construct a nonzero solution which minimizes the associated constrained
variational problem. More generally, the associated variational problem satisfies the Palais—

Smale condition, and hence the methods of nonlinear functional analysis and the calculus of
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variations may be applied. We will derive uniform estimates on solutions of (3.4} which have
bounded energy. In particular, these estimates imply that solutions of (3.4) converge in C?

norm as p T (n +2)/(n — 2) to solutions of (1.9). We define for A > 0 a set of solutions Sp

2
Sp = {u: u satisfies (3.4} for some p € (1, nt
n

—_5] CE(u) <A K <A}

We will show that, if (M, go) is not conformally equivalent to S™, then Sy, is a compact subset
of C*{(M). Wefirst state, without giving a detailed proof, a general weak compactness theorem
for metrics g € [go] whose scalar curvatures are controlled. This type of result is at present
well known to experts in several areas. An analogous theorem is proven by Sacks—Uhlenbeck
[22] for harmonic maps in two variables, by Uhlenbeck [33] for Yang-Mills connections in four

variables, and by several authors [7], [12], {17] in various contexts.

Proposition 3.1. Let {u;} be a sequence of positive C? functions on M such that
Vol (!’ Pgo)}, (R g0))

are both uniformly bounded sequences. There is a subsequence {u;} which converges weakly
in WY3(M) to a limit function u. The function v is C* on M, and there is a finite set of points

{p1,...,p:} such that {u;)} converges in C' norm tow on compact subsets of M —{p1,...,pr}.

Since our arguments will be geometric in nature, it will be convenient to estimate
R(uLt/(n-Z)gO)

for u € S4. This can be done based on “subcritical” estimates.

Proposition 3.2. Suppose u € 8. There is a constant C' depending only on go, A such that
max |R(ut/"=Ngo)| < C. Similarly all derivatives of R(u*/"~?)go) with respect to go can be

bounded in terms of go, A.

Proof: Let 6 = (n + 2}/(n — 2) — p where u satisfies (3.4) with exponent p. If § = 0, then
R(u*2g5) = ¢(n)"'K and our result is trivial. Thus we assume § > 0, and we derive
estimates on u keeping track of the §—dependence. We first derive an upper bound on u by
a scaling argument. Let w = max{u(p): p € M} and let p € M be a point with u(p) = 7.
Let !, ..., 2" be coordinates centered at p. Observe that for a > 0 the function u.(z) defined
(locally) by us(z) = a*P~Vy(az) satisfies the equation L,u, + K u? = 0 where L, is the

operator

Lov(e) = ———e= ¥ §~ (\/det gc,(a‘&éigff(ax)%) — ¢(n)a*R(go)(az)v(z).

det go(az) &;

We choose a such that u,(0) = 1, that is, we set « = (7)~P~1)/2. We assume 7 is large so that

u, is defined on the unit ball in R®. Since x = 0 is the maximum point of u, in By, we have



138

1, < 1 and standard elliptic estimates imply

ue(0) < ¢ </ '11,2"/("‘2)(1;6
B

Now from the definition of u, we have after a change of vartable,

/ W2 D g = g7 (%_p)/ u/ =y
B1(0) Bq(0)

)(ﬂ-—?)/(’&ﬂ]

This then implies

1= ,(0) < o (@) B,
and hence we have
: n+ 2
maxu < o', 8= = —p. (3.5)
A n—2

for a constant ¢.
We may derive a lower bound on u of a similar type by observing that Lu < 0, and so

standard estimates (see [10]) give us
mnu > e wdwyg, .
minu > o /M %
From (3.5) we have
/ ‘27L/(n—2)[ < 'n_t%%/ d
u dw cr” U diwy, -
M o= Moo

The Sobolev inequality implies

(n—=2}/n
2nf{n—2 ” - - 1
(/M wi §(3w90) <eB(u) = K /M uPHdw,, .

Sincep+1 < 2n/(n—2)and K < A we have

222 (p-1)
1 <cA (/w 'u2nf(7142)du,'go> ’ .

Combining tht a/bOVC ilquUaliLiGS we get
1 U > o /8 3“
I]J[ 2 Cy ( )

for a constant ¢;. Rescaling as above with « = @~ ?~1/% and with center any given point of

M we get from elliptic theory |Vu,(0)] < cu,(0) < ¢ which implies in light of (3.5)
1/5
n}gxlvgou‘ <t (3.7
Higher derivatives can be similarly estimated. To complete the proof we observe that
R{u0 g0y = e(n) Ku™®

from (3.4). Therefore (3.5), {3.6), (3.7) imply that R(u¥/(""?)g;) and its first derivative with
respect to go are bounded. Higher derivatives of R(u*/("~%g,) are similarly bounded, and we

have completed the proof of Proposition 3.2.
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We now prove the main result of this section.

