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Preface

Most every mathematics Ph.D. student must take a qualifying exam in com-
plex variables. The task is a bit daunting. This is one of the oldest areas
in mathematics, it is beautiful and compelling, and there is a plethora of
material. The literature in complex variables is vast and diverse. There are
a great many textbooks in the subject, but each has a different point of view
and places different emphases according to the tastes of the author.

Thus it is a bit difficult for the student to focus on what are the essential
parts of this subject. What must one absolutely know for the qualifying
exam? What will be asked? What techniques will be stressed? What are
the key facts?

The purpose of this book is to answer these questions. This is definitely
not a comprehensive textbook like [GRK]. It is rather an entree to the disci-
pline. It will tell you the key ideas in a first-semester graduate course in the
subject, map out the important theorems, and indicate most of the proofs.
Here by “indicate” we mean that (i) if the proof is short then we include it,
(ii) if the proof is of medium length then we outline it, and bf (iii) if the
proof is long then we sketch it.

This book has plenty of figures, plenty of examples, copious commentary,
and even in-text exercises for the students. But, since it is not a formal
textbook, it does not have exercise sets. It does not have a Glossary or a
Table of Notation.

This is meant to be a breezy book that you could read at one or two
sittings, just to get the sense of what this subject is about and how it fits
together. In that wise it is quite different from a typical mathematics text or
monograph. After reading this book (or even while reading this book), you
will want to pick up a more traditional and comprehensive tome and work
your way through it. The present book will get you started on your journey.

This volume is part of a comprehensive series by the Mathematical As-
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xii

sociation of America that is intended to augment graduate education in this
country. We hope that the present volume is a positive contribution to that
effort.

Palo Alto, California Steven G. Krantz
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Chapter 1

The Complex Plane

1.1 Complex Arithmetic

1.1.1 The Real Numbers

We assume the reader to be familiar with the real number system R. We let
R2 = {(x, y) : x ∈ R , y ∈ R} (Figure 1.1). These are ordered pairs of real
numbers.

As we shall see, the complex numbers are nothing other than R2 equipped
with a special algebraic structure.

1.1.2 The Complex Numbers

The complex numbers C consist of R2 equipped with some binary algebraic
operations. One defines

(x, y) + (x′, y′) = (x + x′, y + y′) ,

(x, y) · (x′, y′) = (xx′ − yy′, xy′ + yx′).

These operations of + and · are commutative and associative.
We denote (1, 0) by 1 and (0,1) by i. If α ∈ R, then we identify α with

the complex number (α, 0). Using this notation, we see that

α · (x, y) = (α, 0) · (x, y) = (αx,αy). (1.1.2.1)

As a result, if (x, y) is any complex number, then

(x, y) = (x, 0) + (0, y) = x · (1, 0) + y · (0, 1) = x · 1 + y · i ≡ x + iy .

1



2 CHAPTER 1. THE COMPLEX PLANE

Figure 1.1: The plane R2.

Thus every complex number (x, y) can be written in one and only one fashion
in the form x·1+y ·i with x, y ∈ R. As indicated, we usually write the number
even more succinctly as x + iy. The laws of addition and multiplication
become

(x + iy) + (x′ + iy′) = (x + x′) + i(y + y′),

(x + iy) · (x′ + iy′) = (xx′ − yy′) + i(xy′ + yx′).

Observe that i · i = −1. Finally, the multiplication law is consistent with the
scalar multiplication introduced in line (1.1.2.1).

The symbols z, w, ζ are frequently used to denote complex numbers. We
usually take z = x+ iy , w = u+ iv , ζ = ξ+ iη. The real number x is called
the real part of z and is written x = Re z. The real number y is called the
imaginary part of z and is written y = Im z.

The complex number x− iy is by definition the complex conjugate of the
complex number x+ iy. If z = x+ iy, then we denote the conjugate of z with
the symbol z; thus z = x− iy. The complex conjugate is initially of interest
because if p is a quadratic polynomial with real coefficients and if z is a root
of p then so is z.
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Figure 1.2: Euclidean distance (modulus) in the plane.

1.1.3 Complex Conjugate

Note that z + z = 2x , z − z = 2iy. Also

z + w = z + w , (1.1.3.1)

z · w = z · w . (1.1.3.2)

A complex number is real (has no imaginary part) if and only if z = z. It is
imaginary (has no real part) if and only if z = −z.

1.1.4 Modulus of a Complex Number

The ordinary Euclidean distance of (x, y) to (0, 0) is
√

x2 + y2 (Figure 1.2).
We also call this number the modulus of the complex number z = x + iy and
we write |z| =

√
x2 + y2. Note that

z · z = x2 + y2 = |z|2.
The distance from z to w is |z−w|. We also have the formulas |z ·w| = |z| · |w|
and |Re z| ≤ |z| and |Im z| ≤ |z|.

1.1.5 The Topology of the Complex Plane

If P is a complex number and r > 0, then we set

D(P, r) = {z ∈ C : |z − P | < r} (1.1.5.1)
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Figure 1.3: Open and closed discs.

and
D(P, r) = {z ∈ C : |z − P | ≤ r}. (1.1.5.2)

The first of these is the open disc with center P and radius r; the second
is the closed disc with center P and radius r (Figure 1.3). We often use
the simpler symbols D and D to denote, respectively, the discs D(0, 1) and
D(0, 1).

We say that a subset U ⊆ C is open if, for each P ∈ C, there is an r > 0
such that D(P, r) ⊆ U . Thus an open set is one with the property that each
point P of the set is surrounded by neighboring points that are still in the
set (that is, the points of distance less than r from P )—see Figure 1.4. Of
course the number r will depend on P . As examples, U = {z ∈ C : Re z > 1}
is open, but F = {z ∈ C : Re z ≤ 1} is not (Figure 1.5).

A set E ⊆ C is said to be closed if C \ E ≡ {z ∈ C : z ̸∈ E} (the
complement of E in C) is open. The set F in the last paragraph is closed.

It is not the case that any given set is either open or closed. For example,
the set W = {z ∈ C : 1 < Re z ≤ 2} is neither open nor closed (Figure 1.6).

We say that a set E ⊂ C is connected if there do not exist non-empty
disjoint open sets U and V such that E = (U ∩E)∪ (V ∩E). Refer to Figure
1.7 for these ideas. It is a useful fact that if E ⊆ C is an open set, then E
is connected if and only if it is path-connected; this last means that any two
points of E can be connected by a continuous path or curve. See Figure 1.8.
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Figure 1.4: An open set.

Figure 1.5: Open and non-open sets.
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Figure 1.6: A set that is neither open nor closed.

Figure 1.7: The concept of connectivity.
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Figure 1.8: Path connectedness.

1.1.6 The Complex Numbers as a Field

Let 0 denote the number 0 + i0. If z ∈ C, then z + 0 = z. Also, letting
−z = −x − iy, we have z + (−z) = 0. So every complex number has an
additive inverse, and that inverse is unique.

Since 1 = 1+ i0, it follows that 1 · z = z ·1 = z for every complex number
z. If z ̸= 0, then |z|2 ̸= 0 and

z ·
(

z

|z|2

)
=

|z|2

|z|2 = 1. (1.1.6.1)

So every non-zero complex number has a multiplicative inverse, and that
inverse is unique. It is natural to define 1/z to be the multiplicative inverse
z/|z|2 of z and, more generally, to define

z

w
= z · 1

w
=

zw

|w|2 for w ̸= 0. (1.1.6.2)

We also have z/w = z/w.
Multiplication and addition satisfy the usual distributive, associative, and

commutative laws. Therefore C is a field (see [HER]). The field C contains
a copy of the real numbers in an obvious way:

R ∋ x +→ x + i0 ∈ C. (1.1.6.3)

This identification respects addition and multiplication. So we can think of
C as a field extension of R: it is a larger field which contains the field R.
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1.1.7 The Fundamental Theorem of Algebra

It is not true that every non-constant polynomial with real coefficients has a
real root. For instance, p(x) = x2 + 1 has no real roots. The Fundamental
Theorem of Algebra states that every polynomial with complex coefficients
has a complex root (see the treatment in §§3.1.4 below). The complex field
C is the smallest field that contains R and has this so-called algebraic clo-
sure property. One of the first powerful and elegant applications of complex
variable theory is to provide a proof of the Fundamental Theorem of Algebra.

1.2 The Exponential and Applications

1.2.1 The Exponential Function

We define the complex exponential as follows:

(1.2.1.1) If z = x is real, then

ez = ex ≡
∞∑

j=0

xj

j!

as in calculus. Here ! denotes “factorial”: j! = j·(j−1)·(j−2) · · · 3·2·1.

(1.2.1.2) If z = iy is pure imaginary, then

ez = eiy ≡ cos y + i sin y.

(1.2.1.3) If z = x + iy, then

ez = ex+iy ≡ ex · eiy = ex · (cos y + i sin y).

Part and parcel of the last definition of the exponential is the following
complex-analytic definition of the sine and cosine functions:

cos z =
eiz + e−iz

2
, (1.2.1.4)

sin z =
eiz − e−iz

2i
. (1.2.1.5)
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Note that when z = x + i0 is real this new definition coincides with the
familiar Euler formula from calculus:

eit = cos t + i sin t . (1.2.1.6)

1.2.2 The Exponential Using Power Series

It is also possible to define the exponential using power series:

ez =
∞∑

j=0

zj

j!
. (1.2.2.1)

Either definition (that in §§1.2.1 or in §§1.2.2) is correct for any z, and they
are logically equivalent.

1.2.3 Laws of Exponentiation

The complex exponential satisfies familiar rules of exponentiation:

ez+w = ez · ew and (ez)w = ezw. (1.2.3.1)

Also (
ez
)n

= ez · · · ez
︸ ︷︷ ︸
n times

= enz. (1.2.3.2)

One may verify these properties directly from the power series definition, or
else use the more explicit definitions in (1.2.1.1)–(1.2.1.3).

