
Real Variables: Solutions to Homework 2

September 18, 2011

Exercise 0.1. Chapter 2, # 1: Let f(x) = x sin(1/x) for x ∈ (0, 1] and f(0) = 0. Show
that f is bounded and continuous on [0, 1] but V [f ; 0, 1] = +∞.

Proof. To see that f is bounded it is enough to realize that | sin(x)| ≤ 1 for x ∈ [0, 1], so

|f(x)| = |x sin(1/x)| ≤ 1.

To see that f is continuous, because it is a product of continuous functions on the interval
(0, 1], it is sufficient to consider the limit as δ → 0 of f(δ) is f(0):

0 ≤ lim
δ→0

f(δ) ≤ lim
δ→0
|f(δ)| = lim

δ→0
|δ sin(1/δ)| ≤ lim

δ→0
δ = 0.

So we have that
lim
δ→0

f(δ) = 0 = f(0).

To see that f is not of bounded variation we will in fact prove something much more general:

Theorem 0.2. Take a, b > 0, then define function f

f(x) =

{
xa sin(x−b) x ∈ (0, 1]

0 x = 0
.

f is of bounded variation only if a > b.

Proof. Consider the partition defined by Γ := {xn} =
{(
nπ + π

2

)−1/b
}

. The motivation for

defining such a quantity is

sin(x−bn ) =

{
1 n even

−1 n odd
,

so

f(xn) =

{
xan n even

−xan n odd
.

Now,
m∑
n=1

|f(xn)− f(xn−1)| =
m∑
n=1

∣∣(−1)n
[
xan + xan−1

]∣∣ =
m∑
n=1

[
xan + xan−1

]
= 2

m−1∑
n=1

xan + xm + x0 ≥
m−1∑
n=1

xan =
m−1∑
n=1

(
nπ +

π

2

)−a/b
.
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Here we see that

lim
m→∞

m−1∑
n=1

(
nπ +

π

2

)−a/b
<∞ ⇐⇒ a > b.

In our particular example we have a = b and therefore we immediately know that
V [f ; 0, 1] = +∞.

Exercise 0.3. Chapter 2, # 4: Let {fk} be a sequence of functions of bounded variation
on [a, b]. If V [fk; a, b] ≤ M < +∞ for all k and fk → f point wise on [a, b], show that f
is of bounded variation and that V [f ; a, b] ≤ M . Give an example of a convergent series of
functions of bounded variation whose limit is not of bounded variation.

Proof. Begin by fixing a partition Γ = {xi}ki=0 of the interval [a, b]. We know

V [fn; a, b] = sup
Γ

k∑
i=1

∣∣fn(xi)− fn(xi−1)
∣∣ ≤M

for all n. Furthermore, because fk → f pointwise,

V [f ; a, b] = sup
Γ

k∑
i=1

∣∣f(xi)− f(xi−1)
∣∣ = sup

Γ
lim
n→∞

k∑
i=1

∣∣fn(xi)− fn(xi−1)
∣∣ ≤M.

As for the example of a convergent series of functions of bounded variation whose limit
is not of bounded variation, taking a hint from problem 1, consider a function

fn(x) =

{
xa sin(x−b) x ∈ [ 1

nπ
, 1]

0 x = 0
.

with a ≤ b. For any given n, fn is of bounded variation but

f(x) = lim
n→∞

fn(x) =

{
xa sin(x−b) x ∈ (0, 1]

0 x = 0
.

we have show to not be of bounded variation.

Exercise 0.4. Chapter 2, # 5: Suppose that f is finite on [a, b] and is of bounded variation
on every interval [a+ ε, b], ε > 0, with V [f ; a+ ε, b] ≤M < +∞. Show that V [f ; a, b] < +∞.
Is V [f ; a, b] ≤M? If not what additional assumptions will make it so?

Proof. We know that V [f ; a+ε, b] ≤M with ε > 0 varying between 0 and b−a. By definition
of variation,

|f(b)− f(a+ ε)| ≤ V [f ; a+ ε, b] ≤M for all ε ∈ (0, b− a].
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We can rearrange this to say

sup
x∈(a,b]

|f(x)| ≤ |f(b)|+M.

Now fix a partition Γ = {xi}ki=0 of the interval [a = x0, b = xk]. Then we have

k∑
i=1

∣∣f(xi)− f(xi−1)
∣∣ ≤ ∣∣f(x1)− f(x0)

∣∣+ V [f ;x1, xk]

≤ sup
x∈(a,b]

|f(x1)|+ |f(a)|+M

= |f(b)|+M + |f(a)|+M.

Thus we have shown that

V [f ; a, b] = sup
Γ

k∑
i=1

∣∣f(xi)− f(xi−1)
∣∣ ≤ |f(b)|+ |f(a)|+ 2M.

It is clear from this that V [f ; a, b] is not always bounded by M . We claim that in order for
this to be true one thing need to happen, f needs to be a continuous function at a to insure
that there is no jump at f(a) which would break the M -bound. To see that this does it,
again fix a partition Γ = {xi}ki=0 of the interval [a = x0, b = xk]. Pick some x` ∈ [x0, x1].
Then

k∑
i=1

∣∣f(xi)− f(xi−1)
∣∣ ≤ ∣∣f(x`)− f(x0)

∣∣+
∣∣f(x1)− f(x`)

∣∣+
k∑
i=2

∣∣f(xi)− f(xi−1)
∣∣

≤
∣∣f(x`)− f(x0)

∣∣+
∣∣f(x1)− f(x`)

∣∣+ V [f ;x`, xk]

≤
∣∣f(x`)− f(x0)

∣∣+ V [f ;x`, xk]

≤
∣∣f(x`)− f(x0)

∣∣+M.

