
Wave Equation on a Two Dimensional Rectangle

In these notes we are concerned with application of the method of separation of variables
applied to the wave equation in a two dimensional rectangle. Thus we consider

utt = c2 (uxx(x, y, t) + uyy(x, y, t)) , t > 0, (x, y) ∈ [0, a]× [0, b], (1)

u(0, y, t) = 0, u(a, y, t) = 0, u(x, 0, t) = 0, u(x, b, t) = 0

u(x, y, 0) = f(x, y), ut(x, y, 0) = g(x, y)

u(x, y) = X(x)Y (y)T (t).

Substituting into (1) and dividing both sides by X(x)Y (y) gives

T ′′(t)

c2T (t)
=

Y ′′(y)

Y (y)
+

X ′′(x)

X(x)

Since the left side is independent of x, y and the right side is independent of t, it follows
that the expression must be a constant:

T ′′(t)

c2T (t)
=

Y ′′(y)

Y (y)
+

X ′′(x)

X(x)
= λ.

We seek to find all possible constants λ and the corresponding nonzero functions T , X and
Y . We obtain

X ′′(x)

X(x)
= λ− Y ′′(y)

Y (y)
T ′′(t)− c2λT (t) = 0.

Thus we conclude that there is a constant α

X ′′ − αX = 0.

On the other hand we could also write

Y ′′(y)

Y (y)
= λ− X ′′(x)

X(x)
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so there exists a constant β so that

Y ′′ − βY = 0.

Furthermore, the boundary conditions give

X(0)Y (y) = 0, X(a)Y (y) = 0 for all y.

Since Y (y) is not identically zero we obtain the desired eigenvalue problem

X ′′(x)− αX(x) = 0, X(0) = 0, X(a) = 0. (2)

We have solved this problem many times and we have α = −µ2 so that

X(x) = c1 cos(µx) + c2 sin(µx).

Applying the boundary conditions we have

0 = X(0) = c1 ⇒ c1 = 0 0 = X(a) = c2 sin(µa).

From this we conclude sin(µa) = 0 which implies

µ =
nπ

a

and therefore

αn = −µ2
n = −

(nπ

a

)2

, Xn(x) = sin(µnx), n = 1, 2, · · · .. (3)

Now from the boundary condition

X(x)Y (0) = 0, X(x)Y (b) = 0 for all x.

This gives the problem

Y ′′(y)− βY (y) = 0, Y (0) = 0, Y (b) = 0. (4)

This is the same as the problem (2) so we obtain eigenvalues and eigenfunctions

βm = −ν2
m = −

(mπ

b

)2

, Ym(y) = sin(νmy), n = 1, 2, · · · .. (5)

So we obtain eigenvalues of the main problem given by

λn,m = −
((nπ

a

)2

+
(mπ

b

)2
)

(6)

and corresponding eigenfunctions

ϕn,m(x, y) = sin(µnx) sin(νmy).
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We also find the solution to T ′′(t)− c2λn,mT (t) = 0 is given by

Tn,m(t) = [an,m cos(cωn,mt) + bn,m sin(cωn,mt)]

where we have defined

ωn,m =

√(nπ

a

)2

+
(mπ

b

)2

.

So we look for u as an infinite sum

u(x, y, t) =
∞∑

n,m=1

[an,m cos(cωn,mt) + bn,m sin(cωn,mt)] sin
(nπx

a

)
sin

(mπy

b

)
. (7)

The only problem remaining is to somehow pick the constants an,m and bn,m so that the
initial condition u(x, y, 0) = f(x, y) and ut(x, y, 0) = g(x, y) are satisfied, i.e.,

f(x, y) = u(x, y, 0) =
∞∑

n,m=1

an,m sin
(nπx

a

)
sin

(mπy

b

)
. (8)

At this point we recall our orthogonality relations

∫ `

0

sin

(
jπξ

`

)
sin

(
c2πξ

`

)
dξ =


2

`
j = k

0 j 6= k.

So we first multiply both sides of (8) by sin
(nπx

a

)
and integrate in x from 0 to a to get

∫ a

0

f(x, y) sin
(nπx

a

)
dx =

∞∑
n=1

(
2

a

)
an,m sin

(mπy

b

)
.

