
REAL VARIABLES: PROBLEM SET 1

BEN ELDER

1. Problem 1.1a

First let’s prove that limsup Ek consists of those points which belong to infinitely many
Ek. From equation 1.1:

limsup Ek =

∞⋂
j=1

( ∞⋃
k=j

Ek

)

For limsup Ek, the intersection means that ∀ j, any point x in limsup Ek is in
⋃∞

k=j Ek. If
x is not in infinitely many of the sets Ek, then we can take the last set which contains x,
call this set EF , so that ∀ k > F , x /∈ Ek. Then x cannot be in limsup Ek because it is not
in the union

⋃∞
k=j Ek for j > F and therefore not in the intersection of all j’s. We have a

contradiction so x must be in infinitely many of the sets Ek.

Suppose now that x is an element of infinitely many sets Ek. Then for any j, x ∈
⋃∞

k=j Ek

because otherwise x could only be in j - 1 sets. So, since x is in
⋃∞

k=j Ek for any j, then

x ∈
∞⋂
j=1

( ∞⋃
k=j

Ek

)
=⇒ x ∈ limsup Ek

So limsup Ek consists of exactly the points which are in infinitely many of the sets Ek.

Next let’s prove that liminf Ek consists of those points which belong to all Ek from some
k on. Again from equation 1.1:

liminf Ek =

∞⋃
j=1

( ∞⋂
k=j

Ek

)

Let y be in liminf Ek. Suppose that for any j ∈ Z+, ∃ k0 such that k0 > j and y /∈ Ek0 .
Then for any j, y /∈ Vj =

⋂∞
k=j Ek. Since y is not in the set Vj for any value of j, it is not

in the intersection of the Vj , and by definition is not in liminf Ek, a contradiction. Then
every element of liminf Ek must be in all Ek from some k on.
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Suppose now that y is an element of all Ek from some k on, say k = k0. Then for all
j > k0, we know that y ∈

⋂∞
k=j Ek. Since y is in some of these sets, it is also in the union

of all of these sets:

y ∈
∞⋃
j=1

( ∞⋂
k=j

Ek

)
=⇒ y ∈ liminf Ek

2. Problem 1.3

a) Use the De Morgan laws.

C(limsup Ek) = C

[ ∞⋂
j=1

( ∞⋃
k=j

Ek

)]
=
∞⋃
j=1

C

( ∞⋃
k=j

Ek

)
=
∞⋃
j=1

( ∞⋂
k=j

CEk

)
= liminf CEk

b) Suppose Ek ↗ E. Then E ⊃ Ek+1 ⊃ Ek ∀ k. So since every x ∈ limsup Ek must be
in infinitely many Ek, x ∈ E. Then limsup Ek ⊂ E. Now take a point y ∈ E. We know
that ∃ k0 such that ∀ k > k0, y ∈ Ek. Then y ∈ Ek0 ⊂ Ek0+1 ⊂ Ek0+2.... Then y is in
infinitely many of the sets Ek and by problem 1a, it is in limsup Ek. Then limsup Ek ⊃ E
so limsup Ek = E.

If a point is in liminf Ek then it is in all but finitely many Ek, so it is in infinitely many
Ek, and is in limsup Ek. So liminf Ek ⊂ limsup Ek. Then liminf Ek ⊂ E.

Now if y ∈ E, ∃ k0 such that ∀ k > k0, y ∈ Ek. Then ∀ j > k0, y ∈ Vj =
⋂∞

k=j Ek. Since y
is in some of these sets Vj , it is in the union of all of these sets, and y ∈ liminf Ek. Then

E ⊂ liminf Ek =⇒ E = liminf Ek = limsup Ek as desired.

Now suppose Ek ↘ E. Then E ⊂ Ek+1 ⊂ Ek ∀ k. Any x that is in infinitely many of the
Ek is in limsup Ek. Because the Ek decrease monotonically, and E is contained in every
Ek, every x ∈ E is contained in infinitely many of the Ek. So ∀ x ∈ E, we know that
x ∈ limsup Ek. Then E ⊂ limsup Ek.

Every point y ∈ liminf Ek is in all but finitely many Ek. Since the Ek decrease monoton-
ically, all y ∈ liminf Ek are in all Ek. The set of all points which are in all Ek is the set
E. A sequence of sets Ek decreases to

⋂
k Ek if Ek ⊃ Ek+1 ∀ k. So for any j, we see that

E = Vj =
⋂∞

k=j Ek. Then E = liminf Ek.

Suppose there is a point x ∈ limsup Ek. Then x is in infinitely many of the Ek. Since the
Ek decrease monotonically, x is in all of the Ek. As seen in the last paragraph, all points
x which are in all of the Ek are in E. So ∀ x ∈ limsup Ek, x ∈ E. Then E ⊃ limsup Ek.