Theorem 3.3. Suppose (M, gy) is not conformally equivalent to the standard n-sphere and

go Is locally conformally flat. For any A > 0, the set S is a bounded subset of C3(M).

Proof: We prove the theorem by contradiction. Suppose {u;} is a sequence in Sp with
lim [Juf{cagpny = oo, From Proposition 3.1 we may require the sequence u; to converge weakly
in WH2(M) to a limit u, and uniformly on compact subsets of M — {P,..., P} for some
collection of points Py,..., P, € M. The function u is smooth on M, and the sequence u;
converges in C® norm to u on compact subsets of M — {P,,..., P} by elliptic estimates. If
we can show that the sequence u; converges uniformly on all of M, then we conclude that
maxu; are bounded, and standard elliptic theory implies ||ui]lcagary are bounded contrary to
assumption.

We divide the proof into two steps. We first show that u is nonzero. This is where we use
the global hypothesis that (M, go) is not conformally S™. Assume v = 0, and choose a point
@ € M different from Pi,..., Pi. Let ¢; = w,(@), so by assumption lime; = 0. Define v; by

v; = ¢ ;. and observe that the v; satisfy the equation
Lo+ el Kol = 0. (3.8

Since {w;} is uniformly bounded on compact subsets of M — {P,..., Py}, we have from
{3.4) a Harnack inequality for u; on compact subsets of M — {P,..., P.}. Thus the v;
satisfy a Harnack inequality, and v,(@) = 1. Therefore the v; are locally uniformly bounded
on M — {P,...,P}. From (3.8) we then get bounds on all derivatives of v; away from
{P1,..., P}. Therefore a subsequence, again denoted v;, converges in ("* norm on compact
subsets of M — {Py,..., P} to a smooth positive solution (7 of LG =0 on M —{F,..., P}
Since we are assuming R(go) > 0, G must be singular at one or more of the points P, ..., Pg.
Suppose G is singular at Py,..., P It then follows that 7 is a positive linear combination
of (positive) fundamental solutions G, with poles at P, for @ = 1,...,{. That is, there exist
positive constants ay,...,a; such that G' = ¥/, a,G. Let z',...,2" be conformally flat
coordinates centered at P,. Let ¢ > 0 be a number which will be chosen small, and apply
(3.2) with u = w; on D,. For a solution u of (3.4), we have R(u* ("% gq) = ¢(n)~* Ku~* where

§={(n+2)/(n —2) — p, and thus the left hand side of (3.2) can be written

C(’I?,)‘1 [\’/ T%(u~§)()‘ou)2n/(n—'2)

o

= —c(n) Ké(p+ 1) /7'%(7#’“))\(z)n/("_z)dfv.
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we may integrate by parts to obtain

inee 12— .
Since r4 = 3, x!

x”

] () (ule )/\ln/(n 2)d$ — / u7>+1 n+ QL raiog AO Aé"“”“”dm
Do c?r I, s o

+o" /"»D u”“/\g"/("'?)d{.

For o small n + f_% 72—1%;3—*2 > 0, and hence (3.2) implies the inequality

2no™ a9 9 i
— > —e(n) VR E( 1) 1g™ p+1y2n/(n-2)
n =2 Jop, (Aou)?T <() e > dé > —c(n) 'Ké(p+1)'o /8Da uPIAg d¢

for any solution u of (3.4). Applying this with « = v; and multiplying by &% we get in the

limit

. o [0 0
o /HDU()\UC.) (7 Or) dE > 0 (3.9)

{3 @
r(5)

is given by (3.3) with v = G. Since the metric GY(=3gy = (XG)Y =2 T (dz*)? has zero

where

scalar curvature, AgG is a positive Euclidean harmonic function en D, — {0} which is singular

at ¥ = 0. It follows that (AoG){z) has the expansion
QoG a) = ay x| + A+ afx)

where a(z) is a harmonic function with «(0) = 0. Using this expression in (3.9) we get
—A+ O(o) > 0 by elementary calculation using (3.3). Since o is arbitrarily small we get
A <0. On the other hand we have G > «,G,, and

AoGh( |T12 "+ E(P)+ O(|z])

where E(-) is the energy function discussed in §4. Thus A > a; E(P;) which is strictly positive
since {M, go) is not conformally equivalent to S*. We discuss this positive energy statement
in the next section. This contradiction shows that u > 0 on M.