Next we multiply this expression by sin
(mπy

b

)
and integrate in x from 0 to b to get

∫ b

0

∫ a

0

f(x, y) sin
(nπx

a

)
sin

(mπy

b

)
dx =

(a

2

) (
b

2

)
an,m.

Thus we conclude that

an,m =

(
4

ab

) ∫ b

0

∫ a

0

f(x, y) sin
(nπx

a

)
sin

(mπy

b

)
dx dy

for n = 1, 2, · · · , m = 1, 2, · · · .

g(x, y) = ut(x, y, 0) =
∞∑

n,m=1

cωn,mbn,m sin
(nπx

a

)
sin

(mπy

b

)
. (9)
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Just as above we get∫ b

0

∫ a

0

g(x, y) sin
(nπx

a

)
sin

(mπy

b

)
dx =

(a

2

) (
b

2

)
bn,mcωn,m.

bn,m =

(
4

abcωn,m

) ∫ b

0

∫ a

0

g(x, y) sin
(nπx

a

)
sin

(mπy

b

)
dx dy

for n = 1, 2, · · · , m = 1, 2, · · · .

General Methodology

The same methodology can be applied for more general boundary conditions. Consider t > 0,
(x, y) ∈ [0, a]× [0, b], and

utt = c2 (uxx(x, y, t) + uyy(x, y, t)) , (10)

γ1u(0, y, t) + γ2ux(0, y, t) = 0,

γ3u(a, y, t) + γ4ux(a, y, t) = 0,

γ5u(x, 0, t) + γ6uy(x, 0, t) = 0,

γ7u(x, b, t) + γ8uy(x, b, t) = 0

u(x, y, 0) = f(x, y)

ut(x, y, 0) = g(x, y)

As usual we seek simple solution in the form

u(x, y) = X(x)Y (y)T (t).

Substituting into (10) and dividing both sides by X(x)Y (y) gives

T ′′(t)

c2T (t)
=

Y ′′(y)

Y (y)
+

X ′′(x)

X(x)

As above we obtain three problems involving constants λ, α and β with λ = α + β:

X ′′(x)− αX(x) = 0, γ1X(0) + γ2X
′(0) = 0, γ3X(a) + γ4X

′(a) = 0. (11)

After some work we obtain an infinite set of negative eigenvalues and eigenfunctions

αn = −µ2
n, Xn(x), n = 1, 2, · · · . (12)
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Similarly,

Y ′′(y)− βY (y) = 0, g5Y (0) + γ6Y
′(0) = 0, γ7Y (b) + γ8Y

′(b) = 0. (13)

Once again we obtain eigenvalues and eigenfunctions

βm = −ν2
m, Ym(y), n = 1, 2, · · · .. (14)

We also find the solution to T ′′(t)− c2λn,mT (t) = 0. To this end let us again define

ωn,m =
√
−λ =

√
(µn)2 + (νm)2.

Then the solution is given by

Tn,m(t) = [an,m cos(cωn,mt) + bn,m sin(cωn,mt)] .

So we look for u as an infinite sum

u(x, y, t) =
∞∑

n,m=1

[an,m cos(cωn,mt) + bn,m sin(cωn,mt)] Xn(x)Ym(y). (15)

Finally we need to pick the constants an,m and bn,m so that the initial conditions u(x, y, 0) =
f(x, y) and ut(x, y, 0) = g(x, y) are satisfied, i.e.,

f(x, y) = u(x, y, 0) =
∞∑

n,m=1

an,mXn(x)Ym(y). (16)

g(x, y) = ut(x, y, 0) =
∞∑

n,m=1

bn,mcωn,mXn(x)Ym(y). (17)

The general Sturm-Liouville theory guarantees that the eigenfunctions corresponding to
distinct eigenfunctions are distinct, i.e.∫ a

0

Xj(x)Xk(x) dx =

{
κj j = k,

0 j 6= k.
,

∫ b

0

Yj(x)Yk(x) dx =

{
κ̃j j = k,

0 j 6= k.
(18)

for some positive constants κj and κ̃j. So we obtain

an,m =

(
1

κnκ̃m

) ∫ b

0

∫ a

0

f(x, y)Xn(x)Ym(y) dx dy (19)

and

bn,m =

(
1

cωn,mκnκ̃m

) ∫ b

0

∫ a

0

g(x, y)Xn(x)Ym(y) dx dy (20)

for n = 1, 2, · · · , m = 1, 2, · · · .
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Example 1. To simplify the problem a bit we set c = 1, a = π and b = π. Namely we
consider

utt = (uxx(x, y, t) + uyy(x, y, t)) , t > 0, (x, y) ∈ [0, π]× [0, π] (21)

u(0, y, t) = 0, u(π, y, t) = 0, u(x, 0, t) = 0, u(x, π, t) = 0

u(x, y, 0) = x(π − x)y(π − y), ut(x, y, 0) = 0.