Finally, we get E = limsup Ek = liminf Ek .
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3. Problem 1.8

If E is relatively open with respect to an interval I, then E = I ∩G for some set G that is
open in Rn. By theorem 1.11, G can be written as the countable union of nonoverlapping
cubes. Then G = ∪iQi where each Q is a cube. So E = (∪iQi) ∩ I = ∪i(Qi ∩ I).

It is clear that the intersection of any cube with an interval is an interval. Since there were
a countable number of cubes, there are a countable number of intervals Ji. Since the cubes
were nonoverlapping, the intervals Ji must be nonoverlapping. Then E is the union of a
countable number of nonoverlapping intervals.

4. Problem 1.10

First let’s prove that in R1 any bounded infinite sequence {xn} has a limit point.

We start by proving that bounded sequences have monotone subsequences. Suppose that
there exists a point xk1 such that there is no k for which k > k1 and xk > xk1. So xk1

is higher than every subsequent point in the sequence. Further suppose that there are
an infinite number of such points, xk1, xk2, xk3, . . . . Then we can take these points
as a subsequence of {xn}. This subsequence is monotone decreasing. Now suppose that
there are only a finite number of such points xk1, xk2, . . . , xkm. If there exist some
such points, choose the point xkm+1 = y0. If there are no such points, start with the
first point of the sequence x0 = y0. Next choose some subsequent point y1 which is
greater than the initial point. There must be such a point, because the initial point is
not the highest point in the rest of the sequence, and there are no such points after it
in the sequence. We can then continue choosing points such that yn < yn+1 and obtain
a monotone increasing subsequence {yn} ⊂ {xn}. So any bounded sequence in R1 has a
monotone subsequence.

Now we need to show that in R1, monotone bounded sequences converge. Without loss
of generality, assume we have a monotone increasing, bounded sequence {xn}. Then by
the Least Upper Bound Axiom, there exists a least upper bound in R1, call this bound
L. Then ∀ ε > 0, ∃ N such that ∀ n > N , xn > L − ε, because otherwise L − ε
would be an upper bound for {xn} less than L, a contradiction of the L.U.B. axiom.
L− ε < xn < L =⇒ |x− L| < ε. As ε→ 0, xn → L, and the sequence converges to L. So
we have proved the Bolzano-Weierstrauss theorem for R1.

Now to extend the theorem to Rn. Take a bounded sequence {xn} in Rn. Use the theorem
in one dimension to choose a subsequence {x1

n} whose elements’ first coordinates converge.
We are guaranteed to have such a sequence because the first coordinates of each element
of {xn} form a bounded sequence in R1. Next choose a subsequence of this subsequence
{x2

n} ⊂ {x1
n} whose elements’ second coordinates converge. Continue this n times until we

have a subsequence whose elements converge in every coordinate, and therefore in Rn.
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5. Problem 1.12

Take two sets A and B in R2. Let A = {y : y ≥ e−x
2} and B = {y : y ≤ −e−x2}.

These two sets are disjoint, because both approach the x axis asymptotically from different
directions at ±∞. The infimum of the distance is 0, because there is no ε > 0 such that
d(x, y) > ε for all x ∈ A and y ∈ B. These sets can be topologically embedded into any
higher dimensional Euclidean space without changing these properties.

6. Problem 1.15

First let’s prove ”⇒”. Assume that a bounded function f is Riemann integrable on an
interval I. Then from equation 1.20, we know that infΓ UΓ = supΓ LΓ = A.

UΓ =
N∑
k=1

[supx∈Ikf(x)]v(Ik), LΓ =

N∑
k=1

[infx∈Ikf(x)]v(Ik)

It is clear from the definition that UΓ ≥ LΓ ∀ Γ. Suppose that ∃ ε > 0 such that UΓ−LΓ > ε
for all Γ.

ε <
N∑
k=1

[supx∈Ikf(x)]v(Ik)−
N∑
k=1

[infx∈Ikf(x)]v(Ik)

=

N∑
k=1

(
supx∈Ikf(x)− infx∈Ikf(x)

)
v(Ik)

Obviously as the number of intervals in the partition Γ goes to infinity, the volume of
each partition goes to 0. By choosing the points {ξk} to be the supremum (infimum) of
each interval Ik, we see from the definition of the Riemann integral that both UΓ (LΓ)
approaches its infimum (supremum) in the limit as |Γ| → 0. So taking the limit as |Γ| → 0,
we get:

lim|Γ|→0

(
N∑
k=1

[supx∈Ikf(x)]v(Ik)

)
= lim|Γ|→0UΓ = A

lim|Γ|→0

(
N∑
k=1

[infx∈Ikf(x)]v(Ik)

