Wave Equation on a Two Dimensional Rectangle

In these notes we are concerned with application of the method of separation of variables
applied to the wave equation in a two dimensional rectangle. Thus we consider

Uy = & (Uge (7, Y, 1) + uyy(z,9,1)), >0, (z,y)€[0,a] x[0,b], (1)
uw(0,y,t) =0, wu(a,y,t) =0, u(z,0,t) =0, wu(z,b,t)=0
U(.T,y,O) = f<x>y)7 ut<x>y70) = g(x>y)

A

w(z,bt) =0

u(0,y,t) =0 u(a,y. t) =10

u(zr,0,t) =10

u(z,y) = X (@)Y (y)T(1).
Substituting into (1) and dividing both sides by X (z)Y (y) gives

() _Y'() | X'

ATt) Yy o X(z)

Since the left side is independent of z, y and the right side is independent of ¢, it follows
that the expression must be a constant:
T”(t) B Y”(y) X"(SE)

2T - Yy T X@)

We seek to find all possible constants A and the corresponding nonzero functions 7', X and
Y. We obtain
X' | Y'()
X(x) Y(y)

Thus we conclude that there is a constant a

T"(t) — AT (t) = 0.

X" —aX =0.

On the other hand we could also write

Y'y)
Y T X()




so there exists a constant (3 so that
YY" - BY =0.
Furthermore, the boundary conditions give
X0)Y(y) =0, X(a)Y(y)=0 forally.
Since Y (y) is not identically zero we obtain the desired eigenvalue problem

X"(z) —aX(x) =0, X(0)=0, X(a)=0.

We have solved this problem many times and we have v = —p? so that
X(z) = ¢y cos(ux) + cosin(px).
Applying the boundary conditions we have

0=X0)=c1=c=0 0= X(a)=cysin(ua).

From this we conclude sin(pa) = 0 which implies

H=—
a

and therefore

nm

2
Gn = _/%21 - <?> ’ X”(‘T) = Sin(,unac), n = 1727 R

Now from the boundary condition
X(z)Y(0) =0, X(x)Y(b)=0 forall z.
This gives the problem
Y'(y) — BY (y) =0, Y(0) =0, Y(b)=0.
This is the same as the problem (2) so we obtain eigenvalues and eigenfunctions

mim

2
Bm - _VTQn - <T) ’ Ym(y) = Sin(me)7 n = 1727 R

So we obtain eigenvalues of the main problem given by
== ()4 5))
’ a b
and corresponding eigenfunctions
Pnm(2,y) = sin(pnx) sin(vmy).
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We also find the solution to T"(t) — ¢*\,,,, T (t) = 0 is given by

T (t) = [@nm cOS(cwn mt) + by sin(cwy, mt)]

= (5) ()

So we look for u as an infinite sum

where we have defined

- : . /nTT\ . [/MmTY
u(z,y,t) nmg . [, m €OS(CWnmt) + by m siN(cwy mt)] sin — ) sin(— (7)

The only problem remaining is to somehow pick the constants a,,,, and b, ,, so that the
initial condition u(z,y,0) = f(z,y) and w(z,y,0) = g(x,y) are satisfied, i.e.,

flz,y) = u(z,y,0) = i A SIN <n77:x) sin (%) : (8)
nym=1

At this point we recall our orthogonality relations
¢ . 2
/0 sin (]%f) sin (C Z€> d§ =

So we first multiply both sides of (8) by sin <@) and integrate in x from 0 to a to get
a

j=k

S 1IN

JF# k.

[e.9]

“ 2
/0 f(,y)sin (—”Zx) dr = ; (5) T <—m;r 7).
Next we multiply this expression by sin (@) and integrate in x from 0 to b to get
/b/&f( ) . (n’ﬂ'l’) . <m7Ty> d (a> b
x,y)sin sin r=1=)=|anm-
o Sy T a b 2)\2) ™™

Thus we conclude that

Apm = (%) /Ob /Oa f(z,y)sin (?) sin <$) dx dy

forn=1,2,---, m=1,2,---

oo
nmx mmy

g(x,y) = w(x,y,0) = Z CWh,m b m sSiD (T) sin <T> ) (9)
n,m=1



Just as above we get

/Ob /Oa g(z,y)sin (?) sin (@) dx
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bom = (abcinym> /Ob /Oag(:r,y) sin (?) sin <@> dx dy

forn=1,2,---, m=1,2,---.

General Methodology

The same methodology can be applied for more general boundary conditions. Consider ¢ > 0,
(z,1) € [0.a] x [0, 5], and

Uy = ¢ (U (2, Y, 1) + uyy (2,9, 1)), (10)
7u(0,y,t) +72u.(0,y,t) = 0,

vau(a, y, ) + yaug(a, y,t) = 0,

Ysu(z,0,t) + yeuy(z,0,t) =0,

yru(x, b, t) + ysuy(z,0,t) =0

u(z,y,0) = f(z,y)

uy(z,y,0) = g(z,y)

As usual we seek simple solution in the form
u(z,y) = X(@)Y (y)T(t).