1.2.4 Polar Form of a Complex Number

A consequence of our first definition of the complex exponential —see (1.2.1.2)—
is that if ζ ∈ C, |ζ| = 1, then there is a unique number θ, 0 ≤ θ < 2π, such
that ζ = eiθ (see Figure 1.9). Here θ is the (signed) angle between the positive

x axis and the ray
−→
0ζ.

Now, if z is any non-zero complex number, then

z = |z| ·
(

z

|z|

)
≡ |z| · ζ , (1.2.4.1)
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Figure 1.9: Polar representation of a complex number of modulus 1.

where ζ = z/|z| has modulus 1. Again letting θ be the angle between the

real axis and
−→
0ζ , we see that

z = |z| · ζ
= |z|eiθ

= reiθ , (1.2.4.2)

where r = |z|. This form is called the polar representation for the complex
number z. (Note that some classical books write the expression z = reiθ =
r(cos θ + i sin θ) as z = rcis θ. The reader should be aware of this notation,
though we shall not use it in this book.) Engineers like the cis notation.

EXAMPLE 1.2.4.1 Let z = 1 +
√

3i. Then |z| =
√

12 + (
√

3)2 = 2.
Hence

z = 2 ·
(

1

2
+ i

√
3

2

)

.

The unit-modulus number in parenthesis subtends an angle of π/3 with the
positive x-axis. Therefore

1 +
√

3i = z = 2 · eiπ/3.
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It is often convenient to allow angles that are greater than or equal to
2π in the polar representation; when we do so, the polar representation is no
longer unique. For if k is an integer, then

eiθ = cos θ + i sin θ

= cos(θ + 2kπ) + i sin(θ + 2kπ)

= ei(θ+2kπ) . (1.2.4.3)

1.2.5 Roots of Complex Numbers

The properties of the exponential operation can be used to find the nth roots
of a complex number.

EXAMPLE 1.2.5.1 To find all sixth roots of 2, we let reiθ be an arbitrary
sixth root of 2 and solve for r and θ. If

(
reiθ
)6

= 2 = 2 · ei0 (1.2.5.1.1)

or
r6ei6θ = 2 · ei0 , (1.2.5.1.2)

then it follows that r = 21/6 ∈ R and θ = 0 solve this equation. So the real
number 21/6 · ei0 = 21/6 is a sixth root of two. This is not terribly surprising,
but we are not finished.

We may also solve
r6ei6θ = 2 = 2 · e2πi. (1.2.5.1.3)

Hence
r = 21/6 , θ = 2π/6 = π/3. (1.2.5.1.4)

This gives us the number

21/6eiπ/3 = 21/6
(
cosπ/3 + i sinπ/3

)
= 21/6

(
1

2
+ i

√
3

2

)

(1.2.5.1.5)

as a sixth root of two. Similarly, we can solve

r6ei6θ = 2 · e4πi

r6ei6θ = 2 · e6πi

r6ei6θ = 2 · e8πi

r6ei6θ = 2 · e10πi
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to obtain the other four sixth roots of 2:

21/6

(

−1

2
+ i

√
3

2

)

(1.2.5.1.6)

−21/6 (1.2.5.1.7)

21/6

(

−1

2
− i

√
3

2

)

(1.2.5.1.8)

21/6

(
1

2
− i

√
3

2

)

. (1.2.5.1.9)

These are in fact all the sixth roots of 2.

Remark: One could of course continue the procedure in the last example,
solving r6ei6θ = 2 · e12πi, etc.. But this would simply result in repetition of
the roots we have already found.

EXAMPLE 1.2.5.2 Let us find all third roots of i. We begin by writing
i as

i = eiπ/2. (1.2.5.2.1)

Solving the equation

(reiθ)3 = i = eiπ/2 (1.2.5.2.2)

then yields r = 1 and θ = π/6.
Next, we write i = ei5π/2 and solve

(reiθ)3 = ei5π/2 (1.2.5.2.3)

to obtain that r = 1 and θ = 5π/6.
Lastly, we write i = ei9π/2 and solve

(reiθ)3 = ei9π/2 (1.2.5.2.4)

to obtain that r = 1 and θ = 9π/6 = 3π/2.
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6

2

Figure 1.10: The sixth roots of 2.

In summary, the three cube roots of i are

eiπ/6 =

√
3

2
+ i

1

2
, (1.2.5.2.5)

ei5π/6 = −
√

3

2
+ i

1

2
, (1.2.5.2.6)

ei3π/2 = −i . (1.2.5.2.7)

It is worth noting that, in both Examples 1.2.5.1 and 1.2.5.2, the roots of
the given complex number are equally spaced about a circle centered at the
origin. See Figures 1.10 and 1.11.

1.2.6 The Argument of a Complex Number

The (non-unique) angle θ associated to a complex number z ̸= 0 is called its
argument, and is written arg z. For instance, arg(1 + i) = π/4. But it is also
correct to write arg(1 + i) = 9π/4, 17π/4,−7π/4, etc. We generally choose
the argument θ to satisfy 0 ≤ θ < 2π. This is the principal branch of the
argument—see §§9.1.2, §§9.4.2.
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1

Figure 1.11: The third roots of i.

Under multiplication of complex numbers, arguments are additive and
moduli multiply. That is, if z = reiθ and w = seiψ then

z · w = reiθ · seiψ = (rs) · ei(θ+ψ). (1.2.6.1)

1.2.7 Fundamental Inequalities

We next record a few important inequalities.

The Triangle Inequality: If z, w ∈ C, then

|z + w| ≤ |z| + |w|. (1.2.7.1)

More generally, ∣∣∣∣∣

n∑

j=1

zj

∣∣∣∣∣
≤

n∑

j=1

|zj|. (1.2.7.2)

For n = 2, this basic fact can be seen immediately from a picture: any side
of a triangle has length not exceeding the sum of the other two sides. The
general case follows by induction on n. The rigorous proof involves solving
an extremal problem using calculus—see [KRA3].



1.3. HOLOMORPHIC FUNCTIONS 15

The Cauchy-Schwarz Inequality: If z1, . . . , zn and w1, . . . , wn are com-
plex numbers, then

∣∣∣∣∣

n∑

j=1

zjwj

∣∣∣∣∣

2

≤
[

n∑

j=1

|zj|2
]

·
[

n∑

j=1

|wj|2
]

. (1.2.7.3)

This result is immediate from the Triangle Inequality: Just square both sides
and multiply everything out.

1.3 Holomorphic Functions

1.3.1 Continuously Differentiable and Ck Functions

In this book we will frequently refer to a domain or a region U ⊆ C. Usually
this will mean that U is an open set and that U is connected (see §1.1.5).

Holomorphic functions are a generalization of complex polynomials. But
they are more flexible objects than polynomials. The collection of all poly-
nomials is closed under addition and multiplication. However, the collection
of all holomorphic functions is closed under reciprocals, inverses, exponenti-
ation, logarithms, square roots, and many other operations as well.

There are several different ways to introduce the concept of holomorphic
function. It can be defined by way of power series, or using the complex
derivative, or using partial differential equations. We shall touch on all these
approaches; but our initial definition will be by way of partial differential
equations. First ewe need some preliminary concepts from real analysis.

If U ⊆ R2 is open and f : U → R is a continuous function, then f is
called C1 (or continuously differentiable) on U if ∂f/∂x and ∂f/∂y exist and
are continuous on U. We write f ∈ C1(U) for short.

More generally, if k ∈ {0, 1, 2, ...}, then a real-valued function f on U is
called Ck (k times continuously differentiable) if all partial derivatives of f
up to and including order k exist and are continuous on U. We write in this
case f ∈ Ck(U). In particular, a C0 function is just a continuous function.

A function f = u + iv : U → C is called Ck if both u and v are Ck.

1.3.2 The Cauchy-Riemann Equations

If f is any complex-valued function, then we may write f = u + iv, where u
and v are real-valued functions.
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EXAMPLE 1.3.2.1 Consider

f(z) = z2 = (x2 − y2) + i(2xy);

in this example u = x2 − y2 and v = 2xy. We refer to u as the real part of f
and denote it by Re f ; we refer to v as the imaginary part of f and denote it
by Im f .

Now we formulate the notion of “holomorphic function” in terms of the
real and imaginary parts of f :

Let U ⊆ C be an open set and f : U → C a C1 function. Write

f(z) = f(x + iy) ≡ f̃(x, y) = u(x, y) + iv(x, y),

with z = x + iy and u and v real-valued functions. If u and v satisfy the
equations

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x
(1.3.2.2)

at every point of U , then the function f is said to be holomorphic (see §§1.3.4,
where a formal definition of “holomorphic” is provided). The first order, lin-
ear partial differential equations in (1.3.2.2) are called the Cauchy-Riemann
equations. A practical method for checking whether a given function is holo-
morphic is to check whether it satisfies the Cauchy-Riemann equations. An-
other intuitively appealing method, which we develop in the next subsection,
is to verify that the function in question depends on z only and not on z.

1.3.3 Derivatives

We define, for f = u + iv : U → C a C1 function,

∂

∂z
f ≡ 1

2

(
∂

∂x
− i

∂

∂y

)
f =

1

2

(
∂u

∂x
+
∂v

∂y

)
+

i

2

(
∂v

∂x
− ∂u

∂y

)
(1.3.3.1)

and

∂

∂z
f ≡ 1

2

(
∂

∂x
+ i

∂

∂y

)
f =

1

2

(
∂u

∂x
− ∂v

∂y

)
+

i

2

(
∂v

∂x
+
∂u

∂y

)
. (1.3.3.2)

If z = x + iy, z = x − iy, then one can check directly that
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∂

∂z
z = 1 ,

∂

∂z
z = 0 ,

(1.3.3.3)

∂

∂z
z = 0 ,

∂

∂z
z = 1 .

If a C1 function f satisfies ∂f/∂z ≡ 0 on an open set U , then f does
not depend on z (but it does depend on z). If instead f satisfies ∂f/∂z ≡ 0
on an open set U , then f does not depend on z (but it does depend on
z). The condition ∂f/∂z = 0 is a reformulation of the Cauchy-Riemann
equations—see §§1.3.4.

