Wave Equation on a Two Dimensional Rectangle

In these notes we are concerned with application of the method of separation of variables applied to the wave equation in a two dimensional rectangle. Thus we consider

$$
\begin{align*}
u_{t t} & =c^{2}\left(u_{x x}(x, y, t)+u_{y y}(x, y, t)\right), \quad t>0, \quad(x, y) \in[0, a] \times[0, b], \tag{1}\\
u(0, y, t) & =0, \quad u(a, y, t)=0, \quad u(x, 0, t)=0, \quad u(x, b, t)=0 \\
u(x, y, 0) & =f(x, y), \quad u_{t}(x, y, 0)=g(x, y)
\end{align*}
$$

$$
u(x, y)=X(x) Y(y) T(t)
$$

Substituting into (1) and dividing both sides by $X(x) Y(y)$ gives

$$
\frac{T^{\prime \prime}(t)}{c^{2} T(t)}=\frac{Y^{\prime \prime}(y)}{Y(y)}+\frac{X^{\prime \prime}(x)}{X(x)}
$$

Since the left side is independent of x, y and the right side is independent of t, it follows that the expression must be a constant:

$$
\frac{T^{\prime \prime}(t)}{c^{2} T(t)}=\frac{Y^{\prime \prime}(y)}{Y(y)}+\frac{X^{\prime \prime}(x)}{X(x)}=\lambda
$$

We seek to find all possible constants λ and the corresponding nonzero functions T, X and Y. We obtain

$$
\frac{X^{\prime \prime}(x)}{X(x)}=\lambda-\frac{Y^{\prime \prime}(y)}{Y(y)} \quad T^{\prime \prime}(t)-c^{2} \lambda T(t)=0 .
$$

Thus we conclude that there is a constant α

$$
X^{\prime \prime}-\alpha X=0 .
$$

On the other hand we could also write

$$
\frac{Y^{\prime \prime}(y)}{Y(y)}=\lambda-\frac{X^{\prime \prime}(x)}{X(x)}
$$

so there exists a constant β so that

$$
Y^{\prime \prime}-\beta Y=0
$$

Furthermore, the boundary conditions give

$$
X(0) Y(y)=0, \quad X(a) Y(y)=0 \quad \text { for all } y
$$

Since $Y(y)$ is not identically zero we obtain the desired eigenvalue problem

$$
\begin{equation*}
X^{\prime \prime}(x)-\alpha X(x)=0, \quad X(0)=0, \quad X(a)=0 \tag{2}
\end{equation*}
$$

We have solved this problem many times and we have $\alpha=-\mu^{2}$ so that

$$
X(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

Applying the boundary conditions we have

$$
0=X(0)=c_{1} \Rightarrow c_{1}=0 \quad 0=X(a)=c_{2} \sin (\mu a) .
$$

From this we conclude $\sin (\mu a)=0$ which implies

$$
\mu=\frac{n \pi}{a}
$$

and therefore

$$
\begin{equation*}
\alpha_{n}=-\mu_{n}^{2}=-\left(\frac{n \pi}{a}\right)^{2}, \quad X_{n}(x)=\sin \left(\mu_{n} x\right), \quad n=1,2, \cdots . . \tag{3}
\end{equation*}
$$

Now from the boundary condition

$$
X(x) Y(0)=0, \quad X(x) Y(b)=0 \quad \text { for all } x
$$

This gives the problem

$$
\begin{equation*}
Y^{\prime \prime}(y)-\beta Y(y)=0, \quad Y(0)=0, \quad Y(b)=0 \tag{4}
\end{equation*}
$$

This is the same as the problem (2) so we obtain eigenvalues and eigenfunctions

$$
\begin{equation*}
\beta_{m}=-\nu_{m}^{2}=-\left(\frac{m \pi}{b}\right)^{2}, \quad Y_{m}(y)=\sin \left(\nu_{m} y\right), \quad n=1,2, \cdots . \tag{5}
\end{equation*}
$$