Substituting into (10) and dividing both sides by X (z)Y (y) gives

') V') X'
ET() V() | X()

As above we obtain three problems involving constants A\, & and 3 with A = a4 3:

X"(z) —aX(x) =0, 11X(0)+7%X'(0)=0, 3X(a)+v4X'(a) =0. (11)

After some work we obtain an infinite set of negative eigenvalues and eigenfunctions

an=—p2, X,(x), n=1,2,---. (12)



Similarly,
Y(y) = BY (y) = 0, g5Y(0) +%Y"(0) =0, 7Y (b) +sY'(b) = 0. (13)
Once again we obtain eigenvalues and eigenfunctions

B = —1/51, Yi(y), n=1,2,--- .. (14)

We also find the solution to T"(t) — ¢*A\,.,», T(t) = 0. To this end let us again define

Wnm = V=X =\ (1n)” + ()",

Then the solution is given by

T (t) = [@nm cos(cwn mt) + by sin(cwy, mt)] -

So we look for u as an infinite sum

[e.o]

u(z,y,t) = Z [@n,m cOS(cwp mt) + bpm sin(cwp, mt)] X (2) Yo (y). (15)

n,m=1

Finally we need to pick the constants a,, ,,, and b, ,,, so that the initial conditions u(z,y,0) =
f(z,y) and w(z,y,0) = g(z,y) are satisfied, i.e.,

Flay) =u(@,y,0) = Y anmXa(@)Yin(y). (16)
g9(x,y) = w(x,y,0) = Z b CWn,im X (7)Y (y)- (17)

The general Sturm-Liouville theory guarantees that the eigenfunctions corresponding to
distinct eigenfunctions are distinct, i.e.

a . H]' j:k, b (o " v — Ti/j j:k,
/OXj<x>Xk<x>d:c—{0 0 vemea —{0 D

for some positive constants «; and k;. So we obtain

o= () [ [ se Xty oy (19

and

bin= () | [ Xt vt ey (20)

forn=1,2,---,m=1,2,--



Example 1. To simplify the problem a bit we set ¢ = 1, a = 7 and b = 7. Namely we
consider

Ut = (uwx(xay’t) + uyy(:n,y,t)), > 07 (:v,y) € [ ] [ ] (21)
uw(0,y,t) =0, wu(m y,t) =0, u(z,0,t)=0, u(z,wt)=

U(l‘,y,O) = .Z'(T(' - .Z')y(ﬂ' - y)7 ut(x,y,O) =0.

In this case we obtain eigenvalues
Aom = —(n®+m?), a,=-n* Bn=-m* nm=12--
The corresponding eigenfunctions are given by
X, (z) =sin(nz),  Yn(y) = sin(my).

Our solution is given by (15) which here has the form
u(x,y,t Z A COS(Whmt) + by SIn(wy, )] sin(na) sin(my)
n=1

where we have defined

Wnm = VN2 4+ m2.

The coefficients ay, ,, are obtained from (18) where in this case

i =Fm =5, mn=12,
2
We have -
z(m—x)y(r —y) = Z A, m sin(nz) sin(my).
n,m=1

From (19) we have

= % /OTr /wa(ﬂ' — z)y(m — y) sin(nz) sin(my) dx dy = 16((—=1)" — (=)™ - 1)‘

n3m3m?

Since w(z,y,0) = g(z,y) = 0 we have

by = 0.
uw(z,y,t) = Z Cpm€™mt sin (nrr) sin (mmy) . (22)
n,m=1



Example 2. To simplify the problem a bit we set ¢ = 1, a = 1 and b = 1. Namely we
consider

Uy = (wa(flf,y,t> + uyy($ay7t)), t> O’ (C(],y) € [077T] X [077T] (23)
uzr(0,y,t) =0, wux(m y,t) =0, wu(z,0,t)=0, u(z,7,t)=0
u($,y,0) :$(7T_$)y> ut(ﬂf,y, O) =0.

We get eigenvalue problem in z given by
X"—aX =0, X'(0)=0, X'(r)=0.
Therefore we have eigenvalues and eigenvectors
ap=0, Xox)=1, oa,=-n? X,(z)=-cos(nz), n=123,--.
The eigenvalue problem in y is given by
Y'—pBY =0, Y(0)=0, Y(x)=0.
The corresponding eigenvalues are

B = —m?, Xp(x) =sin(mz), m=1,2,3,--.

In this case we obtain eigenvalues
Aom = —(n*+m?), a, =-n? Bn=-m? nm=12- -
The corresponding eigenfunctions are given by
Xn(x) =sin(nmz),  Y(y) = sin(mmy).
For this example we also have eigenvalues

>\07m = —m2, XQ(QT) =1.

Our solution is given by (15) which here has the form

o0
u(z,y,t) = Z [@0.m €OS(wWo mt) + bo m sin(wo mt)] sin(my)
m=1

[e.e]

+ Z [@nm €OS(Wh,mt) + bo.m Sin(wo mt)] cos(nz) sin(my).

n,m=1

Setting ¢t = 0 we obtain

z(r—x)y = Z an o cos(nx) + Z A, m Sin(nz) sin(my).
n=1 n,m=1



We have

o= [t = ohycos(na) snomy) didy = U {CUEZL,

n2m3m2

Finally we obtain the coefficients a,, ¢ from

—2((=)" 1)

2 s s
I _ ' de du —
ao, 7T2/0 /0 z(m — x)ysin(my) dz dy p—

Finally we arrive at the solution

u(z,y,t) = Z _2((_?711): i) cos(wo mt) sin(my)

. i —3((=D)" = D((=)" = 1)

n2mBn? cos(wy,mt) cos(nz) sin(my)

n,m=1

with wy,m = vVn? + m2.



