
First-order ordinary differential equations

Before we get involved trying to understand partial differential equations (PDEs),
we’ll review the highlights of the theory of ordinary differential equations (ODEs).
We’ll do this in such a way that we can begin to anticipate some of the methods we’ll
be using on PDEs later.

An ordinary differential equation gives a relationship between a function of one
independent variable, say y(x), its derivatives of various orders y′(x), y′′(x) etc. and
the independent variable x. The order of the equation is the order of the highest
derivative that appears. So a first-order differential equation can always be put into
the form:

F (x, y, y′) = 0.

In general, it is possible to find solutions to such ODEs, and there is usually one and
only one solution whose graph passes through a given point (a, b). In other words,
there is one and only one solution of the initial-value problem:

F (x, y, y′) = 0 y(a) = b.

At this level of generality, it’s impossible to say much more. But there are several
special types of first-order ODEs for which solution techniques are known (i.e., the
separable, linear, homogeneous and exact equations from Math 240). We’ll review
the first two kinds, since we won’t need the other two.

A first-order differential equation is called separable if it can be put in the form:

y′ = f(x)g(y),

so that you can separate the variables as

dy

g(y)
= f(x) dx

and then integrate both sides to get at least y as an implicitly-defined function of x.
The constant of integration is then chosen so that the graph of the solution passes
through the specified point in the initial-value problem. For instance, to solve

y′ = xy y(0) = 1,

we separate:
dy

y
= x dx

and integrate: ∫ dy

y
=

∫
x dx
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to get

ln y =
x2

2
+ C.

If y = 1 when x = 0, then we must have C = 0 and we can solve the resulting
equation ln y = 1

2
x2 to get

y = ex2/2

as the solution of the initial-value problem.

A slight word of caution: there will be a technique in PDE called “separation of
variables”. It has nothing to do with the kind of separation for first-order ODEs.

Linearity is an important concept in many parts of mathematics. In the theory
of differential equations (both ordinary and partial), we often think of the set of
(differentiable) functions as comprising a vector space, since one can add two functions
together to get another function, and one can multiply a function by a constant to
get another function, just as one does with ordinary vectors. The addition and scalar
multiplication of functions satisfies all the vector space axioms, so it is reasonable to
think of functions as vectors.

And if functions are vectors, then what corresponds to matrices? In the case of
ordinary vectors, we use matrices to represent linear transformations, and so we will
consider operations on functions that have the basic linearity property

L(αf + βg) = αL(f) + βL(g)

for all functions f and g and scalars (constants) α and β to be linear operators. Two
basic examples of linear operators are

1. Multiplication by a fixed function: For instance, the operation “multiply by ex”
is a linear operation (we would write L(f) = exf(x)) because ex(αf(x)+β(g(x))
is clearly equal to α(exf(x)) + β(exg(x)).

2. Differentiation: Differentiation is another linear operation, and when we’re think-
ing of differentiation this way we’ll denote it by D. And of course the sum and
“constant-times-a-function” rules for derivatives imply that

D(αf + βg) = αD(f) + βD(g).

A more general linear operator would be a first-order linear differential operator. The
most general such operator combines differentiation with multiplication by functions
as follows:

L(f) = a(x)D(f) + b(x)f.
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You should check that such an L is a linear operator.

A linear first-order differential equation has the form L(u) = h(x), where h(x)
is a given function and we’re trying to find the function u(x). Notice the similary
between this way of saying it and the linear algebra problem Ax = b that you usually
solve by Gaussian elimination. The standard way one solves a first-order linear ODE
is as follows: First, divide both sides by a(x), and set p(x) = b(x)/a(x) and q(x) =
h(x)/a(x), so the resulting equation looks like

u′ + p(x)u = q(x).

Then the trick is to “recognize” that the linear operator on the left, which is the sum
of D and multiplication by p(x), can also be written as the composition (product) of
three operators, each of which is easy to invert:

u′ + p(x)u = e−
∫

p(D(e
∫

pu)).