The second step in our proof deals with the remaining case v > 0. In this case our
argument is local. The sequence {u;} must be unbounded near one of the points { Py, ..., P},
for otherwise we have uniform convergence. Assume that lim{supg_(p,)ui} = oo for any o > 0.
Since u > 0, the metrics g; = u‘;/(n 3 go have uniformly bounded curvature away from the
points Pr,..., Pr. Let 2!, ... 2™ be conformally flat coordinates centered at Py. Let Ao{z) > 0
be such that go = A&/~ $(dz')?, and assume g is bounded above and below (locally). The

functions w; = Aou; then satisfy

Aw; + c(n)R,-'wf"H)/(n_z) =0
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where A is the Euclidean Laplace operator and R; = R(g;). In particular, w; is superharmonic
and by assumption w; is bounded below on gD, for ¢ large. Therefore w; has a lower bound
on D,. If the Ricci curvature of g; were bounded in D,, then we can use the gradient
estimate [6) on the solution w! of the equation L, (w;') = 0. Note that this equation holds

4/(n—2)

because w; ¢: is the Euclidean metric. The gradient estimate can be applied because of

Proposition 3.2 which gives us a bound on R; and |V, R;|. We have
Vo Bil = |V, Ry
which is bounded since u; has a lower bound. The gradient estimate then gives
Vg ') < ew] "
Writing this in terms of the Euclidean metric we have

|0(w; ) < e

where J denotes the Euclidean gradient. Note that the gradient bound depends on the geodesic
distance to dD,. Since w; is bounded below we have supp_, |3(w; ™| < co~'. This
implies an upper bound on w; near 0 in terms of an upper bound at a fixed small distance
from 0. Since w; are converging away from 0, we get an upper bound independent of 7. This
contradiction shows that lim{supp_||Ric(gi)|lg,} = oo for any o > 0. Therefore we can choose

a sequence of points (J; — P such that

¢ = sup[|Ric (g:)lls. = IRic (g:)llo: (Q:)

with ¢; — co. We then let §, = ¢;¢:, and observe that we have
1 = sup Rie 35, = IRie 3)]5,(@4).

(n=2)/4

Thus we have g, = w/™? ¥ i(dx?)? where w; = ¢ w;. Let x; denote the point in D,

corresponding to @, so that we have limz, = 0. Let

vi(y) = }‘§n_2)/2wi(/\i?/ + ;)
i(y) = " u(y)

where we choose A = (Wi(2;))" ("2 s0 that 7,(0) = 1. Notice that A; — 0 so that v; is
defined on increasingly large balls in R*. Moreover, v?” (=) 5°(dy?)? is the pullback of g;
under the map y — Ay + 2;, and hence the scalar curvature and volume of v?/(”_” S (dy?)?
are bounded. Thus by Proposition 3.1, a subsequence of {v;} converges uniformly away from
a finite set of points y1,...,y, € R™. In particular, v; satisfies a Harnack inequality away from

Y1;---,¥,. Since the Ricci curvature of ’5?/(”—2) S>{dy’}? is bounded and the metric is complete,
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the Harnack inequality of [6] holds on unit geodesic balls. In particular, T, remains bounded
n a uniform neighborhood of y = 0, and 0 is distinct from y,....,y.. Therefore a subsequence
of {v;}, again denoted {%;}, converges to a limit h. From the coustruction h is a positive
harmonic function on R™ — {y;,...,y,} with 2(0) = 1. Moreover, the metric h¥/("=2 " (dy7)?
has Ricci curvature of length one at y = 0 and in particular is not flat. It follows that & has
at least two singularities in S" = R™ U {co}. Let yi,...,y, denote the singular points of &
in 57. 1t follows that % is a positive linear combination of fundamental solutions with poles
at yy1,...,¥%s. Thus there are positive numbers a;,. .., a, such that Aly) = 32 _, ¢.G. where

Goly)=ly — 9.7 ify, € R® and Go(y) = 1 if yo = co. Assume y; € R™ so that
hy) = aily = > " + A+ aly)

where a(y;) = 0 and A > 0 because s > 2. Now the same argument as in the previous step,
using (3.2}, gives us a contradiction. This shows that our initial assumption of nonconvergence

of {u;} is violated and we have completed the proof of Theorem 3.3.