1.3.4 Definition of Holomorphic Function

Functions f that satisfy (∂/∂z)f ≡ 0 are the main concern of complex anal-
ysis. A continuously differentiable (C1) function f : U → C defined on an
open subset U of C is said to be holomorphic if

∂f

∂z
= 0 (1.3.4.1)

at every point of U. Note that this last equation is just a reformulation of
the Cauchy-Riemann equations (§§1.3.2). To see this, we calculate:

0 =
∂

∂z
f(z)

=
1

2

(
∂

∂x
+ i

∂

∂y

)
[u(z) + iv(z)]

=

[
∂u

∂x
− ∂v

∂y

]
+ i

[
∂u

∂y
+
∂v

∂x

]
. (1.3.4.2)

Of course the far right-hand side cannot be identically zero unless each of its
real and imaginary parts is identically zero. It follows that

∂u

∂x
− ∂v

∂y
= 0
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and
∂u

∂y
+
∂v

∂x
= 0.

These are the Cauchy-Riemann equations (1.3.2.2).

1.3.5 The Complex Derivative

Let U ⊆ C be open, P ∈ U, and g : U \ {P} → C a function. We say that

lim
z→P

g(z) = ℓ , ℓ ∈ C , (1.3.5.1)

if for any ϵ > 0 there is a δ > 0 such that when z ∈ U and 0 < |z − P | < δ
then |g(z) − ℓ| < ϵ. This is similar to the calculus definition of limit, but it
allows z to approach P from any direction.

We say that f possesses the complex derivative at P if

lim
z→P

f(z) − f(P )

z − P
(1.3.5.2)

exists. In that case we denote the limit by f ′(P ) or sometimes by

df

dz
(P ) or

∂f

∂z
(P ). (1.3.5.3)

This notation is consistent with that introduced in §§1.3.3: for a holomorphic
function, the complex derivative calculated according to formula (1.3.5.2) or
according to formula (1.3.3.1) is just the same (use the Cauchy-Riemann
equations). We shall say more about the complex derivative in §2.2.3 and
§2.2.4.

It should be noted that, in calculating the limit in (1.3.5.2), z must be
allowed to approach P from any direction (see Figure 1.12). As an example,
the function g(x, y) = z = x − iy—equivalently, g(z) = z—does not possess
the complex derivative at 0. To see this, calculate the limit

lim
z→P

g(z) − g(P )

z − P

with z approaching P = 0 through values z = x + i0. The answer is

lim
x→0

x − 0

x − 0
= 1.
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P

z
z

Figure 1.12: The limit from any direction.

If instead z is allowed to approach P = 0 through values z = iy, then the
value is

lim
y→0

−iy − 0

iy − 0
= −1.

Observe that the two answers do not agree. In order for the complex deriva-
tive to exist, the limit must exist and assume only one value no matter how
z approaches P . Therefore this example g does not possess the complex
derivative at P = 0. In fact a similar calculation shows that this function g
does not possess the complex derivative at any point.

If a function f possesses the complex derivative at every point of its open
domain U , then f is holomorphic. This definition is equivalent to definitions
given in §§1.3.2, §§1.3.4. We repeat some of these ideas in §2.2.

1.3.6 Alternative Terminology for Holomorphic Func-
tions

Some books use the word “analytic” instead of “holomorphic.” Still others
say “differentiable” or “complex differentiable” instead of “holomorphic.”
The use of the term “analytic” derives from the fact that a holomorphic
function has a local power series expansion about each point of its domain
(see §§3.1.6). In fact this power series property is a complete characterization
of holomorphic functions; we shall discuss it in detail below. The use of
“differentiable” derives from properties related to the complex derivative.
These pieces of terminology and their significance will all be sorted out as
the book develops. Somewhat archaic terminology for holomorphic functions,
which may be found in older texts, are “regular” and “monogenic.”

Another piece of terminology that is applied to holomorphic functions
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is “conformal” or “conformal mapping.” “Conformality” is an important
geometric property of holomorphic functions that make these functions useful
for modeling incompressible fluid flow and other physical phenomena. We
shall discuss conformality in §§2.2.5. See also [KRA6].
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1.4 Holomorphic and Harmonic Functions

1.4.1 Harmonic Functions

A C2 function u is said to be harmonic if it satisfies the equation

(
∂2

∂x2
+

∂2

∂y2

)
u = 0. (1.4.1.1)

This equation is called Laplace’s equation, and is frequently abbreviated as

△u = 0. (1.4.1.2)

1.4.2 How They are Related

If f is a holomorphic function and f = u + iv is the expression of f in terms
of its real and imaginary parts, then both u and v are harmonic. An elegant
way to see this is to observe that

∂

∂z
f = 0

hence
∂

∂z

∂

∂z
f = 0 .

But we may write out the lefthand side of the last equation to find that

1

4
△ f = 0

or
(△u) + i(△v) = 0 .

It is important to note here that the Laplacian △ is a real operator. Thus
the only way that the last identity can be true is if

△u = 0 and △ v = 0 .

This is what we have asserted.
A converse is true provided the functions involved are defined on a domain

with no holes:
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Theorem: If R is an open rectangle (or open disc) and if u is
a real-valued harmonic function on R, then there is a holomorphic
function F on R such that Re F = u. In other words, for such a
function u there exists a harmonic function v defined on R such
that f ≡ u + iv is holomorphic on R. Any two such functions v
must differ by a real constant.

More generally, if U is a region with no holes (a simply con-
nected region—see §§2.3.3), and if u is harmonic on U , then there
is a holomorphic function F on U with Re F = u. In other words,
for such a function u there exists a harmonic function v defined
on U such that f ≡ u + iv is holomorphic on U . Any two such
functions v must differ by a constant. We call the function v a
harmonic conjugate for u.

To give an indication of why these statements are true we note that, given
u harmonic, we seek v such that

∂v

∂x
= −∂u

∂y
≡ α(x, y)

and
∂v

∂y
=
∂u

∂x
≡ β(x, y)

(these are the Cauchy-Riemann equations). We know from calculus that a
pair of equations like this is solvable on a region with no holes precisely when

∂α

∂y
=
∂β

∂x
.

But this last is just the condition that u be harmonic. This explains why v,
and hence F = u + iv, exists.

The displayed theorem is false on a domain with a hole, such as an annu-
lus. For example, the harmonic function u = log(x2 + y2), defined on the
annulus U = {z : 1 < |z| < 2}, has no harmonic conjugate on U . See also
§§7.1.4.
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Complex Line Integrals

2.1 Real and Complex Line Integrals

In this section we shall recast the line integral from calculus in complex
notation. The result will be the complex line integral. The complex line
integral is essential to the Cauchy theory, which we develop below, and that
in turn is key to the argument principle and many of the other central ideas
of the subject.

2.1.1 Curves

It is convenient to think of a curve as a continuous function γ from a closed
interval [a, b] ⊆ R into R2 ≈ C. We sometimes let γ̃ denote the image of the
mapping. Thus

γ̃ = {γ(t) : t ∈ [a, b]} .

Often we follow the custom of referring to either the function or the image
with the single symbol γ. It will be clear from context what is meant. Refer
to Figure 2.1.

It is often convenient to write

γ(t) = (γ1(t), γ2(t)) or γ(t) = γ1(t) + iγ2(t). (2.1.1.1)

For example, γ(t) = (cos t, sin t) = cos t + i sin t, t ∈ [0, 2π], describes the
unit circle in the plane. The circle is traversed in a counterclockwise manner
as t increases from 0 to 2π. Again see Figure 2.1.

23
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Figure 2.1: Curves in the plane.

2.1.2 Closed Curves

The curve γ : [a, b] → C is called closed if γ(a) = γ(b). It is called simple,
closed (or Jordan) if the restriction of γ to the interval [a, b) (which is com-
monly written γ

∣∣
[a,b)

) is one-to-one and γ(a) = γ(b) (Figure 2.2). Intuitively,

a simple, closed curve is a curve with no self-intersections, except of course
for the closing up at t = a, b.

In order to work effectively with γ we need to impose on it some differ-
entiability properties.

2.1.3 Differentiable and Ck Curves

A function ϕ : [a, b] → R is called continuously differentiable (or C1), and we
write ϕ ∈ C1([a, b]), if

(2.1.3.1) ϕ is continuous on [a, b];
(2.1.3.2) ϕ′ exists on (a, b);
(2.1.3.3) ϕ′ has a continuous extension to [a, b].
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Figure 2.2: A simple, closed curve.

In other words, we require that

lim
t→a+

ϕ′(t) and lim
t→b−

ϕ′(t)

both exist.
Note that

ϕ(b) − ϕ(a) =

∫ b

a

ϕ′(t) dt, (2.1.3.4)

so that the Fundamental Theorem of Calculus holds for ϕ ∈ C1([a, b]).
A curve γ : [a, b] → C, with γ(t) = γ1(t)+iγ2(t) is said to be continuous on

[a, b] if both γ1 and γ2 are. We write γ ∈ C0([a, b]). The curve is continuously
differentiable (or C1) on [a, b], and we write

γ ∈ C1([a, b]), (2.1.3.5)

if γ1, γ2 are continuously differentiable on [a, b]. Under these circumstances
we will write

dγ

dt
=

dγ1

dt
+ i

dγ2

dt
. (2.1.3.6)

We also write γ′(t) or even γ̇(t) for dγ/dt.

2.1.4 Integrals on Curves

Let ψ : [a, b] → C be continuous on [a, b]. Write ψ(t) = ψ1(t) + iψ2(t). Then
we define ∫ b

a

ψ(t) dt ≡
∫ b

a

ψ1(t) dt + i

∫ b

a

ψ2(t) dt. (2.1.4.1)
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We summarize the ideas presented thus far by noting that if γ ∈ C1([a, b])
is complex-valued, then

γ(b) − γ(a) =

∫ b

a
γ′(t) dt. (2.1.4.2)

2.1.5 The Fundamental Theorem of Calculus along Curves

Now we state the Fundamental Theorem of Calculus (see [BKR]) adapted to
curves.

