MATH 417 MIDTERM 1 SOLUTIONS

1. Suppose that u(x,t) satisfies the inhomogeneous heat equation

 $u_t = u_{xx} - 2$ for 0 < x < 2, t > 0

with boundary conditions u(0,t) = 4, u(2,t) = 0 and initial condition $u(x,0) = 4 + x^2$. a. (10pts) Find the steady state temperature (say v(x)). $v_x x = 2$, v(0) = 4, $v(2) = 0 \implies v(x) = (x-2)^2$. b. (15pts) Find u(x,t). Let $\tilde{u} = u(x,t) - v(x)$,. Then $\tilde{u}_t = \tilde{u}_{xx} = 0$, $\tilde{u}(0,t) = \tilde{u}(2,t) = 0$, $\tilde{u}(x,0) = 4 + x^2 - (x-2)^2 = 4x$. $\tilde{u}(x,t) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi x}{2} e^{-(\frac{n\pi}{2})^2 t}$, where $B_n = \int_0^2 4x \sin \frac{n\pi x}{2} dx = \frac{16}{n\pi} (-1)^{n+1}$. Therefore, $u(x,t) = (x-2)^2 + \sum_{n=1}^{\infty} \frac{16}{n\pi} (-1)^{n+1} \sin \frac{n\pi x}{2} e^{-(\frac{n\pi}{2})^2 t}$

•

2. Let $f(x) = (x - 1)^2$ for $0 \le x \le 1$.

a. (11pts) Compute the Fourier cosine series of f(x). $f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\pi x$ where

$$a_0 = \int_0^1 (x-1)^2 dx = \frac{1}{3}$$
 and
 $a_n = 2 \int_0^1 (x-1)^2 \cos n\pi x \, dx = \frac{4}{(n\pi)^2}$

b.(7pts) Draw a careful graph of the function to which your series converges to on the interval $-2 \le x \le 2$. (Note that *I am not* asking you to graph the Fourier cosine series!)

Extend f(x) to (-1,0) as an even function \tilde{f} , i.e. $\tilde{f}(x) = f(-x)$ for $x \in (-1,0)$ and then extend \tilde{f} everywhere as a periodic function of period 2. The fourier cosine series converges to this extension.

c. (7pts) Do not compute the Fourier sine series of f(x) but draw a careful graph of the function to which the Fourier sine series converges on the interval $-2 \le x \le 2$. (Note that I am not asking you to graph the Fourier sine series!)

Similarly extend f(x) to (-1,0) as an odd function g(x), i.e. g(x) = -g(-x) for $x \in (-1,0)$ and then extend g everywhere as a periodic

function of period 2. The fourier sine series converges to this extension.

3. (20pts) Solve $\Delta u = 0$ in the unit disk $B_1(0) \subset R^2$ (using Fourier series in polar coordinates) with boundary condition $u(1,\theta) = |\theta|$, $-\pi \leq \theta \leq \pi$.

$$u(r,\theta) = A_0 + \sum_{n=1}^{\infty} r^n (A_n \cos n\theta + B_n \sin n\theta)$$

When r = 1, $u = |\theta|$ on $(-\pi, \pi)$ (and extended periodic) which is even so $B_n = 0$ and

$$A_0 = \frac{1}{\pi} \int_0^{\pi} \theta \ d\theta = \frac{\pi}{2} ,$$

$$A_n = \frac{2}{\pi} \int_0^{\pi} \theta \cos n\theta \ d\theta$$

$$= \frac{2}{\pi} \{ \theta \frac{\sin n\theta}{n} |_0^{\pi} - \int_0^{\pi} \frac{\sin n\theta}{n} \ d\theta \}$$

$$= \frac{2}{\pi} \frac{\cos n\theta}{n^2} |_0^{\pi} = \frac{2}{n^2 \pi} \begin{cases} 0 & \text{if n even} \\ -2 & \text{if n odd} \end{cases}$$

Hence

$$u(r,\theta) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n \text{ odd}} r^n \frac{\cos n\theta}{n^2}$$

4. (30pts) Solve using the D'Alembert formula and Duhamel's principle:

 $u_{tt}=u_{xx}+xt$ on $-\infty< x<\infty$, t>0, $u(x,0)=e^x$, $u_t(x,0)=0$. By superposition and D'Alembert, u(x,t) = $\frac{1}{2}(e^{x+t}+e^{x-t})+v(x,t)$ where v satisfies

$$v_{tt} = v_{xx} + xt$$
, $v(x,0) = v_t(x,0) = 0$.

By Duhamel's principle, $v(x,t) = \int_0^t w(x,t;s) \, ds$, where

$$w_{tt} = w_{xx}$$
, $w(x,s) = 0$, $w_t(x,s) = xs$

Hence

$$w(x,t;s) = \frac{1}{2} \int_{x-(t-s)}^{x+(t-s)} sy \, dy = \frac{s}{4} [(x+(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4} [(x+(t-s))^2 - (x-(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4} [(x+(t-s))^2 - (x-(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4} [(x+(t-s))^2 - (x-(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4} [(x+(t-s))^2 - (x-(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4} [(x+(t-s))^2 - (x-(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4} [(x+(t-s))^2 - (x-(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4} [(x+(t-s))^2 - (x-(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4} [(x+(t-s))^2 - (x-(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4} [(x+(t-s))^2 - (x-(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4} [(x+(t-s))^2 - (x-(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4} [(x+(t-s))^2 - (x-(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4} [(x+(t-s))^2 - (x-(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4} [(x+(t-s))^2 - (x-(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4} [(x+(t-s))^2 - (x-(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4} [(x+(t-s))^2 - (x-(t-s))^2 - (x-(t-s))^2] = sx(t-s) + \frac{1}{4}$$

This gives

$$v(x,t) = \int_0^t xs(t-s) \, ds = x \int_0^t (ts-s^2) \, ds = x(\frac{t^3}{2} - \frac{t^3}{3}) = x\frac{t^3}{6} \, .$$