So we obtain eigenvalues of the main problem given by

$$
\begin{equation*}
\lambda_{n, m}=-\left(\left(\frac{n \pi}{a}\right)^{2}+\left(\frac{m \pi}{b}\right)^{2}\right) \tag{6}
\end{equation*}
$$

and corresponding eigenfunctions

$$
\varphi_{n, m}(x, y)=\sin \left(\mu_{n} x\right) \sin \left(\nu_{m} y\right)
$$

We also find the solution to $T^{\prime \prime}(t)-c^{2} \lambda_{n, m} T(t)=0$ is given by

$$
T_{n, m}(t)=\left[a_{n, m} \cos \left(c \omega_{n, m} t\right)+b_{n, m} \sin \left(c \omega_{n, m} t\right)\right]
$$

where we have defined

$$
\omega_{n, m}=\sqrt{\left(\frac{n \pi}{a}\right)^{2}+\left(\frac{m \pi}{b}\right)^{2}}
$$

So we look for u as an infinite sum

$$
\begin{equation*}
u(x, y, t)=\sum_{n, m=1}^{\infty}\left[a_{n, m} \cos \left(c \omega_{n, m} t\right)+b_{n, m} \sin \left(c \omega_{n, m} t\right)\right] \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right) \tag{7}
\end{equation*}
$$

The only problem remaining is to somehow pick the constants $a_{n, m}$ and $b_{n, m}$ so that the initial condition $u(x, y, 0)=f(x, y)$ and $u_{t}(x, y, 0)=g(x, y)$ are satisfied, i.e.,

$$
\begin{equation*}
f(x, y)=u(x, y, 0)=\sum_{n, m=1}^{\infty} a_{n, m} \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right) \tag{8}
\end{equation*}
$$

At this point we recall our orthogonality relations

$$
\int_{0}^{\ell} \sin \left(\frac{j \pi \xi}{\ell}\right) \sin \left(\frac{c^{2} \pi \xi}{\ell}\right) d \xi= \begin{cases}\frac{2}{\ell} & j=k \\ 0 & j \neq k\end{cases}
$$

So we first multiply both sides of (8) by $\sin \left(\frac{n \pi x}{a}\right)$ and integrate in x from 0 to a to get

$$
\int_{0}^{a} f(x, y) \sin \left(\frac{n \pi x}{a}\right) d x=\sum_{n=1}^{\infty}\left(\frac{2}{a}\right) a_{n, m} \sin \left(\frac{m \pi y}{b}\right) .
$$

Next we multiply this expression by $\sin \left(\frac{m \pi y}{b}\right)$ and integrate in x from 0 to b to get

$$
\int_{0}^{b} \int_{0}^{a} f(x, y) \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right) d x=\left(\frac{a}{2}\right)\left(\frac{b}{2}\right) a_{n, m}
$$

Thus we conclude that

$$
a_{n, m}=\left(\frac{4}{a b}\right) \int_{0}^{b} \int_{0}^{a} f(x, y) \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right) d x d y
$$

for $n=1,2, \cdots, m=1,2, \cdots$.

$$
\begin{equation*}
g(x, y)=u_{t}(x, y, 0)=\sum_{n, m=1}^{\infty} c \omega_{n, m} b_{n, m} \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right) \tag{9}
\end{equation*}
$$

Just as above we get

$$
\begin{aligned}
& \int_{0}^{b} \int_{0}^{a} g(x, y) \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right) d x=\left(\frac{a}{2}\right)\left(\frac{b}{2}\right) b_{n, m} c \omega_{n, m} \\
& b_{n, m}=\left(\frac{4}{a b c \omega_{n, m}}\right) \int_{0}^{b} \int_{0}^{a} g(x, y) \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right) d x d y
\end{aligned}
$$

for $n=1,2, \cdots, m=1,2, \cdots$.