Let U ⊆ C be a domain and let γ : [a, b] → U be a C1 curve. If f ∈ C1(U),
then

f(γ(b)) − f(γ(a)) =

∫ b

a

(
∂f

∂x
(γ(t)) · dγ1

dt
+
∂f

∂y
(γ(t)) · dγ2

dt

)
dt. (2.1.5.1)

For the proof, simply reduce the assertion (2.1.5.1) to the analogous classical
assertion from the calculus.

2.1.6 The Complex Line Integral

When f is holomorphic, then formula (2.1.5.1) may be rewritten (using the
Cauchy-Riemann equations) as

f(γ(b)) − f(γ(a)) =

∫ b

a

∂f

∂z
(γ(t)) · dγ

dt
(t) dt, (2.1.6.1)

where, as earlier, we have taken dγ/dt to be dγ1/dt + idγ2/dt.
This latter result plays much the same role for holomorphic functions as

does the Fundamental Theorem of Calculus for functions from R to R. The
expression on the right of (2.1.6.1) is called the complex line integral and is
denoted ∮

γ

∂f

∂z
(z) dz . (2.1.6.2)

More generally, if g is any continuous function whose domain contains the
curve γ, then the complex line integral of g along γ is defined to be

∮

γ

g(z) dz ≡
∫ b

a

g(γ(t)) · dγ

dt
(t) dt. (2.1.6.3)
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The main point here is that
∮

dz entails an expression of the form γ′(t) dt in
the integrand. Thus the trajectory and orientation of the curve will play a
decisive role in the calculation, interpretation, and meaning of the complex
line integral.

The whole concept of complex line integral is central to our further con-
siderations in later sections. We shall use integrals like the one on the right
of (2.1.6.3) even when f is not holomorphic; but we can be sure that the
equality (2.1.6.1) holds only when f is holomorphic.

Note that when γ(a) = γ(b) = A (and the domain U is simply connected)
then the lefthand side of (2.1.6.1) is automatically equal to 0; and the right-
hand side is simply the complex line integral of f around a closed curve.
So we have a preview of the Cauchy integral theorem (see §§2.3.1) in this
context.

2.1.7 Properties of Integrals

We conclude this section with some easy but useful facts about integrals.

(2.1.7.1) If ϕ : [a, b] → C is continuous, then

∣∣∣∣

∫ b

a

ϕ(t) dt

∣∣∣∣ ≤
∫ b

a

|ϕ(t)| dt. (2.1.7.1.1)

(2.1.7.2) If γ : [a, b] → C is a C1 curve and ϕ is a continuous function on
the curve γ, then

∣∣∣∣

∮

γ

ϕ(z) dz

∣∣∣∣ ≤
[
max
t∈[a,b]

|ϕ(t)|
]
· ℓ(γ) , (2.1.7.2.1)

where

ℓ(γ) ≡
∫ b

a

|ϕ′(t)| dt

is the length of γ. Note that (2.1.7.2.1) follows from (2.1.7.1.1), and (2.1.7.1.1)
is just calculus.

(2.1.7.3) The calculation of a complex line integral is independent of the
way in which we parametrize the path:
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Let U ⊆ C be an open set and f : U → C a continuous
function. Let γ : [a, b] → U be a C1 curve. Suppose that ϕ :
[c, d] → [a, b] is a one-to-one, onto, increasing C1 function with a
C1 inverse. Let γ̃ = γ ◦ ϕ. Then

∮

eγ

f dz =

∮

γ

f dz. (2.1.7.3.1)

The result follows from the change of variables formula in calculus.
This last statement implies that one can use the idea of the integral of a

function f along a curve γ when the curve γ is described geometrically but
without reference to a specific parametrization. For instance, “the integral of
z counterclockwise around the unit circle {z ∈ C : |z| = 1}” is now a phrase
that makes sense, even though we have not indicated a specific parametriza-
tion of the unit circle. Note, however, that the direction counts: The integral
of z counterclockwise around the unit circle is 2πi. If the direction is reversed,
then the integral changes sign: The integral of z clockwise around the unit
circle is −2πi.

2.2 Complex Differentiability and Conformal-
ity

2.2.1 Limits

Until now we have developed a complex differential and integral calculus.
We now unify the notions of partial derivative and total derivative in the
complex context. For convenience, we shall repeat some ideas from §1.3.

2.2.2 Holomorphicity and the Complex Derivative

Let U ⊆ C be an open set and let f be holomorphic on U . Then f ′ exists at
each point of U and

f ′(z) =
∂f

∂z
(2.2.4.1)

for all z ∈ U (where ∂f/∂z is defined as in §§1.3.3). This is because we
see that ∂f/∂x (according to the definition) coincides with df/dz and ∂f/∂y
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coincides with idf/dz. Hence

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
=

df

dz
.

Note that, as a consequence, we can (and often will) write f ′ for ∂f/∂z
when f is holomorphic. The following result is a converse:

If f ∈ C1(U) and f has a complex derivative f ′ at each point of U , then f
is holomorphic on U . In particular, if a continuous, complex-valued function
f on U has a complex derivative at each point and, if f ′ is continuous on U ,
then f is holomorphic on U . Such a function satisfies the Cauchy-Riemann
equations (1.3.2.2).

It is perfectly logical to consider an f that possesses a complex derivative
at each point of U without the additional assumption that f ∈ C1(U). It
turns out that, under these circumstances, u and v still satisfy the Cauchy-
Riemann equations. It is a deeper result, due to Goursat, that if f has
a complex derivative at each point of U , then f ∈ C1(U) and hence f is
holomorphic. See [GRK], especially the Appendix on Goursat’s theorem, for
details.

2.2.3 Conformality

Now we make some remarks about “conformality.” Stated loosely, a function
is conformal at a point P ∈ C if the function “preserves angles” at P and
“stretches equally in all directions” at P . Holomorphic functions enjoy both
properties. Now we shall discuss them in detail.

Let f be holomorphic in a neighborhood of P ∈ C. Let w1, w2 be complex
numbers of unit modulus. Consider the directional derivatives

Dw1
f(P ) ≡ lim

t→0

f(P + tw1) − f(P )

t
(2.2.5.1)

and

Dw2
f(P ) ≡ lim

t→0

f(P + tw2) − f(P )

t
. (2.2.5.2)

Then

(2.2.5.3) |Dw1
f(P )| = |Dw2

f(P )| .
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(2.2.5.4) If |f ′(P )| ≠ 0, then the directed angle from w1 to w2 equals
the directed angle from Dw1

f(P ) to Dw2
f(P ).

In fact the last statement has an important converse: If (2.2.5.4) holds
at P , then f has a complex derivative at P . If (2.2.5.3) holds at P , then
either f or f has a complex derivative at P . Thus a function that is confor-
mal (in either sense) at all points of an open set U must possess the complex
derivative at each point of U . By the discussion in §§2.2.4, f is therefore
holomorphic if it is C1. Or, by Goursat’s theorem, it would then follow that
the function is holomorphic on U , with the C1 condition being automatic.

Proof of Conformality: Notice that

Dwj f(P ) = lim
t→0

f(P + twj) − f(P )

twj
· twj

t

= f ′(P ) · wj , j = 1, 2.

The first assertion is now immediate and the second follows from the usual
geometric interpretation of multiplication by a nonzero complex number,
namely, that multiplication by reiθ, r ̸= 0, multiplies lengths by r and ro-
tates (around the origin) by the angle θ.

The converse to this theorem asserts in effect that if either of statements
(2.2.4.2) or (2.2.4.3) holds at P , then f has a complex derivative at P . Thus
a C1 function that is conformal (in either sense) at all points of an open set
U must possess the complex derivative at each point of U . Of course then f
is holomorphic if it is C1. We leave these assertions to the reader.

It is worthwhile to consider the theorem expressed in terms of real func-
tions. That is, we write f = u+ iv, where u, v are real-valued functions. Also
we consider f(x + iy), and hence u and v, as functions of the real variables
x and y. Thus f , as a function from an open subset of C into C, can be
regarded as a function from an open subset of R2 into R2. With f viewed
in these real-variable terms, the first derivative behavior of f is described by
its Jacobian matrix: ⎛

⎜
⎝

∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

⎞

⎟
⎠ .
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Recall that this matrix, evaluated at a point (x0, y0), is the matrix of the
linear transformation that best approximates f(x, y) − f(x0, y0) at (x0, y0).
Now the Cauchy-Riemann equations for f mean exactly that this matrix has
the form (

a −b
b a

)
.

Such a matrix is either the zero matrix or it can be written as the product
of two matrices:

( √
a2 + b2 0

0
√

a2 + b2

)
·
(

cos θ − sin θ
sin θ cos θ

)

for some choice of θ ∈ R. One chooses θ so that

cos θ =
a√

a2 + b2
,

sin θ =
b√

a2 + b2
.

Such a choice of θ is possible because
(

a√
a2 + b2

)2

+

(
b√

a2 + b2

)2

= 1.

Thus the Cauchy-Riemann equations imply that the (real) Jacobian of f has
the form (

λ 0
0 λ

)
·
(

cos θ − sin θ
sin θ cos θ

)

for some λ ∈ R,λ > 0, and some θ ∈ R.
Geometrically, these two matrices have simple meanings. The matrix

(
cos θ − sin θ
sin θ cos θ

)

is the representation of a rotation around the origin by the angle θ. The
matrix (

λ 0
0 λ

)

is multiplication of all vectors in R2 by λ. Therefore the product
(
λ 0
0 λ

)
·
(

cos θ − sin θ
sin θ cos θ

)
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represents the same operation on R2 as does multiplication on C by the
complex number λeiθ.

Notice that, for our particular (Jacobian) matrix
⎛

⎜
⎝

∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

⎞

⎟
⎠ ,

we have

λ =

√(
∂u

∂x

)2

+

(
∂v

∂x

)2

= |f ′(z)|,

in agreement with the theorem.