There is an obvious question which is lelt unvesolved by Theorem 3.3, and this is the
question of whether one can remove the assumed bound on the energy £5(u) which is required
in Theorem 3.3. It seems likely that the energy of solutions of (1.9) will be bounded by a
constant depending only on go. Inequality (1.13) gives a very strong a priori integral estimate
on solutions of (1.2) for » = 3. It may he possible to use this in place of the energy bound in

Theorem 3.3.
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4 The relevant positive energy theorems

In this section we give a discussion of the the total energy of an asymptotically flat n—manifold
and discuss the positive energy theorems which are relevant to the Yamabe problem. Let
(M™, g) be a Riemannian manifold. (M, ¢) is said to be asymptotically flat if there is a compact
subset I C M such that M — K is diffeomorphic to R™ — {|z| < 1}, and a diffeomorphism
®: M- K — R"— {|z|] <1} such that, in the coordinate chart defined by ®, we have
9=, gij(z)dz'dz? where g;;(z) = 6;;+ O (|z|™?) as @ — oo for some p > 0. We also assume
that
|2 lgis ()] + 12 *lgisae(2)] = O (J2]77)

where we use commas to denote partial derivatives as in §1. Assuming that |R(g)| = O (|z|™9),
¢ > mn,and p > (n —2)/2 it is possible to define the total energy of M. To do this we recall

the expression for R(g) in the z—coordinates

R(g) =3 g¢" (F%,k - Fikk.j + Z(]‘k([‘fj - F_I;/_’ka)>
ugk 14
Flc _ 1 km
5= 5 29" Gimi + Gimi — i) -

Using the asymptotic assumptions we find
R(g) = 3 _(9isii — 9ivas) + O (le72=2) .
i.j
Since 2p + 2 > n we therefore have the divergence term absolutely integrable near infinity.

Thus the divergence theorem implies the existence of the following limit

lim / Z(g,-_,‘lz/J — G vi)dE(o)

=00

flaize} "
where v = 6712 is the Euclidean unit normal to {|z]| = ¢} and dé(o) denotes the Euclidean
area element on {|z| = o}. Moreover, the family of spheres S, = {|z] = ¢} may be replaced
by any sequence of boundaries which go uniformly to infinity, and the limit will exist and have
the same value (see [2]). We define the total energy £ = E{M,g) by
B = (40 = wn1)™ Jim [ 5 (g0 = gu03)dE(0)
RS

where w,_; = Vol ($"71(1)). The basic content of the positive energy theorem, or this special
case of it, is that if R(g) > 0 on all of M, then £ > 0. Moreover, E = 0 only if (M,g) is
isometric to Euclidean space.

For a compact manifold (M, g) with R(g) > 0 we can make the following construction.
Given a point P € M, there is a positive fundamental solution  for the conformal Laplacian

L with pole at P. If we normalize (& so that

: n—2 -
Jim d(P.Q)"* G(Q) = 1
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where d(-, -} is the Riemannian distance function for g, then  is unique. The manifold (M —
{P},G¥2g) is then asymptotically flat. If we let y*,... 4" denote a normal coordinate
system for g centered at P, then we have g;; = &; + O(Jy|™%). It is not difficult to show
y,
then we have the metric components of ¢ in the z-coordinates given by |z]7* ¢;;(]z|~%z). In

that G{y) = |y[* ™ + O (|y|P**~") where p is any number less than two. If we let = = |y

particular, if we let
GH=D g = %" g, (a)daida?
7
we have g,;(z) = &; + O(|z]™) as z — oco. Also we have R(GV/("~2g) = 0 since LG = 0
on M — {P}. In particular, if p > (n — 2)/2, then the total energy can be defined. Since
(n—2)/2 < 2 for n = 3,4,5 we see that in these dimensions we can assign to each point
P € M a number E(P) which is the total energy of (M — {P},G¥ (=2 g).

We now let {M™, g) denote a general asymptotically flat manifold. We are going to present
the minimal hypersurface proof of the positive energy theorem which is joint with S.T. Yau
and appears in [25], [26]. Our presentation will simplify the original proofs in a few technical
respects. It is convenient to first simplify the asymptotic behavior of ¢ so that ¢ is conformally
flat near infinity. We carried out this argument for n = 3 in {27], and we present here the

n—dimensional version.

Proposition 4.1. Let (M, g) be asymptotically flat with p > {(n — 2)/2 and ¢ > n. Assume
also that R{g) > 0. For any £ > ( there is a metric § such that (M,g) is asymptotically flat
and conformally flat near infinity with R(§) = 0 and such that E(g) < E(¢) + <.