General Methodology

The same methodology can be applied for more general boundary conditions. Consider $t>0$, $(x, y) \in[0, a] \times[0, b]$, and

$$
\begin{align*}
& u_{t t}=c^{2}\left(u_{x x}(x, y, t)+u_{y y}(x, y, t)\right), \tag{10}\\
& \gamma_{1} u(0, y, t)+\gamma_{2} u_{x}(0, y, t)=0 \\
& \gamma_{3} u(a, y, t)+\gamma_{4} u_{x}(a, y, t)=0 \\
& \gamma_{5} u(x, 0, t)+\gamma_{6} u_{y}(x, 0, t)=0 \\
& \gamma_{7} u(x, b, t)+\gamma_{8} u_{y}(x, b, t)=0 \\
& u(x, y, 0)=f(x, y) \\
& u_{t}(x, y, 0)=g(x, y)
\end{align*}
$$

As usual we seek simple solution in the form

$$
u(x, y)=X(x) Y(y) T(t)
$$

Substituting into (10) and dividing both sides by $X(x) Y(y)$ gives

$$
\frac{T^{\prime \prime}(t)}{c^{2} T(t)}=\frac{Y^{\prime \prime}(y)}{Y(y)}+\frac{X^{\prime \prime}(x)}{X(x)}
$$

As above we obtain three problems involving constants λ, α and β with $\lambda=\alpha+\beta$:

$$
\begin{equation*}
X^{\prime \prime}(x)-\alpha X(x)=0, \quad \gamma_{1} X(0)+\gamma_{2} X^{\prime}(0)=0, \quad \gamma_{3} X(a)+\gamma_{4} X^{\prime}(a)=0 \tag{11}
\end{equation*}
$$

After some work we obtain an infinite set of negative eigenvalues and eigenfunctions

$$
\begin{equation*}
\alpha_{n}=-\mu_{n}^{2}, \quad X_{n}(x), \quad n=1,2, \cdots \tag{12}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
Y^{\prime \prime}(y)-\beta Y(y)=0, g_{5} Y(0)+\gamma_{6} Y^{\prime}(0)=0, \quad \gamma_{7} Y(b)+\gamma_{8} Y^{\prime}(b)=0 \tag{13}
\end{equation*}
$$

Once again we obtain eigenvalues and eigenfunctions

$$
\begin{equation*}
\beta_{m}=-\nu_{m}^{2}, \quad Y_{m}(y), \quad n=1,2, \cdots . . \tag{14}
\end{equation*}
$$

We also find the solution to $T^{\prime \prime}(t)-c^{2} \lambda_{n, m} T(t)=0$. To this end let us again define

$$
\omega_{n, m}=\sqrt{-\lambda}=\sqrt{\left(\mu_{n}\right)^{2}+\left(\nu_{m}\right)^{2}}
$$

Then the solution is given by

$$
T_{n, m}(t)=\left[a_{n, m} \cos \left(c \omega_{n, m} t\right)+b_{n, m} \sin \left(c \omega_{n, m} t\right)\right]
$$

So we look for u as an infinite sum

$$
\begin{equation*}
u(x, y, t)=\sum_{n, m=1}^{\infty}\left[a_{n, m} \cos \left(c \omega_{n, m} t\right)+b_{n, m} \sin \left(c \omega_{n, m} t\right)\right] X_{n}(x) Y_{m}(y) \tag{15}
\end{equation*}
$$

Finally we need to pick the constants $a_{n, m}$ and $b_{n, m}$ so that the initial conditions $u(x, y, 0)=$ $f(x, y)$ and $u_{t}(x, y, 0)=g(x, y)$ are satisfied, i.e.,

$$
\begin{gather*}
f(x, y)=u(x, y, 0)=\sum_{n, m=1}^{\infty} a_{n, m} X_{n}(x) Y_{m}(y) \tag{16}\\
g(x, y)=u_{t}(x, y, 0)=\sum_{n, m=1}^{\infty} b_{n, m} c \omega_{n, m} X_{n}(x) Y_{m}(y) . \tag{17}
\end{gather*}
$$