2.3 The Cauchy Integral Formula and Theo-
rem

2.3.1 The Cauchy Integral Theorem, Basic Form

If f is a holomorphic function on an open disc U in the complex plane, and
if γ : [a, b] → U is a C1 curve in U with γ(a) = γ(b), then

∮

γ

f(z) dz = 0. (2.3.1.1)

There are a number of different ways to prove the Cauchy integral theo-
rem. One of the most natural is by way of a complex-analytic form of Stokes’s
theorem: If γ is a simple, closed curve surrounding a region U in the plane
then ∮

γ

f(z) dz =

∫ ∫

U

∂f

∂z
dz ∧ dz =

∫ ∫

U

0dz ∧ dz = 0 .

An important converse of Cauchy’s theorem is called Morera’s theorem:

Let f be a continuous function on a connected open set U ⊆ C.
If

∮

γ

f(z) dz = 0 (2.3.1.2)
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for every simple, closed curve γ in U , then f is holomorphic on
U .

In the statement of Morera’s theorem, the phrase “every simple, closed curve”
may be replaced by “every triangle” or “every square” or “every circle.”
Morera’s theorem may also be proved using Stokes’s theorem (as above). We
leave the details to the reader, or see [GRK].

2.3.2 The Cauchy Integral Formula

Suppose that U is an open set in C and that f is a holomorphic function on
U . Let z0 ∈ U and let r > 0 be such that D(P, r) ⊆ U . Let γ : [0, 1] → C be
the C1 curve γ(t) = P + r cos(2πt)+ ir sin(2πt). Then, for each z ∈ D(P, r),

f(z) =
1

2πi

∮

γ

f(ζ)

ζ − z
dζ. (2.3.2.1)

One may derive this result directly from Stokes’s theorem (see [KRA5] and
also our Subsection 2.3.1).

2.3.3 More General Forms of the Cauchy Theorems

Now we present the very useful general statements of the Cauchy integral
theorem and formula. First we need a piece of terminology. A curve γ :
[a, b] → C is said to be piecewise Ck if

[a, b] = [a0, a1] ∪ [a1, a2] ∪ · · · ∪ [am−1, am] (2.3.3.1)

with a = a0 < a1 < · · · am = b and γ
∣∣
[aj−1,aj]

is Ck for 1 ≤ j ≤ m. In other

words, γ is piecewise Ck if it consists of finitely many Ck curves chained end
to end.

Cauchy Integral Theorem: Let f : U → C be holomorphic with U ⊆ C

an open set. Then ∮

γ

f(z) dz = 0 (2.3.3.2)

for each piecewise C1 closed curve γ in U that can be deformed in U through
closed curves to a point in U—see Figure 2.3.
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Figure 2.3: General form of the Cauchy theorem.

Cauchy Integral Formula: Suppose that D(z, r) ⊆ U . Then

1

2πi

∮

γ

f(ζ)

ζ − z
dζ = f(z) (2.3.3.3)

for any piecewise C1 closed curve γ in U \ {z} that can be continuously
deformed in U \ {z} to ∂D(z, r) equipped with counterclockwise orienta-
tion. Refer to Figure 2.4. Of course one derives this more general version of
Cauchy’s formula with the standard device of deformation of curves.

A topological notion that is special to complex analysis is simple con-
nectivity. We say that a domain U ⊆ C is simply connected if any closed
curve in U can be continuously deformed to a point. Simple connectivity is
a mathematically rigorous condition that corresponds to the intuitive notion
that the region U has no holes. If U is simply connected, and γ is a closed
curve in U , then it follows that γ can be continuously deformed to lie inside
a disc in U . It follows that Cauchy’s theorem applies to γ. To summarize:
on a simply connected region, Cauchy’s theorem applies (without any fur-
ther hypotheses) to any closed curve in γ. Likewise, in a simply connected U ,
Cauchy’s integral formula applied to any simple, closed curve that is oriented
counterclockwise and to any point z that is inside that curve.

2.3.4 Deformability of Curves

A central fact about the complex line integral is the deformability of curves.
Let γ : [a, b] → U be a piecewise C1 curve in a region U of the complex
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Figure 2.4: General form of the Cauchy formula.

plane. Let f be a holomorphic function on U . The value of the complex line
integral ∮

γ

f(z) dz (2.3.4.1)

does not change if the curve γ is smoothly deformed within the region U .
Note that, in order for this statement to be valid, the curve γ must remain
inside the region of holomorphicity U of f while it is being deformed, and
it must remain a closed curve while it is being deformed. Figure 2.5 shows
curves γ1, γ2 that can be deformed to one another, and a curve γ3 that can
be deformed to neither of the first two (because of the hole inside γ3).

2.4 A Coda on the Limitations of The Cauchy
Integral Formula

If f is any continuous function on the boundary of the unit disc D = D(0, 1),
then the Cauchy integral

F (z) =
1

2πi

∮

∂D

f(ζ)

ζ − z
dζ

defines a holomorphic function F (z) on D (use Morera’s theorem, for exam-
ple, to confirm this assertion). What does the new function F have to do
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Figure 2.5: Deformation of curves.

with the original function f? In general, not much.
For example, if f(ζ) = ζ, then F (z) ≡ 0 (exercise). In no sense is

the original function f any kind of “boundary limit” of the new function
F . The question of which functions f are “natural boundary functions” for
holomorphic functions F (in the sense that F is a continuous extension of F
to the closed disc) is rather subtle. Its answer is well understood, but is best
formulated in terms of Fourier series and the so-called Hilbert transform.
The complete story is given in [KRA1]. See also [GAR] for a discussion of
the F. and M. Riesz theorem.

Contrast this situation for holomorphic function with the much more
succinct and clean situation for harmonic functions (§7.3).
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Chapter 3

Applications of the Cauchy
Theory

3.1 The Derivatives of a Holomorphic Func-
tion

3.1.1 A Formula for the Derivative

Let U ⊆ C be an open set and let f be holomorphic on U . Then f ∈ C∞(U).
Moreover, if D(P, r) ⊆ U and z ∈ D(P, r), then

(
∂

∂z

)k

f(z) =
k!

2πi

∮

|ζ−P |=r

f(ζ)

(ζ − z)k+1
dζ, k = 0, 1, 2, . . . . (3.1.1.1)

This formula is obtained simply by differentiating the standard Cauchy for-
mula (2.3.2.1) under the integral sign.

3.1.2 The Cauchy Estimates

If f is a holomorphic on a region containing the closed disc D(P, r) and if
|f | ≤ M on D(P, r), then

∣∣∣∣
∂k

∂zk
f(P )

∣∣∣∣ ≤
M · k!

rk
. (3.1.2.1)

This is proved by direct estimation of the Cauchy formula (3.1.1.1).

39
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3.1.3 Entire Functions and Liouville’s Theorem

A function f is said to be entire if it is defined and holomorphic on all of C,
i.e., f : C → C is holomorphic. For instance, any holomorphic polynomial is
entire, ez is entire, and sin z, cos z are entire. The function f(z) = 1/z is not
entire because it is undefined at z = 0. [In a sense that we shall make precise
later (§4.1, ff.), this last function has a “singularity” at 0.] The question we
wish to consider is: “Which entire functions are bounded?” This question
has a very elegant and complete answer as follows:

Liouville’s Theorem A bounded entire function is constant.

Proof: Let f be entire and assume that |f(z)| ≤ M for all z ∈ C. Fix a
P ∈ C and let r > 0. We apply the Cauchy estimate (3.1.2.1) for k = 1 on
D(P, r). So ∣∣∣∣

∂

∂z
f(P )

∣∣∣∣ ≤
M · 1!

r
. (3.1.3.1)

Since this inequality is true for every r > 0, we conclude that

∂f

∂z
(P ) = 0.

Since P was arbitrary, we conclude that

∂f

∂z
≡ 0.

Therefore f is constant.

The end of the last proof bears some commentary. We prove that ∂f/∂z ≡
0. But we know, since f is holomorphic, that ∂f/∂z ≡ 0. It follows from
linear algebra that ∂f/∂x ≡ 0 and ∂f/∂y ≡ 0. Then calculus tells us that f
is constant.

The reasoning that establishes Liouville’s theorem can also be used to
prove this more general fact: If f : C → C is an entire function and if for
some real number C and some positive integer k, it holds that

|f(z)| ≤ C · (1 + |z|)k

for all z, then f is a polynomial in z of degree at most k.
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3.1.4 The Fundamental Theorem of Algebra

One of the most elegant applications of Liouville’s Theorem is a proof of
what is known as the Fundamental Theorem of Algebra (see also §§1.1.7):

The Fundamental Theorem of Algebra: Let p(z) be a non-
constant (holomorphic) polynomial. Then p has a root. That is,
there exists an α ∈ C such that p(α) = 0.

Proof: Suppose not. Then g(z) = 1/p(z) is entire. Also when |z| → ∞,
then |p(z)| → +∞. Thus 1/|p(z)| → 0 as |z| → ∞; hence g is bounded.
By Liouville’s Theorem, g is constant, hence p is constant. Contradiction.

The polynomial p has degree k ≥ 1, then let α1 denote the root provided
by the Fundamental Theorem. By the Euclidean algorithm (see [HUN]), we
may divide z − α1 into p with no remainder to obtain

p(z) = (z − α1) · p1(z). (3.1.4.1)

Here p1 is a polynomial of degree k − 1 . If k − 1 ≥ 1, then, by the theorem,
p1 has a root α2 . Thus p1 is divisible by (z − α2) and we have

p(z) = (z − α1) · (z − α2) · p2(z) (3.1.4.2)

for some polynomial p2(z) of degree k − 2. This process can be continued
until we arrive at a polynomial pk of degree 0; that is, pk is constant. We
have derived the following fact: If p(z) is a holomorphic polynomial of degree
k, then there are k complex numbers α1, . . .αk (not necessarily distinct) and
a non-zero constant C such that

p(z) = C · (z − α1) · · · (z − αk). (3.1.4.3)

If some of the roots of p coincide, then we say that p has multiple roots.
To be specific, if m of the values αj1 , . . . ,αjm are equal to some complex
number α, then we say that p has a root of order m at α (or that p has a
root of multiplicity m at α). It is an easily verified fact that the polynomial
p has a root of order m at α if p(α) = 0, p′(α) = 0, . . . p(m−1)(α) = 0 (where
the parenthetical exponent denotes a derivative).
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Figure 3.1: A compact set.