Proof: We first observe that we may take R(g) = 0, since generally, we can solve Lu = 0,
u > 0 with u ~ | at infinity. In fact, we have-u(z) = 1 + A|z|*"™ + O ({z|'"™) where A < 0
since 0 < u < 1 on M. (See [2] for the existence and expansion.) The metric u¥/{"~?g is
then scalar flat and has total energy given by E(g) + A < E{g). Thus g may be replaced by
utln-2)g.

Now assume R(g) =0, and deform ¢ near infinity to the Euclidean metric. To accomplish
this, choose a function ¥,(z) with the properties, ¥,(z) = 1 for |z| < o, ¥, (z) = 0 for
|z} > 20, ¥, is a decreasing function of |z|, and ¢ |V, |+ 02 |¥?| < ¢. Now consider the metric
(©)g given by (Vg = th,g + (1 — ¥,)6 where § = ¥, ; é;;da*dz? denotes the Euclidean metric.
Observe that (Vg = § + O (|z|™”) uniformly in o for o large, and also R((7)g) = O (Jz|277)

for ¢ < |z| € 20 uniformly in o. In particular we have
| IR(C1g) [ d, = O(r™72),
M

and so for o large there is a unique solution u, of L,u, = 0, u, > 0, u, — 1 as |z| — oo.
(See [2] for the existence.) The metric (g = «2/("~D()g is then scalar flat and conformally

Euclidean near infinity. We show lim,...o E(17)g) = E{g) and then for ¢ sufficiently large the
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metric (V)7 will give the desired metric. From the uniform decay estimates on u, and (g, we

see that given € > 0 there is a o independent of ¢ such that

|E(“)g) — (4(n — 1)w_y)™! / Z((”)?ﬁj,iw — Vg, vi)dé(o0)| < %
Seq B
1E(9) — (4(n — Dwpq)™? / Z(gi;,i%‘ — gui v )d€(00)] < %
Sho

On the other hand, we havelim, ., u, = | on compact subsets of M, and hence the two surface
integrals above are within €/3 when o is sufficiently large. Thus we get |E({)g) — E(g)| < ¢

for o large. This completes the proof of Proposition 4.1.

Note that if (M, g) is asymptotically flat and conformally flat near infinity we have g;; =
R (=2(z)§;; for |z| large where h(z) — 1 as ¢ — oo. If R(g) = 0, then h is a harmonic
function for |z| large and hence A{z) = 1 4+ E|z|*™ + O (Jz|'"™) where we have normalized
the energy so that F is the energy of the metric h*/{*~2§. Thus by Proposition 4.1 we may

assume ¢ to be of this form.

Theorem 4.2. Let (M, g) be asymptotically flat with p > (n —2)/2, ¢ > n, and R(g) > 0 on
M. Then E(g) > 0 and E(g) = 0 only if (M, g) is isometric to (R™, ).

We will give the proof of this theorem for n < 7. This proof can be extended to arbi-
trary dimensions with an additional technical complication arising from singular sets of area
minimizing hypersurfaces which appear for n > 8. We do not deal with this here, but leave
it to a forthcoming work of the author and S.T. Yau. In any case, this is not required for
the Yamabe problem as the remaining case of locally conformally flat manifolds of arbitrary
dimension has been treated by a different argument in [29]. For the case in which M is a spin
manifold a different proof of Theorem 4.2 was given by E. Witten [34]. This proof was carried

over to arbitrary dimensions in {15].

Proof of Theorem 4.2: We first show that £ > 0. Suppose on the contrary that £ < 0.
Then by Proposition 4.1 we may assume R(g) = 0 and g;; = A*/("=2§;; where h(z) has the
expansion h{z) = 1+ Elz|* " + (|z|'™™") for z large. It will be convenient to have R(g) > 0
on M. This can be accomplished by replacing g by u?/(*~%g where u satisfies Lu = —g
with ¢ > 0 on M, g small and ¢ decaying rapidly. The solution v will then satisfy u(z) =
1+6lz]2 "+ 0O (|z]'~™) with § arbitrasily small. Thus the negativity of the energy is preserved.
We compule the divergence of the unit vector field n = A~2/("~2 L. with respect to g. We

find

: —njf{n- 8 n/{n-—- - -
div,(n) = A2 {(n-2) a_;(;g /n=2) p~2/{ 2))

2n—1 ad 9m —n
- '—n_—é—)E%((axi ) +0 (J2™)

==2n-1E o

+0 (J2I™)
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In particular we see that div () > 0 for 2™ > g and div ,(—7) > 0 for 2* < —ag for some

constant ag. Now let o be a large radius, and let I, , denote the (n — 2)-dimensional sphere
loo={o=(a"2"): |¢] =0,2a" =a}.

