Real Variables: Solutions to Homework 2

September 18, 2011

Exercise 0.1. Chapter 2, # 1: Let f(z) = zsin(1/x) for x € (0,1] and f(0) = 0. Show
that f is bounded and continuous on [0, 1] but V[f;0,1] = +oo.

Proof. To see that f is bounded it is enough to realize that |sin(z)| < 1 for z € [0, 1], so
1f(z)| = |zsin(1/z)| < 1.

To see that f is continuous, because it is a product of continuous functions on the interval
(0, 1], it is sufficient to consider the limit as 6 — 0 of f(¢) is f(0):

0 < lim /() < lim |£(5)| = lim [ sin(1/6)] < lim 5 = 0.
So we have that
lim f(9) =0 = f(0).
d—0
To see that f is not of bounded variation we will in fact prove something much more general:

Theorem 0.2. Take a,b > 0, then define function f
2%sin(z7?) 2 € (0,1
Fa) = { (™) we(0.1]

0 x=0
f is of bounded variation only if a > .

Proof. Consider the partition defined by I' := {z,,} = {(mr + %)71/ b}. The motivation for
defining such a quantity is
sin(z-?) = {1 n even

~1 nodd’
SO
Ty moeven
flen) = {—x‘,‘b n odd
Now,
D1 @a) = flaa)l = Y11 [2h +an][ = Y [ah + )]
n=1 n=1 n=1
m—1 m—1 m—1 7N\ —a/b
=2 Ty + Ty + 20 > T, = (mr—l——) :
n=1 n=1 n=1 2



Here we see that
m—1

—a/b
%g;(nﬂ'—Fg) <00 <= a>b.
O
In our particular example we have a = b and therefore we immediately know that
VIf;0,1] = 4o0. O

Exercise 0.3. Chapter 2, # 4: Let {fr} be a sequence of functions of bounded variation

n [a,b]. If V[fr;a,b] < M < +oo for all k and f — f point wise on [a,b], show that f
is of bounded variation and that V[f;a,b] < M. Give an example of a convergent series of
functions of bounded variation whose limit is not of bounded variation.

Proof. Begin by fixing a partition I' = {z;}%_, of the interval [a, b]. We know

V[fn;a,b] = supzifnxz — fulwin)| <M

for all n. Furthermore, because f;, — f pointwise,

T n—oo

k
V[f;av b] = S%pz |f(xl) xl 1 | = Sup lim Z ‘fn z fn('rzfl)‘ S M.

O

As for the example of a convergent series of functions of bounded variation whose limit
is not of bounded variation, taking a hint from problem 1, consider a function

~Jatsin(zT?) we [, 1]
oy = o) el

with a < b. For any given n, f, is of bounded variation but

F(2) = lim fu(x) =

n—o0

we have show to not be of bounded variation.

Exercise 0.4. Chapter 2, # 5: Suppose that f is finite on [a, b] and is of bounded variation
on every interval [a+e€,b], € > 0, with V[f;a+¢,0] < M < +oo. Show that V[f;a,b] < +oco.
Is V[f;a,b] < M? If not what additional assumptions will make it so?

Proof. We know that V|[f;a+e,b] < M with € > 0 varying between 0 and b—a. By definition
of variation,

1£(b) — fla+€)| <V[f;a+eb] < M forall e € (0,b— al.



We can rearrange this to say

sup |f(z)] < [f(b)] + M.

z€(a,b]

Now fix a partition I' = {z;}¥_; of the interval [a = zy,b = x;]. Then we have

k

Z ’f(fﬂz) - f(xi—1)| < |f($1) - f($0)| + VIf; 1, 28]

=1
< sup |f(z1)| + |f(a)] + M

z€(a,b]

= [fO)+ M +[f(a)] + M.

Thus we have shown that
k
Vifia,b] = Sl;pz |f(x:) = flzi)| < FO)]+[f(a)] + 2M.

It is clear from this that V'[f;a,b] is not always bounded by M. We claim that in order for
this to be true one thing need to happen, f needs to be a continuous function at a to insure
that there is no jump at f(a) which would break the M-bound. To see that this does it,
again fix a partition I' = {x;}}_, of the interval [a = xg,b = x3]. Pick some z, € [xg, z1].
Then

Z }f(l'l) - f(xFl)‘ < ‘f(mz) - f(l'o)‘ + |f(33'1) - f(xf)‘ + Z ‘f(ﬂl?z) - f(a:i,l)‘

o) = f(@o)| + | f(@1) = fzo)| + VIf; ze, 2]
(xe) — flxo)| + V[f; w0, 2]
(z¢) — f(20)| + M.

=
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Now, taking the limit as £ — 0, because f is continuous at a, we see

lim | £ () — f(20)| + M = M.