An example will make the idea clear: Let

p(z) = (z − 5)3 · (z + 2)8 · (z − 3i) · (z + 6).

Then we say that p has a root of order 3 at 5, a root of order 8 at −2, and
it has roots of order 1 at 3i and at −6. We also say that p has simple roots
at 1 and −6.

3.1.5 Sequences of Holomorphic Functions and
their Derivatives

A sequence of functions gj defined on a common domain E is said to converge
uniformly to a limit function g if, for each ϵ > 0, there is a number N > 0
such that for all j > N it holds that |gj(x)− g(x)| < ϵ for every x ∈ E. The
key point is that the degree of closeness of gj(x) to g(x) is independent of
x ∈ E.

Let fj : U → C , j = 1, 2, 3 . . . , be a sequence of holomorphic functions on
an open set U in C. Suppose that there is a function f : U → C such that, for
each compact subset E (a compact set is one that is closed and bounded—
see Figure 3.1) of U , the restricted sequence fj|E converges uniformly to f |E .
Then f is holomorphic on U . [In particular, f ∈ C∞(U).]

If fj, f, U are as in the preceding paragraph, then, for any k ∈ {0, 1, 2, . . . },
we have (

∂

∂z

)k

fj(z) →
(
∂

∂z

)k

f(z) (3.1.5.1)
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uniformly on compact sets.1 The proof is immediate from (3.1.1.1), which we
derived from the Cauchy integral formula, for the derivative of a holomorphic
function.

3.1.6 The Power Series Representation of a Holomor-
phic Function

The ideas being considered in this section can be used to develop our under-
standing of power series. A power series

∞∑

j=0

aj(z − P )j (3.1.6.1)

is defined to be the limit of its partial sums

SN (z) =
N∑

j=0

aj(z − P )j. (3.1.6.2)

We say that the partial sums converge to the sum of the entire series.
Any given power series has a disc of convergence. More precisely, let

r =
1

lim supj→∞ |aj|1/j
. (3.1.6.3)

The power series (3.1.6.2) will then certainly converge on the disc D(P, r);
the convergence will be absolute and uniform on any disc D(P, r′) with r′ < r.

For clarity, we should point out that in many examples the sequence
|aj|1/j actually converges as j → ∞. Then we may take r to be equal to
1/ limj→∞ |aj|1/j. The reader should be aware, however, that in case the
sequence {|aj|1/j} does not converge, then one must use the more formal
definition (3.1.6.3) of r. See [KRA3], [RUD1].

Of course the partial sums, being polynomials, are holomorphic on any
disc D(P, r). If the disc of convergence of the power series is D(P, r), then
let f denote the function to which the power series converges. Then for any
0 < r′ < r we have that

SN (z) → f(z),

1It is also common to say that the functions converge normally.
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uniformly on D(P, r′). We can conclude immediately that f(z) is holomor-
phic on D(P, r). Moreover, we know that

(
∂

∂z

)k

SN (z) →
(
∂

∂z

)k

f(z). (3.1.6.4)

This shows that a differentiated power series has a disc of convergence at
least as large as the disc of convergence (with the same center) of the original
series, and that the differentiated power series converges on that disc to the
derivative of the sum of the original series.

The most important fact about power series for complex function theory
is this: If f is a holomorphic function on a domain U ⊆ C, if P ∈ U , and if
the disc D(P, r) lies in U , then f may be represented as a convergent power
series on D(P, r). Explicitly, we have

f(z) =
∞∑

j=0

aj(z − P )j, (3.1.6.5)

where

aj =
f (j)(P )

j!
. (3.1.6.6)

[Here the exponent (j) on f denotes the jth derivative.] The provenance of this
formula will be explained below. Thus we have an explicit way of calculating
the power series expansion of any holomorphic function f about a point P
of its domain, and we have an a priori knowledge of the disc on which the
power series representation will converge.

The matter bears further consideration. We know that every smooth
function f(x) of a real variable has a Taylor series expansion about any point
p in the interior of its domain. But it is a fact that this Taylor expansion
generically does not converge; even when it does converge, it generically
does not converge back to f . The situation for a holomorphic function of a
complex variable is markedly different: in that circumstance, the Taylor or
power series expansion always converges. The proof is simplicity itself. Take
the center of the disc in the Cauchy formula to be the origin 0. We write the
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Cauchy formula as

f(z) =
1

2πi

∮

∂D(0,r)

f(ζ)

ζ − z
dζ

=

∮

∂D(0,r)

f(ζ) ·
[
1

ζ
· 1

1 − z/ζ

]
dζ

=

∮

∂D(0,r)

f(ζ) ·
[

1

ζ
·

∞∑

j=0

(z/ζ)j

]

dζ

=

∮

∂D(0,r)
f(ζ) · 1

ζj+1
dζ · zj

=
∑

j

aj · zj .

We see explicitly that

aj =

∮

∂D(0,r)

f(ζ) · 1

ζj+1
dζ ,

and this corresponds, by the Cauchy formula, to derivatives of f .
Of course the series converges absolutely and uniformly for |z| < r = |ζ|.

The key point here is that holomorphic functions are analytic because the
Cauchy kernel is analytic. We know from our formula for the derivatives of
a holomorphic function that the jth coefficent of the power series in the last
expansion is f (j)(0)/j!.

3.2 The Zeros of a Holomorphic Function

3.2.1 The Zero Set of a Holomorphic Function

Let f be a holomorphic function. If f is not identically zero, then it turns
out that f cannot vanish at too many points. This once again bears out
the dictum that holomorphic functions are a lot like polynomials. To give
this concept a precise formulation, we need to recall the topological notion
of connectedness (§1.1.5).
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3.2.2 Discreteness of the Zeros of a Holomorphic Func-
tion

Let U ⊆ C be a connected (§§1.1.5) open set and let f : U → C

be holomorphic. Let the zero set of f be Z = {z ∈ U : f(z) = 0}.
If there are a z0 ∈ Z and {zj}∞j=1 ⊆ Z \ {z0} such that zj → z0,
then f ≡ 0.

Let us formulate the result in topological terms. We recall that a point
z0 is said to be an accumulation point of a set Z if there is a sequence
{zj} ⊆ Z \ {z0} with limj→∞ zj = z0. Then the theorem is equivalent to the
statement: If f : U → C is a holomorphic function on a connected (§§1.1.5)
open set U and if Z = {z ∈ U : f(z) = 0} has an accumulation point in U ,
then f ≡ 0.

For the proof, suppose that the point 0 is an interior accumulation point
of zeros {zj} of the holomorphic function f . Thus f(0) = 0. We may write
f(z) = z · f∗(z). But f∗ vanishes at {zj} and 0 is still an accumulation point
of {zj}. It follows that f∗(0) = 0. Hence f itself has a zero of order 2 at 0.
Continuing in this fashion, we see that f has a zero of infinite order at 0. So
the power series expansion of f about 0 is identically 0. It then follows from
an easy connectedness argument (more on this below) that f ≡ 0.

3.2.3 Discrete Sets and Zero Sets

There is still more terminology concerning the zero set of a holomorphic
function in §§3.2.1. A set S is said to be discrete if for each s ∈ S there is an
ϵ > 0 such that D(s, ϵ)∩S = {s}. See Figure 3.2. People also say, in a slight
abuse of language, that a discrete set has points that are “isolated” or that S
contains only “isolated points.” The result in §§3.2.2 thus asserts that if f is
a non-constant holomorphic function on a connected open set, then its zero
set is discrete or, less formally, the zeros of f are isolated. It is important to
realize that the result in §§3.2.2 does not rule out the possibility that the zero
set of f can have accumulation points in C \U ; in particular, a non-constant
holomorphic function on an open set U can indeed have zeros accumulating
at a point of ∂U . Consider, for instance, the function f(z) = sin(1/[1−z]) on
the unit disc. The zeros of this f include {1− 1/[jπ]}, and these accumulate
at the boundary point 1. See Figure 3.3.
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Figure 3.2: A discrete set.

Figure 3.3: Zeros accumulating at a boundary point.
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3.2.4 Uniqueness of Analytic Continuation

A consequence of the preceding basic fact (§§3.2.2) about the zeros of a
holomorphic function is this: Let U ⊆ C be a connected open set and
D(P, r) ⊆ U . If f is holomorphic on U and f

∣∣
D(P,r)

≡ 0, then f ≡ 0 on
U . In fact if f ≡ 0 on a segment then it must follows that f ≡ 0.

Here are some further corollaries:

(3.2.4.1) Let U ⊆ C be a connected open set. Let f, g be holomorphic on
U . If {z ∈ U : f(z) = g(z)} has an accumulation point in U , then f ≡ g.

(3.2.4.2) Let U ⊆ C be a connected open set and let f, g be holomorphic on
U . If f · g ≡ 0 on U , then either f ≡ 0 on U or g ≡ 0 on U .

(3.2.4.3) Let U ⊆ C be connected and open and let f be holomorphic on
U . If there is a P ∈ U such that

(
∂

∂z

)j

f(P ) = 0 (3.2.4.3.1)

for every j ∈ {0, 1, 2, . . . }, then f ≡ 0.

(3.2.4.4) If f and g are entire holomorphic functions and if f(x) = g(x) for
all x ∈ R ⊆ C, then f ≡ g. It also holds that functional identities that are
true for all real values of the variable are also true for complex values of the
variable (Figure 3.4). For instance,

sin2 z + cos2 z = 1 for all z ∈ C (3.2.4.4.1)

because the identity is true for all z = x ∈ R. This is an instance of the
“principle of persistence of functional relations”—see [GRK].
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Figure 3.4: Principle of persistence of functional relations.
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Chapter 4

Isolated Singularities and
Laurent Series

4.1 The Behavior of a Holomorphic Function
near an Isolated Singularity

4.1.1 Isolated Singularities

It is often important to consider a function that is holomorphic on a punc-
tured open set U \ {P} ⊂ C. Refer to Figure 4.1.