This is straightforward to check, and since multiplication by e−
∫

p is the inverse
operation to multiplication by e

∫
p, this last way of writing the linear operator is

reminiscent of the similarity transformation of matrices M−1AM that is so useful in
linear algebra. And once we write the equation as

e−
∫

p(D(e
∫

pu)) = q,

we can solve the equation by first multiplying both sides by e
∫

p, then integrating
both sides, and finally by multiplying both sides by e−

∫
p. This yields the solution:

u = e−
∫

p
(∫

e
∫

pq dx + C
)

(∗)

and we can use the constant of integration C to satisfy any given initial condition.

As an example, let’s solve

u′ +
1

x
u = x2 u(1) = 2.

According to the formula (*) above, the general solution of the equation is

u = e−
∫

1/x(
∫

e
∫

1/xx2 dx + C) =
1

x
(
x4

4
+ C).

In other words, u = x3/4 + C/x. Since we’re supposed to have u(1) = 2, we see that
C = 7/4, and so the solution of the initial-value problem is

u =
x3

4
+

7

4x
.
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For the record, let’s check that this works: we have

u′ =
3x2

4
− 7

4x2

and
1

x
u =

x2

4
+

7

4x2
,

so it’s true that u′ + (1/x)u = x2 and of course the initial condition is also satisfied.

A question that arises is that of the uniqueness of the solution to this problem.
Certainly u = (x3/4) + 7/(4x) is the only solution we get from formula (*), but
how do we know there isn’t some other solution of the initial-value problem that
comes from a method we haven’t considered? Uniqueness of solutions is an especially
important issue when we don’t have a formula or method for constructing a solution,
since then we are forced to use some kind of approximation, and it is difficult to
get an approximation to converge to something that is ambiguous or not uniquely
defined (in other words, if there is more than one solution to the problem, how does
the approximation method know which solution to approximate?). So we’ll spend
some time looking at uniqueness theorems for ODE problems, by way of anticipating
the techniques we will be using for PDEs later.

So for initial-value problems for linear first-order ODEs, we have the following
uniqueness theorem:

Theorem: There is one and only one solution to the initial-value problem

u′ + p(x)u = q(x), u(a) = b

(on any interval containing a on which the functions p(x) and q(x) are defined and
continuous).

Proof. The beginning of this uniqueness proof is paradigmatic for all uniqueness proofs
for linear problems. We assume that there are two solutions u1(x) and u2(x) of the
problem, and consider the difference v(x) = u1(x) − u2(x). If we can show that
v(x) ≡ 0 for all x, then u1 will have to equal u2, so there can be only one solution of
the problem (since any two solutions will differ by zero).

To show that v ≡ 0, we note (as we will always note) that v satisfies the related
homogeneous problem:

v′ + p(x)v = 0, v(a) = 0.

This is easy to verify and uses the linearity of the differential operator on the left
side of the equation in an essential way. Of course, the zero function v(x) = 0 for all
x, is a solution to this homogeneous problem. We must show that there is no other
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solution. So let v(x) be any solution to the homogeneous problem, and (inspired by
the linear algebra considerations above) consider the function

w(x) = e
∫

pv.

We have
w′(x) = e

∫
pv′ + e

∫
ppv

by the product rule and the fact that the derivative of an integral is the integrand.
But then w′ = e

∫
p(v′ + pv) = 0, since v is a solution of the homogeneous problem.

Thus w′ ≡ 0 so that w must be a constant. What constant? Well, w(a) = e
∫

p(a)v(a),
and v(a) = 0, so w(a) = 0 and thus w ≡ 0. And since e to any power is non-zero, we
must therefore have v ≡ 0.

Now, unwinding the reasoning, since v ≡ 0, we have that u1 − u2 ≡ 0, or u1 = u2

for any pair of solutions of the original problem. In other words, there is at most one
solution of the problem. But since we have the formula (*) for a solution, there is
exactly one solution.

Second-order ordinary differential equations

The only part of the theory of second-order ODEs we will review is the part about
homogeneous linear equations with constant coefficients. These are equations of the
form

u′′ + bu′ + cu = 0,

where b and c are constants. Using our linear algebra notation from the previous
section (where D is the derivative operator), we can write this as Lu = 0, where

Lu = D2 + bD + cI

(I being the identity operator, so cI means simply to multiply the function by the
constant c).