)
= lim|Γ|→0LΓ = A

=⇒ lim|Γ|→0

(
ε
)
< lim|Γ|→0

(
N∑
k=1

[supx∈Ikf(x)]v(Ik)−
N∑
k=1

[infx∈Ikf(x)]v(Ik)

)
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=⇒ ε < lim|Γ|→0

(
N∑
k=1

[supx∈Ikf(x)]v(Ik)

)
− lim|Γ|→0

(
N∑
k=1

[infx∈Ikf(x)]v(Ik)

)

=⇒ ε < lim|Γ|→0

(
UΓ

)
− lim|Γ|→0

(
LΓ

)
=⇒ ε < A−A = 0

Since we chose ε > 0, we have found our contradiction. Then if f is Riemann integrable on
I, then ∀ ε > 0, ∃ Γ such that 0 ≤ UΓ − LΓ < ε. We have proved ”⇒”.

Now prove ”⇐”. Assume that on an interval I and for a function f, ∀ ε > 0, ∃ Γ such that
0 ≤ UΓ−LΓ < ε. Since UΓ ≥ LΓ ∀ Γ, and for the same Γ they can be made arbitrarily close
to one another, it is clear that infΓ UΓ = supΓ LΓ = A for some constant A. This is the
equivalent definition of a function being Riemann integrable. So f is Riemann integrable
on I ⇐⇒ ∀ ε > 0 ∃ a partition Γ such that 0 ≤ UΓ − LΓ < ε.

7. Problem 1.17

ω(δ) = sup{|f(x)− f(y)| : |x− y| < δ}

It is clear from the definition that the modulus of continuity must decrease monotonically
but not necessarily strictly decrease as δ decreases. For instance, suppose that δ = ∞.
Then ω(δ) = fmax − fmin where f(a) = fmax is the global maximum of f and f(b) = fmin

is the global minimum. Then if we decrease δ, ω will remain constant until δ = |b − a|,
where it will begin decreasing, because the greatest possible difference the function has is
no longer included in the modulus of continuity. Because there are fewer points within a
distance δ of any given point as δ decreases, the maximum distance between that point
and any other within a radius δ must either remain constant or decrease.

By definition, f is uniformly continuous if ∀ x, y ∈ Rn, ∀ ε > 0, ∃ δ such that |f(x) −
f(y)| < ε whenever |x − y| < δ. If ω(δ) → 0 as δ → 0, then ω(δ) = sup{|f(x) − f(y)| :
|x− y| < δ} → 0 =⇒ |f(x)− f(y)| → 0 ∀ |x− y| < δ. This is exactly the definition of
uniform continuity. Then these two conditions are completely equivalent.

8. Problem 1.18

F closed in (−∞, ∞) implies that FC ⊂ (−∞, ∞) is open. By theorem 1.10, every open
subset of the real line can be expressed as the countable union of disjoint, open intervals.
Our desired function g has its values set on F by the requirement g(x) = f(x) | x ∈ F . So
we just need to find a definition for g on the open set FC . There are three possible types
of intervals that make up FC : (−∞, a), (b, c), and (d,∞).

First consider the interval (b,c) ⊂ FC such that b ∈ F and c ∈ F . Since f is defined on F,
f(b) and f(c) must be both defined and finite. In order to satisfy our requirements, g needs
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to be continuous on this interval and have limx→b+ g(x) = f(b) and limx→c− g(x) = f(c).
The linear function:

g(x) = f(b) +

(
x− b
c− b

)[
f(c)− f(b)

]
obviously satisfies these conditions. So then take this as the definition of g on all bounded
open intervals in FC . Next, what about unbounded open intervals? Consider (d,∞). If
this interval is in FC , then again we need limx→d+ g(x) = f(d). Let:

g(x) = f(d) · e−(x−d)2

This function is continuous at x = d, as well as on the interval (d,∞). Then we will define
g by g(x) = f(x) ∀ x ∈ F, g(x) = f(b) +

(
x−b
c−b
)[
f(c) − f(b)

]
∀ x ∈ (b, c) such that

(b, c) ⊂ FC and b, c ∈ F , and if (−∞, a) or (d,∞) are in FC then g(x) = f(a) · e−(x−a)2 or

g(x) = f(d) · e−(x−d)2 respectively. |g| is monotone increasing on (−∞, a) and monotone
decreasing (d,∞). WLOG assume that for an arbitrary interval (b, c) ⊂ FC with b, c ∈ F ,
that f(b) ≤ f(c). Then on (b,c), f(b) ≤ g(x) ≤ f(c). So ∀ x ∈ (−∞,∞), |g(x)| ≤ |f(x0)|
for some x0 ∈ F . So if f is bounded, then so is g.