In this chapter we shall obtain a new kind of infinite series expansion
which generalizes the idea of the power series expansion of a holomorphic
function about a (nonsingular) point—see §§3.1.6. We shall in the process
completely classify the behavior of holomorphic functions near an isolated
singular point (§§4.1.3).

4.1.2 A Holomorphic Function on a Punctured Do-
main

Let U ⊆ C be an open set and P ∈ U . We call the domain U \ {P} a
punctured domain. Suppose that f : U \ {P} → C is holomorphic. In this
situation we say that f has an isolated singular point (or isolated singularity)
at P . The implication of the phrase is usually just that f is defined and
holomorphic on some such “deleted neighborhood” of P . The specification
of the set U is of secondary interest; we wish to consider the behavior of f

51
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Figure 4.1: An isolated singularity.

“near P .”

4.1.3 Classification of Singularities

There are three possibilities for the behavior of f near P that are worth
distinguishing:

(4.1.3.1) |f(z)| is bounded on D(P, r) \ {P} for some r > 0 with D(P, r) ⊆
U ; i.e., there is some r > 0 and some M > 0 such that |f(z)| ≤ M for
all z ∈ U ∩ D(P, r) \ {P}.

(4.1.3.2) limz→P |f(z)| = +∞.

(4.1.3.3) Neither (i) nor (ii).

Of course elementary logic tells us that these three conditions cover all pos-
sibilities. The description of (4.1.3.3) is not very satisfying, but it turns out
that that is the most subtle situation; there is no simple description of what
goes on there. We shall say more about each of these three conditions in the
ensuing discussion.
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4.1.4 Removable Singularities, Poles, and Essential
Singularities

We shall see momentarily that, if case (4.1.3.1) holds, then f has a limit at P
that extends f so that it is holomorphic on all of U (this is not at all obvious;
it is a theorem of Riemann). It is commonly said in this circumstance that f
has a removable singularity at P . In case (4.1.3.2), we will say that f has a
pole at P. In case (4.1.3.3), f will be said to have an essential singularity at
P. Our goal in this and the next two subsections is to understand (4.1.3.1)–
(4.1.3.3) in some further detail.

4.1.5 The Riemann Removable Singularities Theorem

Let f : D(P, r) \ {P} → C be holomorphic and bounded. Then

(4.1.5.1) limz→P f(z) exists.

(4.1.5.2) The function f̂ : D(P, r) → C defined by

f̂(z) =

{
f(z) if z ̸= P

lim
ζ→P

f(ζ) if z = P

is holomorphic.

For the proof, take P = 0 and consider the function g(z) = z2 ·f(z). One
may verify directly that g is C1 and satisfies the Cauchy-Riemann equations
on all of D(P, r) (the boundedness hypothesis is used to check that both g
and its first derivative have limits at 0). Thus g is holomorphic on the disc,
and it vanishes to second order at 0. It follows then that f(z) = g(z)/z2 is a
bona fide holomorphic function on all of D(P, r).

4.1.6 The Casorati-Weierstrass Theorem

If f : D(P, r0) \ {P} → C is holomorphic and P is an essential
singularity of f, then f(D(P, r) \ {P}) is dense in C for any
0 < r < r0.

For the reason, suppose that the assertion is not true. So there is a
complex value µ and a positive number ϵ so that the image of D(P, r) \ {P}
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under f does not contain the disc D(µ, ϵ). But then the function g(z) =
1/[f(z) − µ] is bounded and non-vanishing near P , hence has a removable
singularity. We see then that f is bounded near P , and that contradicts that
P is an essential singularity.

Now we have seen that, at a removable singularity P , a holomorphic
function f on D(P, r0) \ {P} can be continued to be holomorphic on all of
D(P, r0). And, near an essential singularity at P , a holomorphic function g
on D(P, r0) \ {P} has image that is dense in C. The third possibility, that h
has a pole at P , has yet to be described. This case will be examined further
in the coming sections.

We next develop a new type of doubly infinite series that will serve as a
tool for understanding isolated singularities—especially poles.

4.2 Expansion around Singular Points

4.2.1 Laurent Series

A Laurent series on D(P, r) is a (formal) expression of the form
+∞∑

j=−∞

aj(z − P )j. (4.2.1.1)

Note that the individual terms are each defined for all z ∈ D(P, r) \ {P}.
The series sums from j = −∞ to j = +∞.

4.2.2 Convergence of a Doubly Infinite Series

To discuss convergence of Laurent series, we must first make a general agree-
ment as to the meaning of the convergence of a “doubly infinite” series∑+∞

j=−∞ αj. We say that such a series converges if
∑+∞

j=0 αj and
∑+∞

j=1 α−j =
∑−1

j=−∞ αj converge in the usual sense. In this case, we set

+∞∑

−∞

αj =

(
+∞∑

j=0

αj

)

+

(
+∞∑

j=1

α−j

)

. (4.2.2.1)

In other words, the question of convergence for a bi-infinite series devolves
to two separate questions about two sub-series.

We can now present the analogues for Laurent series of our basic results
for power series.



4.2. Expansion around Singular Points 55

4.2.3 Annulus of Convergence

The set of convergence of a Laurent series is either an open set of the form
{z : 0 ≤ r1 < |z−P | < r2}, together with perhaps some or all of the boundary
points of the set, or a set of the form {z : 0 ≤ r1 < |z−P | < +∞}, together
with perhaps some or all of the boundary points of the set. Such an open set
is called an (generalized) annulus centered at P . We shall let

D(P, +∞) = {z : |z − P | < +∞} = C, (4.2.3.1)

D(P, 0) = {z : |z − P | < 0} = ∅, (4.2.3.2)

and
D(P, 0) = {P}. (4.2.3.3)

As a result, using this extended notation, all (open) annuli (plural of “annu-
lus”) can be written in the form

D(P, r2) \ D(P, r1) , 0 ≤ r1 ≤ r2 ≤ +∞. (4.2.3.4)

In precise terms, the “domain of convergence” of a Laurent series is given as
follows:

Let
+∞∑

j=−∞

aj(z − P )j (4.2.3.5)

be a doubly infinite series. There are unique nonnegative extended real
numbers r1 and r2 (r1 or r2 may be 0 or +∞) such that the series con-
verges absolutely for all z with r1 < |z − P | < r2 and diverges for z with
|z − P | < r1 or |z − P | > r2 (see (4.2.3.4) ). Also, if r1 < s1 ≤ s2 < r2,
then

∑+∞
j=−∞ |aj(z−P )j| converges uniformly on {z : s1 ≤ |z−P | ≤ s2} and,

consequently,
∑+∞

j=−∞ aj(z − P )j converges absolutely and uniformly there.
The reason that the domain of convergence takes this form is that we

may rewrite the series (4.2.3.5) as

∞∑

j=0

aj(z − P )j +
∞∑

j=1

a−j

[
(z − P )−1

]j
.

From what we know about power series, the domain of convergence of the
first of these two series will have the form |z − P | < r2 and the domain
of convergence of the second series will have the form |(z − P )−1| < 1/r1.
Putting these two conditions together gives r1 < |z − P | < r2.
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4.2.4 Uniqueness of the Laurent Expansion

Let 0 ≤ r1 < r2 ≤ ∞. If the Laurent series
∑+∞

j=−∞ aj(z − P )j converges on

D(P, r2) \ D(P, r1) to a function f , then, for any r satisfying r1 < r < r2,
and each j ∈ Z,

aj =
1

2πi

∮

|ζ−P |=r

f(ζ)

(ζ − P )j+1
dζ. (4.2.4.1)

This claim follows from integrating the series term-by-term (most of the terms
integrate to zero of course). In particular, the aj’s are uniquely determined
by f .

We turn now to establishing that convergent Laurent expansions of func-
tions holomorphic on an annulus do in fact exist.

4.2.5 The Cauchy Integral Formula for an Annulus

Suppose that 0 ≤ r1 < r2 ≤ +∞ and that f : D(P, r2) \ D(P, r1) → C is
holomorphic. Then, for each s1, s2 such that r1 < s1 < s2 < r2 and each
z ∈ D(P, s2) \ D(P, s1), it holds that

f(z) =
1

2πi

∮

|ζ−P |=s2

f(ζ)

ζ − z
dζ − 1

2πi

∮

|ζ−P |=s1

f(ζ)

ζ − z
dζ. (4.2.5.1)

Figure 4.2 shows why this is true. The integral along the two segments
(which actually coincide, but with opposite orientations) vanishes. What
is left is the integrals along the two circles—with opposite orientations, as
indicated in (4.2.5.1).

4.2.6 Existence of Laurent Expansions

Now we may summarize with our main result:

Theorem: If 0 ≤ r1 < r2 ≤ ∞ and f : D(P, r2) \ D(P, r1) → C

is holomorphic, then there exist complex numbers aj such that

+∞∑

j=−∞

aj(z − P )j (4.2.6.1)



4.2. Expansion around Singular Points 57

z

Figure 4.2: The Cauchy integral on an annulus.

converges on D(P, r2) \ D(P, r1) to f . If r1 < s1 < s2 < r2,
then the series converges absolutely and uniformly on D(P, s2) \
D(P, s1). this below) that f ≡ 0. ,

The series expansion is independent of s1 and s2. In fact, for each fixed
j = 0,±1,±2, . . . , the value of

aj =
1

2πi

∮

|ζ−P |=r

f(ζ)

(ζ − P )j+1
dζ (4.2.6.2)

is independent of r provided that r1 < r < r2.