You probably recall that the solutions of this equation have something to do with
erx for some constant(s) r that are determined by solving the quadratic equation
r2 + br+ c = 0. But to motivate the impulse to look for a solution among functions of
the form erx, it is useful to revert to linear-algebra-speak, in particular, to the lingo
of eigenvalues and eigenvectors.

Recall that in linear algebra, we say that the (non-zero) vector v is an eigenvector
of the matrix (linear operator) A corresponding to the eigenvalue λ if Av = λv.
Many linear algebra problems and theorems concerning the matrix A are simplified
considerably if one works in a basis consisting (to the extent possible) of eigenvectors
of A.



6 pde notes i

Another linear algebra concept to remember is the idea of the kernel of a linear
transformation A – it is the set of vectors that A “maps to zero”, in other words v
is in the kernel of A if Av = 0. Since sums and multiples of vectors in the kernel of
A are also themselves in the kernel of A, the kernel of A is a vector space itself (so
we can describe it by giving a basis for it). The concepts of eigenvalue and kernel
come together in the statement that the kernel of A consists of the eigenvectors of A
corresponding to the eigenvalue 0.

In the study of differential equations, we often think of functions as vectors as we
did previously, and it is important to notice that the function erx is an eigenvector
(eigenfunction?) of the linear operator D, corresponding to the eigenvalue r. In other
words,

D(erx) = rerx

for every constant r, real or complex (even r = 0, which gives the non-zero con-
stants as eigenfunctions of D corresponding to the eigenvalue zero, or in other words,
constants comprise the kernel of D). And when we are trying to solve the equation
u′′ + bu′ + cu = 0, in other words, Lu = 0, we are looking for (a basis of) the kernel
of the operator L.

We can think of L as being a polynomial in the operator D, in the sense that,
since Lu = D2 + bD + cI, we can think of L as p(D), where p(x) = x2 + bx + c. The
advantage gained by this idea comes from linear algebra again: if A is a matrix and p
is a polynomial, we can form p(A) just as we formed p(L) – if p(x) = x2 +bx+c, then
p(A) = A2 + bA+ cI. And if v is an eigenvector of A corresponding to the eigenvalue
λ, then v is also an eigenvector of p(A) but corresponding to the eigenvalue p(λ),
because:

p(A)v = (A2 + bA + cI)v = A2v + bAv + cIv

= A(Av) + bλv + cv = A(λv) + bλv + cv

= λAv + bλv + cv = λ(λv) + bλv + cv

= (λ2 + bλ + c)v = p(λ)v

Applying this to the operator L, we see that L(erx) = p(D)(erx) = p(r)erx. So to find
elements of the kernel of L, it’s enough to find the values of r for which p(r) = 0.
This is the method that is taught in Math 240 (although it is usually not particularly
well motivated there).

Since p is a quadratic polynomial whose coefficients are real numbers, there are
three possibilities:

1. The two roots of p are distinct real numbers r1 and r2, in which case the solution
of Lu = 0 is u = c1e

r1x + c2e
r2x.
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2. The two roots of p are complex, and are conjugates of each other - the real part
of these roots will be −b/2 by the quadratic formula, and the imaginary part
will be α =

√
4c− b2. Using Euler’s formula concerning complex exponentials,

we get that the solution of Lu = 0 is u = e−bx/2(c1 cos αx + c2 sin αx).

3. The two roots of p are equal (and equal to −b/2). In this case the solution of
Lu = 0 is u = c1e

−bx/2 + c2xe−bx/2.

Now where did the function xerx come from in the third alternative above? One
way to see that such a function must come up is to think of L(erx), which is equal
to p(r)erx as a function of the variable r. If we are in the third alternative, then
r = −b/2 is a double root of p(r), which means that not only is p(−b/2) = 0, but
dp/dr evaluated at r = −b/2 must be zero as well. This means that the derivative of
p(r)erx with respect to r will be zero when r = −b/2. But since p(r)erx also equals
L(erx), the derivative with respect to r of L(erx) evaluated at r = −b/2 must be zero.
Now, the only place there is an r in L(erx) is in the exponential – so

d

dr
L(erx) = L(

d

dr
erx) = L(xerx).