Now, taking the limit as `→ 0, because f is continuous at a, we see

lim
`→0

∣∣f(x`)− f(x0)
∣∣+M = M.

Taking the supremum we find:

V [f ; a, b] = sup
Γ

k∑
i=1

∣∣f(xi)− f(xi−1)
∣∣ ≤M,

and we are done.

Exercise 0.5. Chapter 2, # 6: Let f(x) = x2 sin(1/x) for x ∈ (0, 1] and f(0) = 0. Show
that V [f, 0, 1] < +∞.

Proof. f is differentiable on [0, 1] of bounded derivative. Then by Exercise 5, V (f) < +∞
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Exercise 0.6. Chapter 2, # 7: Suppose that f is of bounded variation on[a, b]. If f is
continuous on [a, b], show that V (x), N(x) and P (x) are continuous on [a, b].

Proof. First note that it is sufficient to prove that if f is continuous on [a, b] then so too is
V because by Theorem 2.6 in the text,

P =
1

2
[V + f(b)− f(a)] and N =

1

2
[V − f(b) + f(a)]

so if V is continuous, by this decomposition so are P and N .

To see that f continuous implies V continuous consider c ∈ [a, b]. We need a notation for
left and right hand limits, denote the limit from above as limx→c+ V [f ;x, b] with x ∈ (c, b]
and the limit from below as limy→c− V [f ;x, b] with y ∈ [a, c). First let us work with limits
from the right hand side. We see pretty trivially that

V [f ; c, b] ≥ lim
x→c+

V [f ;x, b].

In fact, we can say something even stronger by directly applying the result from Exercise
0.4 (Chapter 2, # 5). Since

V [f ;x, b] ≤ lim
x→c+

V [f ;x, b].

we find that
lim
x→c+

V [f ;x, b] ≥ V [f ; c, b]

and therefore, combining this with out earlier result gives

lim
x→c+

V [f ;x, b] = V [f ; c, b].

Now, to show that V is continuous from the right, we need to show that

lim
x→c+

V [f ; a, x] = V [f ; a, c].

We go on to calculate:

lim
x→c+

V [f ; a, x] = V [f ; a, b]− V [f ; a, x]

= V [f ; a, b]− V [f ; a, c]

= V [f ; a, c].

V is continuous from the right. To see that V is continuous from the left we need to show
that

lim
y→c+

V [f ; y, b] = V [f ; c, b].

This follows from the argument for right hand continuity if one defines a function g = f(b−y)
and notices that

V [f ; y, b] = V [g; 0, b− y].
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Exercise 0.7. Chapter 2, # 9: Let C be a curve with parametric equations x = φ(t) and
y = ψ(t) for t ∈ [a, b].

1. If φ, ψ are of bounded variation and continuous, show that L = lim|Γ|→0 `(Γ).

Proof. To phrase this somewhat differently, given an ε > 0, there exists a δ > 0 such
that |L− `(Γ)| < ε for all Γ satisfying |Γ| := maxi(xi−xi−1) < δ. Since φ and ψ are of
bounded variation, L is finite. Fix a partition Γ0 = {xi}ki=0 of the interval [a, b] such
that `(Γ0) > L− ε Furthermore, since φ, ψ are continuous on the interval, we can find
δ, δ′ > 0 such that

|x− x′| < δ =⇒ |φ(x)− φ(x′)| <
√
ε

2k

|x− x′| < δ =⇒ |ψ(x)− ψ(x′)| <
√
ε

2k
.

Then for any Γ satisfying |Γ| := maxi(xi − xi−1) < δ, let Γ′ = Γ ∪ Γ0, then clearly
`(Γ′) > L− ε And by triangle inequality

|L− `(Γ)| ≤ |L− `(Γ′)|+ |`(Γ′)− `(Γ)| ≤ ε+ 2ε.

2. If φ, ψ are continuously differentiable, show that L =
∫ b
a

√
φ′(t)2 + ψ′(t)2dt.

Proof. We have that φ, ψ ∈ C1([a, b]). That is, their derivatives and they themselves
are continuous on the interval [a, b]. Fix a partition Γ = {xi}ki=0 of the interval [a, b]
then applying part 1 of this exercise we find

L = lim
|Γ|→0

`(Γ) = lim
k→∞

k∑
i=1

(
[φ(xi)− φ(xi−1)]2 + [ψ(xi)− ψ(xi−1)]2

)1/2

=

∫ b

a

√
φ′(x)2 + ψ′(x)2dx.
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Exercise 0.8. Chapter 2, # 10: If a ≤ λ1 < λ2 < · · · < λn ≤ b is a finite sequence and
|s| <∞, write

∑
k ake

−sλk as a Riemann-Stieltjes integral.

Proof. Let φ(x) be a step function. We construct it completely analogously to the text
(remark # 3 pg. 23): Let λ1 < λ2 < · · · < λn,

φ(λi±) = lim
x→λ±

φ(x) and ai = φ(λi+)− φ(λi−)

Then choose f = e−sx, so
n∑
i=1

aie
−sλi =

∫ b

a

e−sxdφ.

Exercise 0.9. Chapter 2, # 14: Give an example which shows that for c ∈ (a, b),
∫ c
a
fdφ

and
∫ b
c
fdφ may both exist but

∫ b
a
fdφ may not.

Proof. Take functions f, φ to be

φ(x) =

{
1 x ∈ [0, 1]

0 otherwise
and f(x) =

{
1 x ∈ (0, 1]

0 otherwise.

In this case, both ∫ 0

−1

fdφ and

∫ 1

0

fdφ

exist but ∫ 1

−1

fdφ

does not exist. The reasoning for this is on pg. 29 of the text.
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