In this case we obtain eigenvalues

λn,m = −(n2 + m2), αn = −n2, βm = −m2, n, m = 1, 2, · · · .

The corresponding eigenfunctions are given by

Xn(x) = sin(nx), Ym(y) = sin(my).

Our solution is given by (15) which here has the form

u(x, y, t) =
∞∑

n=1

[an,m cos(ωn,mt) + bn,m sin(ωn,mt)] sin(nx) sin(my)

where we have defined
ωn,m =

√
n2 + m2.

The coefficients an,m are obtained from (18) where in this case

κn = κ̃m =
π

2
, n, n = 1, 2, · · · .

We have

x(π − x)y(π − y) =
∞∑

n,m=1

an,m sin(nx) sin(my).

From (19) we have

an,m =
4

π2

∫ π

0

∫ π

0

x(π − x)y(π − y) sin(nx) sin(my) dx dy =
16((−1)n − 1)((−1)m − 1)

n3m3π2
.

Since ut(x, y, 0) = g(x, y) = 0 we have

bn,m = 0.

u(x, y, t) =
∞∑

n,m=1

cn,mekλn,mt sin (nπx) sin (mπy) . (22)
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Example 2. To simplify the problem a bit we set c = 1, a = 1 and b = 1. Namely we
consider

utt = (uxx(x, y, t) + uyy(x, y, t)) , t > 0, (x, y) ∈ [0, π]× [0, π] (23)

ux(0, y, t) = 0, ux(π, y, t) = 0, u(x, 0, t) = 0, u(x, π, t) = 0

u(x, y, 0) = x(π − x)y, ut(x, y, 0) = 0.

We get eigenvalue problem in x given by

X ′′ − αX = 0, X ′(0) = 0, X ′(π) = 0.

Therefore we have eigenvalues and eigenvectors

α0 = 0, X0(x) = 1, αn = −n2, Xn(x) = cos(nx), n = 1, 2, 3, · · · .

The eigenvalue problem in y is given by

Y ′′ − βY = 0, Y (0) = 0, Y (π) = 0.

The corresponding eigenvalues are

βm = −m2, Xm(x) = sin(mx), m = 1, 2, 3, · · · .

In this case we obtain eigenvalues

λn,m = −(n2 + m2), αn = −n2, βm = −m2, n, m = 1, 2, · · · .

The corresponding eigenfunctions are given by

Xn(x) = sin(nπx), Ym(y) = sin(mπy).

For this example we also have eigenvalues

λ0,m = −m2, X0(x) = 1.

Our solution is given by (15) which here has the form

u(x, y, t) =
∞∑

m=1

[a0,m cos(ω0,mt) + b0,m sin(ω0,mt)] sin(my)

+
∞∑

n,m=1

[an,m cos(ωn,mt) + b0,m sin(ω0,mt)] cos(nx) sin(my).

Setting t = 0 we obtain

x(π − x)y =
∞∑

n=1

an,0 cos(nx) +
∞∑

n,m=1

an,m sin(nx) sin(my).
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We have

an,m =
4

π2

∫ π

0

∫ π

0

x(π − x)y cos(nx) sin(my) dx dy =
−8((−1)n − 1)((−1)m − 1)

n2m3π2
.

Finally we obtain the coefficients an,0 from

a0,m =
2

π2

∫ π

0

∫ π

0

x(π − x)y sin(my) dx dy =
−2((−1)m − 1)

m3
.

Finally we arrive at the solution

u(x, y, t) =
∞∑

m=1

−2((−1)m − 1)

m3
cos(ω0,mt) sin(my)

+
∞∑

n,m=1

−8((−1)n − 1)((−1)m − 1)

n2m3π2
cos(ωn,mt) cos(nx) sin(my)

with ωn,m =
√

n2 + m2.
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