Let ¢y denote the {n — 1)-dimensional cylinder ¢, = {{27,2") : || = o}. We orient ',
as the boundary of the portion of (', lyving below 'y, Let S, , be an (n — 1)-dimensional
surface of least area with 95, , = I',,. The cylinder ¢, bounds an interior region £, in M,
and Z,, C Q,. Sincen <7, Y, , will be free of singularities {see [11,30] for relevant results

on the Plateaun problem}. For any o, let
Viey = mmn{Vol (L.} « € [~ap. apl}

where we note that the function ¢ — Vol(¥,,) is continvous. We now assert that there
exists a = a(o) € {—ag,ag) such that Vol(¥,,) = V(o). To show that a{c) < ag, write

You =1{09,.4) N8, where ,, is the subregion of 0, lving below 5, .. Let
Upa ={(2",2") & Qo o 2" > ap— 6}

where 6 is chosen so small that div,(») > 0 for v > ap — §. We show that U, , = §§ by

applying the divergence theorem in I/, .. Since y is tangent to (7, we get

(. vy, dH™ = Nol (Q, 1 {a" = ay—}) >0
SaaN{r">a0-68}
provided U, ., # 0. Here v denotes the unit normal of ¥, ,. Thus we may apply the Schwarz

inequality to assert
Vol (.o N{2" = ag — &}) < Vol (Y., N {a" = ap — &}).
Therefore, if U, , # @, then the hypersurface ¥ given by
V=00 s N {a" <ag— 61N,

has smaller volume than ¥, , and 0¥ = I',,, where @¢; = min{a,ap — 8}. This contradiction
shows that U,, = § and in particular «(o) < ag = 6. An analogous argument shows that
ala) > —ag + & for some § > 0.

Let £, = X, .15y be one of the hypersurfaces which realizes the minimum volume V(o).
Let X, be a fixed vector field on M which is equal to Cffj outside a compact set. Let X
be a vector field of compact support, and let X = Xy + aX; where « € R. Let F; be
the one parameter group of diffeomorphisins generated by X (or alternatively any curve of
diffeomorphisms whose tangent vector at ¢ = 0 is X). If o is sufficiently large that the support

of Xg is compactly contained in €, then X gives a valid variation of ¥,; that is, we have

Cvol(kas )| =0, Tvel(me) 20
ar O] =0, g Vellh(z) 20
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The second variation is the integral of the function Fyx, given by

d‘l

Fxo(P) = =2 10F)(TrEo)ll,

1=0
where TpY, denotes the oriented tangent planc of ¥, at P, and (/7). denotes the differential
of the map Fy. For |z| large we have Fx ,(¢) = O (J2|™™) uniformly in o because of the decay
property which is assumed on g. The regularity theory implies that outside a fixed compact set
¥, is the graph of a function f,{z'), 2’ = («',..., 2" 1) having bounded gradient. We choose
a sequence o; —» oo such that {Z;} converges to a limiting area minimizing bypersurface

¥ C M. Because of the uniforin decay condition on Ix ,,, we get [ Fy dH™ ! > 0 where

d?

NCFD(TPEN

t=0
and X = Xg + oX,; for vector fields Xy of compact support and X, fixed as above. Outside a
compact subset of M the surface T is represented as the graph of a function f(2') of bounded
gradient. In fact, we easily get |@f|(z) = (|2'|7") from the regularity theory since we have a

uniform bound on f, |f(z")] < ao. On the other hand f satisfies the minimal surface equation