Since we know that this is zero for r = −b/2 when we are in alternative three, we get
that xe−bx/2 is the “other” linearly independent solution of Lu = 0 in this case.

There are two arbitrary constants in our solution of Lu = 0 in any case. This
makes sense, because we expect to have to integrate twice in order to solve a second-
order differential equation. Thus, to formulate a problem having a unique solution, we
expect to have to specify two pieces of data along with our second-order differential
equation. One way to do this is to specify the value of u and of du/dx for a given value
of x – this is the standard initial-value problem. We could also consider specifying
“boundary values”, i.e., values of u for two different values of x. Both types of
problem are common in applications. As we did for first-order equations, let’s prove
uniqueness for these two types of problem (so we know that the solutions we’ve found
by the above methods are the only ones.

First, let’s consider the initial-value problem

u′′ + cu = 0, u(0) = a, u′(0) = b.

Assuming c ≥ 0, we’ll show that this has one and only one solution (it is also true if
c < 0 but this must be proved by other means). We know how to find one solution –
solve the polynomial r2+c = 0 and then use the arbitrary constants in the solution to
match the values of a and b. So we have only to show that if there are two solutions
u1 and u2 of this problem, they must in fact be the same.
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As we did before, we begin by forming the difference v(x) = u1(x)− u2(x). If we
can show that v(x) ≡ 0, this will imply that u1 = u2. And it is easy to verify that v
satisfies the “homogeneous” problem

v′′ + cv = 0, v(0) = 0 v′(0) = 0.

To show that v is identically zero, we’ll consider the following “energy” function
motivated by physical considerations:

E(x) = (v′(x))2 + c(v(x))2.

The first term of E should remind you of kinetic energy (proportional to velocity
squared), and the second term is something like potential energy, and we’re going to
prove a “conservation of energy” principle in order to prove that v ≡ 0. To this end,
we calculate:

dE

dx
= 2v′(x)v′′(x) + 2cv(x)v′(x) = 2v′(x)(v′′ + cv),

which is identically zero, because v satisfies v′′+cv = 0. Since its derivative is zero, we
must have that E is constant, and therefore identically equal to zero, since v(0) = 0
and v′(0) = 0. But if (v′)2 + cv2 = 0, then we must have v′ = v = 0, since a each
square is either positive or zero. Thus, v is identically zero.

The situation for boundary-value problems is more complicated. In fact, we do
not always have uniqueness (or even existence) for boundary-value problems. For
example, the solution of the differential equation u′′ + u = 0 is u = c1 cos x + c2 sin x.
If we specify u(0) = 0, then we must have c1 = 0, and the function c2 sin x vanishes
at x = π (or x = 2π, 3π, . . .) no matter what c2 is. Therefore the boundary-value
problem

u′′ + u = 0, u(0) = 0, u(π) = b

has no solution if b 6= 0, and has infinitely many solutions (one for each value of c2)
if b = 0.

But we can prove uniqueness (which incidentally implies existence) of solutions of
the following boundary-value problem:

u′′ − cu = 0, u(a) = p, u(b) = q

provided c ≥ 0, for any values of a, b, p, q. We’ll start the usual way, by assuming we
have two solutions u1 and u2 and forming their difference v = u1 − u2. This function
v will satisfy the homogeneous boundary value problem

v′′ − cv = 0, v(a) = 0, v(b) = 0.
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We need to show that v ≡ 0 is the only solution of this homogeneous problem. But
for any solution v, we can use integration by parts (with f = v′(x) and dg = v′(x) dx)
to calculate that ∫ b

a
(v′(x))2dx = v(x)v′(x)|ba −

∫ b

a
v(x)v′′(x) dx

= 0−
∫ b

a
c(v(x))2dx ≤ 0,

since v(a) = v(b) = 0 and v′′ = cv by the differential equation. But the first integral
on the left cannot be negative, so it must be zero. Thus v′ is identically zero, so v
is a constant and hence v ≡ 0 because v(a) = v(b) = 0. You can see that we used
the assumption that c ≥ 0 in an essential way. This trick of integrating by parts will
come up many times as we study partial differential equations.