The general Sturm-Liouville theory guarantees that the eigenfunctions corresponding to distinct eigenfunctions are distinct, i.e.

$$
\int_{0}^{a} X_{j}(x) X_{k}(x) d x=\left\{\begin{array}{ll}
\kappa_{j} & j=k \tag{18}\\
0 & j \neq k
\end{array}, \quad \int_{0}^{b} Y_{j}(x) Y_{k}(x) d x= \begin{cases}\widetilde{\kappa}_{j} & j=k \\
0 & j \neq k\end{cases}\right.
$$

for some positive constants κ_{j} and $\widetilde{\kappa}_{j}$. So we obtain

$$
\begin{equation*}
a_{n, m}=\left(\frac{1}{\kappa_{n} \widetilde{\kappa}_{m}}\right) \int_{0}^{b} \int_{0}^{a} f(x, y) X_{n}(x) Y_{m}(y) d x d y \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{n, m}=\left(\frac{1}{c \omega_{n, m} \kappa_{n} \widetilde{\kappa}_{m}}\right) \int_{0}^{b} \int_{0}^{a} g(x, y) X_{n}(x) Y_{m}(y) d x d y \tag{20}
\end{equation*}
$$

for $n=1,2, \cdots, m=1,2, \cdots$.

Example 1. To simplify the problem a bit we set $c=1, a=\pi$ and $b=\pi$. Namely we consider

$$
\begin{align*}
u_{t t} & =\left(u_{x x}(x, y, t)+u_{y y}(x, y, t)\right), \quad t>0, \quad(x, y) \in[0, \pi] \times[0, \pi] \tag{21}\\
u(0, y, t) & =0, \quad u(\pi, y, t)=0, \quad u(x, 0, t)=0, \quad u(x, \pi, t)=0 \\
u(x, y, 0) & =x(\pi-x) y(\pi-y), \quad u_{t}(x, y, 0)=0 .
\end{align*}
$$

In this case we obtain eigenvalues

$$
\lambda_{n, m}=-\left(n^{2}+m^{2}\right), \quad \alpha_{n}=-n^{2}, \quad \beta_{m}=-m^{2}, \quad n, m=1,2, \cdots
$$

The corresponding eigenfunctions are given by

$$
X_{n}(x)=\sin (n x), \quad Y_{m}(y)=\sin (m y)
$$

Our solution is given by (15) which here has the form

$$
u(x, y, t)=\sum_{n=1}^{\infty}\left[a_{n, m} \cos \left(\omega_{n, m} t\right)+b_{n, m} \sin \left(\omega_{n, m} t\right)\right] \sin (n x) \sin (m y)
$$

where we have defined

$$
\omega_{n, m}=\sqrt{n^{2}+m^{2}}
$$

The coefficients $a_{n, m}$ are obtained from (18) where in this case

$$
\kappa_{n}=\widetilde{\kappa}_{m}=\frac{\pi}{2}, \quad n, n=1,2, \cdots .
$$

We have

$$
x(\pi-x) y(\pi-y)=\sum_{n, m=1}^{\infty} a_{n, m} \sin (n x) \sin (m y) .
$$

From (19) we have

$$
a_{n, m}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} x(\pi-x) y(\pi-y) \sin (n x) \sin (m y) d x d y=\frac{16\left((-1)^{n}-1\right)\left((-1)^{m}-1\right)}{n^{3} m^{3} \pi^{2}} .
$$

Since $u_{t}(x, y, 0)=g(x, y)=0$ we have

$$
\begin{gather*}
b_{n, m}=0 \\
u(x, y, t)=\sum_{n, m=1}^{\infty} c_{n, m} e^{k \lambda_{n, m} t} \sin (n \pi x) \sin (m \pi y) . \tag{22}
\end{gather*}
$$