- fifi v a _
> <5 —“Maﬂg) Fa+J1+ 101 Mlog h=0

13
%] L+
where

hz)=1+Ela]""+0 <1J‘|1-—n> ’

and

vo = (1+0f) 3 (-0f,1)

is the Euclidean unit normal vector. Applying linear theory (see [10]) we get f{2) = a +
O(a'P™) for n. 2 4, and f(2') = ¢ + O (J2'|7') for n = 3 {or some constant a. The function
Fx can be calculated in terms of the geometry of T (see [30])

n—1

Fo ==Y (R(X,e)X, ) +divu Z + (div yX)?
=1
n-1 n—1
+ 2 NDX) P = 3 {er Do, X) (e, DeX)
1=} i,i=1

where Z = D§ %‘%‘— is the acceleration vector field of the deformation, and D is used to denote
t

covariant differentiation in M with respect to g. We use the notation
n—1
divyX = Z(DelX,ei)
i=1
where X is a (not necessarily tangent) vector field along ¥ and ey,...,e,_; denotes an or-

thonormal basis for the tangent space to £. We write X = X + v where X is tangent to ¥
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and v is the unit normal. Similarly Z = Z + ¢»v. Since X-is minimal we have divy xv = 0

for any function y. We then have

FX = —@*Ric(v,v) — LNWBI* + Vo] + G

where G is given by

n—1

G=-23 o(RX,e)v,e) — ni: o(R(X,e)X, &)

i=1 1=
hVMZ+(d1vMX)2-—9B )+ ZB e,,

n—1 1
- 2p Z b,;,Xi;j - Z )A(,-;J-Xj;,- .
fLa=1 i1
In these formulas we work in an orthonormal frame, B(-,-) denotes the second fundamental
form given by B(V,W) = (DvW,v) for tangent vector fields V,W. We let b;; = Bl(e,, ¢;) in
our orthonormal basis, and for a tangent vector field V = 3 Vie;, V;,; denotes the covariant
derivative in the induced metric on . Any term which involves Z or X must reduce to a

boundary term. If D C ¥ is a bounded domain, we see

%]

/ GdH™? —/ { dle X,n) - ZXi;ijm

~20 3" b Xin; + (2, n)} dH"?

i
where 7 is the outward normal to D in E. To see that the interior terms drop out one must
use the Gaul and Codazzi equations as well as the Ricci formula. Foro > 0,let D, = Q,NZ
where {1, is the interior region bounded by (', as above. From the decay conditions on f and
h one checks that each of the boundary terms above decays faster than %", and hence the

boundary term tends fo zero as o — co. Therefore we conclude
[ Ric(nv) + |1 BIP) g*aret < [ [Tppare (4.1)

where ¢ = (X vy and X = X + aX; as above. Since X can be chosen to be arbitrary except

that X = & 5% outside a compact set, we see that ¢ is arbitrary except that

@ = a<i,1/> = ah¥=D(1 119 f[H)7V?
ozn

outside a compact set for a constant . Since ¢ —a = O (|z'|*™) we see that ¢ — o has finite
energy and therefore we can take ¢ to be any function for which ¢ — o has compact support

(or finite energy) for some constant a. As in [28] we can use the Gaul equation to write

. 1 1 1
Ric (v,v) + ||B||* = §RM—§R5+§|IBI|2 (4.2)
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where Ry is the (intrinsic) scalar curvature of £ in the induced metric.

To complete the proof, we first suppose n = 3 and choose ¢ = 1 in (4.1} to obtain
% Js BsdH? > 0. Now %Rz is simply the Gaussian curvature of £. The decay estimates for
f,h easily imply that the total geodesic curvature of 9D, converges to 27 where D, = £N{l,.

Therefore we may apply the Gaufi-Bonnet theorem on D, and let o tend to infinity to get
1
> /ERE dH? = 27y (E) — 21 .

Since x(Z) <1 for an open surface I, the right hand side is nonpositive. This contradicts the
previous inequality and completes the proof for n = 3.
Now suppose n > 4, and observe that the induced metric 7 on I satisfies (in terms of

coordinates z!,..., 2" )
7 = b2, f@NOD(6 + fufs) = 65+ 0 (I )

Therefore (X,7) is asymptotically flat and has energy zero. Inequality (4.1) together with

(4.2) and the inequality Ry > 0 imply that the lowest Dirichlet eigenvalue for Lz on any

-2

4{n—1)
enables us to solve Lyu = 0 on I, u > 0 on £, and v — 1 at infinity. Moreover, u has the

compact domain in ¥ is positive because ¢(n) =

< % for n > 3. Linear theory then

expansion
w(z) =1+ Bl P™+ 0 (lx'lg'“) .