£—0

Taking the supremum we find:

k
Vifia,b = sgpz (@) = flzin)| < M,
i=1

and we are done. O

Exercise 0.5. Chapter 2, # 6: Let f(z) = z%sin(1/z) for z € (0,1] and f(0) = 0. Show
that V[f,0,1] < +oc.

Proof. f is differentiable on [0, 1] of bounded derivative. Then by Exercise 5, V(f) < +o0 [



Exercise 0.6. Chapter 2, # 7: Suppose that f is of bounded variation onla,b]. If f is
continuous on |a, b], show that V(x), N(z) and P(x) are continuous on [a, b].

Proof. First note that it is sufficient to prove that if f is continuous on [a, b] then so too is
V because by Theorem 2.6 in the text,

1

P
2

1
V+ f() = fla)] and N = S [V = f(b) + f(a)]
so if V' is continuous, by this decomposition so are P and .

To see that f continuous implies V' continuous consider ¢ € [a, b]. We need a notation for
left and right hand limits, denote the limit from above as lim, ,.+ V[f;xz,b] with z € (¢, b
and the limit from below as lim,_,.- V[f;z,b] with y € [a,c). First let us work with limits
from the right hand side. We see pretty trivially that

VI[f;c,b] > lim+V[f;:c,b].

Tr—cC

In fact, we can say something even stronger by directly applying the result from Exercise
0.4 (Chapter 2, # 5). Since
VI[f;x,b] < lim+ VI[f;x,0l.

T—C
we find that
lim V[f;z,b] = V[f;c,b]

Tr—C

and therefore, combining this with out earlier result gives

lim VI[f;x,b] = V[f;c0].

Tr—C

Now, to show that V' is continuous from the right, we need to show that

lim V[f;a,z] = V[f;a,c.

z—ct

We go on to calculate:
lim V[f;a,2] =V[f;a,b] - V|f;a,z]

=Vlf;a,b] = V[f;a,c|
=VlIf;a,d.

V' is continuous from the right. To see that V' is continuous from the left we need to show
that

lim V[f;y,b] = V[f;c,b].

y—ct

This follows from the argument for right hand continuity if one defines a function g = f(b—y)
and notices that

VIf;y, 0] = Vig;0,b — y].



Exercise 0.7. Chapter 2, # 9: Let C be a curve with parametric equations z = ¢(t) and
y =(t) for t € [a, b].

1. If ¢, are of bounded variation and continuous, show that L = limp_o ¢(I).

Proof. To phrase this somewhat differently, given an € > 0, there exists a 6 > 0 such
that |[L —¢(T")| < € for all T" satisfying |I'| := max;(z; — z;,_1) < 0. Since ¢ and 1) are of
bounded variation, L is finite. Fix a partition 'y = {x;}F_, of the interval [a, b] such
that ¢(I'y) > L — e Furthermore, since ¢, 1) are continuous on the interval, we can find
0,6" > 0 such that

NG

[ —2'| <6 = |¢(z) — o(2)| < o

ool <6 = [vla) - ()| < L.

Then for any I' satisfying |I'| := max;(z; — x;_1) < 0, let I" = ' U T, then clearly
((I") > L — e And by triangle inequality

IL— ()] < |L— ()| + (") — (D)] < e + 2e.

2. If ¢, are continuously differentiable, show that L = f; VO ()2 4+ (t)2dt.

Proof. We have that ¢,v € C'([a,b]). That is, their derivatives and they themselves
are continuous on the interval [a,b]. Fix a partition ' = {z;}¥_, of the interval [a, b]
then applying part 1 of this exercise we find

k

. . 2 9 12
L= fim () = Jim Y (1662) = ot + o) = (o))

b
_ / VIR T P (@)de.




Exercise 0.8. Chapter 2, # 10: If a < A\ < Ay < --- < A\, < b is a finite sequence and
|s| < oo, write >, axe™** as a Riemann-Stieltjes integral.

Proof. Let ¢(z) be a step function. We construct it completely analogously to the text
(remark # 3 pg. 23): Let A\ < Mg < -+ < Ay,

p(NiEx) = lim é(z) and  a; = d(Nit) — P(Ni—)
At
Then choose f = e—sz, so
n b
Zaie’“i :/ e dap.
i=1 a
]

Exercise 0.9. Chapter 2, # 14: Give an example which shows that for ¢ € (a,b), fac fdo
and fcb fd¢ may both exist but fab fd¢ may not.

Proof. Take functions f, ¢ to be

¢(x):{1 z € [0,1] o f(x):{1 z € (0,1]

0 otherwise 0 otherwise.

/_i fdo and /01 fdo

In this case, both

exist but .
| a0
-1
does not exist. The reasoning for this is on pg. 29 of the text. O
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