Example 2. To simplify the problem a bit we set $c=1, a=1$ and $b=1$. Namely we consider

$$
\begin{align*}
u_{t t} & =\left(u_{x x}(x, y, t)+u_{y y}(x, y, t)\right), \quad t>0, \quad(x, y) \in[0, \pi] \times[0, \pi] \tag{23}\\
u_{x}(0, y, t) & =0, \quad u_{x}(\pi, y, t)=0, \quad u(x, 0, t)=0, \quad u(x, \pi, t)=0 \\
u(x, y, 0) & =x(\pi-x) y, \quad u_{t}(x, y, 0)=0 .
\end{align*}
$$

We get eigenvalue problem in x given by

$$
X^{\prime \prime}-\alpha X=0, \quad X^{\prime}(0)=0, \quad X^{\prime}(\pi)=0
$$

Therefore we have eigenvalues and eigenvectors

$$
\alpha_{0}=0, \quad X_{0}(x)=1, \quad \alpha_{n}=-n^{2}, \quad X_{n}(x)=\cos (n x), \quad n=1,2,3, \cdots .
$$

The eigenvalue problem in y is given by

$$
Y^{\prime \prime}-\beta Y=0, \quad Y(0)=0, \quad Y(\pi)=0
$$

The corresponding eigenvalues are

$$
\beta_{m}=-m^{2}, \quad X_{m}(x)=\sin (m x), \quad m=1,2,3, \cdots
$$

In this case we obtain eigenvalues

$$
\lambda_{n, m}=-\left(n^{2}+m^{2}\right), \quad \alpha_{n}=-n^{2}, \quad \beta_{m}=-m^{2}, \quad n, m=1,2, \cdots .
$$

The corresponding eigenfunctions are given by

$$
X_{n}(x)=\sin (n \pi x), \quad Y_{m}(y)=\sin (m \pi y)
$$

For this example we also have eigenvalues

$$
\lambda_{0, m}=-m^{2}, \quad X_{0}(x)=1 .
$$

Our solution is given by (15) which here has the form

$$
\begin{aligned}
u(x, y, t) & =\sum_{m=1}^{\infty}\left[a_{0, m} \cos \left(\omega_{0, m} t\right)+b_{0, m} \sin \left(\omega_{0, m} t\right)\right] \sin (m y) \\
& +\sum_{n, m=1}^{\infty}\left[a_{n, m} \cos \left(\omega_{n, m} t\right)+b_{0, m} \sin \left(\omega_{0, m} t\right)\right] \cos (n x) \sin (m y)
\end{aligned}
$$

Setting $t=0$ we obtain

$$
x(\pi-x) y=\sum_{n=1}^{\infty} a_{n, 0} \cos (n x)+\sum_{n, m=1}^{\infty} a_{n, m} \sin (n x) \sin (m y)
$$

We have

$$
a_{n, m}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} x(\pi-x) y \cos (n x) \sin (m y) d x d y=\frac{-8\left((-1)^{n}-1\right)\left((-1)^{m}-1\right)}{n^{2} m^{3} \pi^{2}} .
$$

Finally we obtain the coefficients $a_{n, 0}$ from

$$
a_{0, m}=\frac{2}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} x(\pi-x) y \sin (m y) d x d y=\frac{-2\left((-1)^{m}-1\right)}{m^{3}} .
$$

Finally we arrive at the solution

$$
\begin{aligned}
u(x, y, t) & =\sum_{m=1}^{\infty} \frac{-2\left((-1)^{m}-1\right)}{m^{3}} \cos \left(\omega_{0, m} t\right) \sin (m y) \\
& +\sum_{n, m=1}^{\infty} \frac{-8\left((-1)^{n}-1\right)\left((-1)^{m}-1\right)}{n^{2} m^{3} \pi^{2}} \cos \left(\omega_{n, m} t\right) \cos (n x) \sin (m y)
\end{aligned}
$$

with $\omega_{n, m}=\sqrt{n^{2}+m^{2}}$.