In particular, u — 1 has finite energy on T, and we may take ¢ = u in (4.1). Using (4.2) and
the fact that Ra > 0 we get

~/ Ryw? dH™! < 2/ Vul? dH™ < c(n)_l/ IVul?dH™ .
b T =
We may then write

[lvw(m": }im/ |Vaef? dH"

z T Da

—¢(n) Iim / Reu?dH™' + lim uéy—ol’}‘{"'1
g—oe Jp, 700 Jap, 87]

where 7 denotes the outward unit normal to 8D,. From the expansion for u we then find
Eo < 0. Thus (X,u¥"=3)7) is asymptotically flat, has zero scalar curvature, and negative
total energy. The contradiction now follows inductively from n = 3. This completes the proof
that £ > 0. The statement that £ = 0 only if (M,g) is isometric to R" is proven in [23,
Lemma 3 and Proposition 2]. We omit the details. This completes the proof of Theorem 4.2.
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5 Noncompact manifolds and weak solutions

One of the results of [29] is that a simply connected, complete, locally conformally flat manifold
(M. g) with R{g) > 0 is conformally diffeomorphic to a domain 8 C 5™ with the Hausdorff
dimension of 5™ —  being al most (n — 2}/2. In particular, any compact locally conformally
flat manifold (M, go) with H{ga) > 0 is conformally covered by a simply connected domain
€ C 8" with dim{5™ — ) < (n—2)/2. Thus by lifting solutions of (1.9} from A to 1 we get

solutions v > 0 on £ of the equation
n—2 . .
Lu+ 2}_(“?”__)_ Wt/ — g {(5.1)

where Lu = Agnu — M u. These solutions satis{y the “boundary condition” that
(Q,u*"=2g,) is a complete Riemannian manifold. Here we take go to be the metric on the
unit sphere. The theorem of Obata discussed in §1 classifies the global regular solutions of
(5.1). The first example of a domain  arising from the above construction is S™ — { P, Q} for
two points P, () € S™. After a conformal transformation, we can take @ = —P and think of
S™ = R"U {oc} with P = 0. Q = oo. We explicitly analyzed the solutions of (5.1) for this
domain Q in §2. In general, any domain 2 arising as the universal cover (or any covering)
of a compact manifold is invariant under a discrete subgroup T' of the conformal group of S™
and is the domain of discontinuity of this group. From Kleinian group theory we know that
if the limit set A = 5" — 1 contains more than two points, then it mmust contain a Cantor set.
It is a theorem in [29] that for a domain €@ which covers a compact manifold, the quotient
manifold /T has a conformal metric of positive scalar curvature if and only if the Hausdorff
dimension of S™ — €1 is less than {n — 2)/2.

Generally, if u is a solution of (5.1) on a domain © C 5" such that (2,4 Hg) is a
complete manifold, then it is shown in [29] that u is integrable on 5™ to the power {(n+2)/{n—2)
and that u defines a global weak solution of (5.1} on 5™ Thus the problem of constructing
complete solutions of (5.1) on {2 is closely related to the problem of constructing weak solutions
of (5.1} on S™ with prescribed singular set A = §™ — . We have seen that many solutions of
{5.1) exist which are singular at two specified points; in fact, such solutions can be classified.
The question of specifying more than two singular points has been posed in various contexts
over the years. (Solutions do not exist with one singular point.) An obvious approach to this
problem would be to fix the asymptotic behavior near & specified points of 5™ and to construct
a solution which is essentially a compact perturbation of a given function with the correct
asymptotics. The difficulties in this approach are apparent from analysis of the solutions
singular at 0,00. Let z € R™ 1 = log|z| as in §2. The simplest solution of (2.2) is the
constant solution u(t) = ug. This gives rise to the solution v(z) = uglz]~™=2/2 in R* — {0} of
the equation Av + 1(7:—_21 vt/ (n-2) = ( which is equivalent to-equation (5.1). If we consider

solutions which are near uy on a large piece of R x 577!, then we would expect the linearized
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equation al ug to dictate their behavior. The linearized operator is £y = Ay +{n — 2}y where
A is with respect to the metric di? + dé? on the cylinder. In particular, we see that zero
is embedded in the continuous spectrum for £ on R x S"7!. Thus controlling £~! on large
regions of R x S™~1 will be a difficult problem. It is not known whether solutions exist with
asymptotic behavior given by the constant solution ug. In [24] we proved a general existence
theorem for weak solutions which implies that one can specifv any & points of 5™ and construct
solutions singular at these points and asymptotic to solutions described in §2 with o near one.
Roughly speaking, the spectrum of the linearized operator for such solutions (e &2 1) contains
a small interval near 0, and the spectral subspace corresponding to this interval imposes an
infinite number of geometric “balancing” conditions on the way in which spherical pieces of

solutions are attached. We refer the reader to [24] for details
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