4.2.7 Holomorphic Functions with Isolated Singulari-
ties

Now let us specialize what we have learned about Laurent series expansions
to the case of f : D(P, r) \ {P} → C holomorphic, that is, to a holomorphic
function with an isolated singularity:

If f : D(P, r) \ {P} → C is holomorphic, then f has a unique Laurent
series expansion

f(z) =
∞∑

j=−∞

aj(z − P )j (4.2.7.1)

that converges absolutely for z ∈ D(P, r) \ {P}. The convergence is uniform
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on compact subsets of D(P, r) \ {P}. The coefficients are given by

aj =
1

2πi

∮

∂D(P,s)

f(ζ)

(ζ − P )j+1
dζ, any 0 < s < r. (4.2.7.2)

4.2.8 Classification of Singularities in Terms of Lau-
rent Series

There are three mutually exclusive possibilities for the Laurent series

∞∑

j=−∞

aj(z − P )j

about an isolated singularity P :

(4.2.8.1) aj = 0 for all j < 0.

(4.2.8.2) For some k ≥ 1, aj = 0 for all −∞ < j < −k, but ak ̸= 0.

(4.2.8.3) Neither (i) nor (ii) applies.

These three cases correspond exactly to the three types of isolated singu-
larities that we discussed in §4.1.3: case (4.2.8.1) occurs if and only if P is
a removable singularity; case (4.2.8.2) occurs if and only if P is a pole (of
order k, meaning that the term a−k in the Laurent expansion in nonzero—
more on this below); and case (4.2.8.3) occurs if and only if P is an essential
singularity.

To put this matter in other words: In case (4.2.8.1), we have a power
series that converges, of course, to a holomorphic function. In case (4.2.8.2),
our Laurent series has the form

∞∑

j=−k

aj(z − P )j = (z − P )−k
∞∑

j=−k

aj(z − P )j+k = (z − P )−k
∞∑

j=0

aj−k(z − P )j .

Since a−k ̸= 0, we see that, for z near P , the function defined by the series
behaves like a−k · (z−P )−k near P . In short, the function (in absolute value)
blows up like |z−P |−k as z → P . A graph in (|z|, |f(z)|)-space would exhibit
a “pole”-like singularity. This is the source of the terminology “pole.” See
Figure 4.3. Case (4.2.8.3), corresponding to an essential singularity, is much
more complicated; in this case there are infinitely many negative terms in
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Figure 4.3: A pole.

the Laurent expansion and, by Casorati-Weierstrass (§§4.1.6), they interact
in a complicated fashion.

Picard’s Great Theorem (§§9.5.2) will tell us more about the behavior of
a holomorphic function near an essential singularity.

4.3 Examples of Laurent Expansions

4.3.1 Principal Part of a Function

When f has a pole or essential singularity at P, it is customary to call the
negative power part of the Laurent expansion of f around P the principal
part of f at P . (Occasionally we shall also use the terminology “Laurent
polynomial.”) That is, if

f(z) =
∞∑

j=−k

aj(z − P )j (4.3.1.1)

for z near P , then the principal part of f at P is

−1∑

j=−k

aj(z − P )j . (4.3.1.2)

As an example, the Laurent expansion about 0 of the function f(z) =
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(z2 + 1)/ sin(z3) is

f(z) = (z2 + 1) · 1

sin(z3)

= (z2 + 1) · 1

z3
· 1

1 − z6/3! + · · ·

=
1

z3
+

1

z
+ (a holomorphic function).

The principal part of f is 1/z3 + 1/z.
For a second example, consider the function f(z) = (z2+2z+2) sin(1/(z+

1)). Its Laurent expansion about the point −1 is

f(z) = ((z + 1)2 + 1) ·
[

1

z + 1
− 1

6(z + 1)3
+

1

120(z + 1)5

− 1

5040(z + 1)7
+ − · · ·

]

= (z + 1) +
5

6

1

(z + 1)
− 19

120

1

(z + 1)3
+

41

5040

1

(z + 1)5
− + · · · .

The principal part of f at the point −1 is

5

6

1

(z + 1)
− 19

120

1

(z + 1)3
+

41

5040

1

(z + 1)5
− + · · · .

4.3.2 Algorithm for Calculating the Coefficients of the
Laurent Expansion

Let f be holomorphic on D(P, r) \ {P} and suppose that f has a pole of
order k at P . Then the Laurent series coefficients aj of f expanded about
the point P , for j = −k,−k + 1,−k + 2, . . . , are given by the formula

aj =
1

(k + j)!

(
∂

∂z

)k+j (
(z − P )k · f

)
∣∣∣∣
z=P

. (4.3.2.1)

This formula is easily derived by considering the standard power series
coefficients of (z − P )k · f(z).
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4.4 The Calculus of Residues

4.4.1 Functions with Multiple Singularities

It turns out to be useful, especially in evaluating various types of integrals,
to consider functions that have more than one “singularity.” We want to
consider the following general question:

Suppose that f : U \ {P1, P2, . . . , Pn} → C is a holomorphic
function on an open set U ⊆ C with finitely many distinct points
P1, P2, . . . , Pn removed. Suppose further that

γ : [0, 1] → U \ {P1, P2, . . . , Pn} (4.4.1.1)

is a piecewise C1 closed curve (§2.3.3) that (typically) “surrounds”
some (but perhaps not all) of the points P1, . . . , Pn. Then how is∮
γ f related to the behavior of f near the points P1, P2, . . . , Pn?

The first step is to restrict our attention to open sets U for which
∮
γ f is

necessarily 0 if P1, P2, . . . , Pn are removable singularities of f . See the next
subsection.

4.4.2 The Residue Theorem

Suppose that U ⊆ C is a simply connected open set in C, and that P1, . . . , Pn

are distinct points of U . Suppose that f : U \ {P1, . . . , Pn} → C is a holo-
morphic function and γ is a piecewise C1 curve in U \ {P1, . . . , Pn}. Set

Rj = the coefficient of&(z − Pj)
−1

in the Laurent expansion of f aboutPj . (4.4.2.1)

Then ∮

γ

f =
n∑

j=1

Rj ·
(∮

γ

1

ζ − Pj
dζ

)
. (4.4.2.2)

To see this, first note that the integral over γ may be broken up into
integrals over “smaller curves,” each of which surrounds just one pole. See
Figure 4.4. Then each such integral reduces, by deformation of curves, to an
integral around a circle. Thus the result is a straightforward calculation.
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Figure 4.4: Reduction to simpler curves.

4.4.3 Residues

The result just stated is used so often that some special terminology is com-
monly used to simplify its statement. First, the number Rj is usually called
the residue of f at Pj , written Resf(Pj). Note that this terminology of
considering the number Rj attached to the point Pj makes sense because
Resf (Pj) is completely determined by knowing f in a small neighborhood of
Pj . In particular, the value of the residue does not depend on what the other
points Pk, k ̸= j, might be, or on how f behaves near those points.

4.4.4 The Index or Winding Number of a Curve about
a Point

The second piece of terminology associated to our result deals with the inte-
grals that appear on the right-hand side of equation (4.4.2.2).

If γ : [a, b] → C is a piecewise C1 closed curve and if P ̸∈ γ̃ ≡ γ([a, b]),
then the index of γ with respect to P , written Indγ(P ), is defined to be the
number

1

2πi

∮

γ

1

ζ − P
dζ. (4.4.4.1)

The index is also sometimes called the “winding number of the curve γ about
the point P .” It is a fact that Indγ(P ) is always an integer. This may be
verified by examining a particular differential equation that the curve will
satisfy—see [GRK]. Figure 4.5 illustrates the index of various curves γ with
respect to different points P . Intuitively, the index measures the number of
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Figure 4.5: The concept of index.

times the curve wraps around P , with counterclockwise being the positive
direction of wrapping and clockwise being the negative.

The fact that the index is an integer-valued function suggests that the
index counts the topological winding of the curve γ. Note in particular that
a curve that traces a circle about the origin k times in a counterclockwise
direction has index k with respect to the origin; a curve that traces a circle
about the origin k times in a clockwise direction has index −k with respect
to the origin.

4.4.5 Restatement of the Residue Theorem

Using the notation of residue and index, the Residue Theorem’s formula
becomes ∮

γ

f = 2πi ·
n∑

j=1

Resf(Pj) · Indγ(Pj). (4.4.5.1)

People sometimes state this formula informally as “the integral of f around
γ equals 2πi times the sum of the residues counted according to the index of
γ about the singularities.”
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4.4.6 Method for Calculating Residues

We need a method for calculating residues.
Let f be a function with a pole of order k at P . Then

Resf(P ) =
1

(k − 1)!

(
∂

∂z

)k−1 (
(z − P )kf(z)

)
∣∣∣∣∣
z=P

. (4.4.6.1)

This is just a special case of the formula (4.3.2.1).
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Poles and Laurent Coefficients

Item Formula

jth Laurent coefficient of f
1

(k + j)!

dk+j

dzk+j
[(z − P )k · f ]

∣∣∣∣
z=P

with pole of order k at P

residue of f with a pole
1

(k − 1)!

dk−1

dzk−1
[(z − P )k · f ]

∣∣∣∣
z=P

of order k at P

order of pole of f at P least integer k ≥ 0 such that
(z − P )k · f is bounded near P

order of pole of f at P lim
z→P

∣∣∣∣
log |f(z)|
log |z − P |

∣∣∣∣

4.4.7 Summary Charts of Laurent Series and Residues

We provide two charts, the first of which summarizes key ideas about Laurent
coefficients and the second of which contains key ideas about residues.

4.5 Applications to the Calculation of
Definite Integrals and Sums

4.5.1 The Evaluation of Definite Integrals

One of the most classical and fascinating applications of the calculus of
residues is the calculation of definite (usually improper) real integrals. It
is an over-simplification to call these calculations, taken together, a “tech-
nique”: it is more like a collection of techniques. We present several instances
of the method.
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Techniques for Finding the Residue at P

Function Type of Pole Residue Calculation

f(z) simple limz→P (z − P ) · f(z)

f(z) pole of order k lim
z→P

µ(k−1)(z)

(k − 1)!
k is the least integer such
that limz→P µ(z) exists,

where µ(z) = (z − P )kf(z)

m(z)

n(z)
m(P ) ̸= 0, n(z) = 0, n′(P ) ̸= 0

m(P )

n′(P )

m(z)

n(z)
m has zero of order k at P (k + 1) · m(k)(P )

n(k+1)(P )
n has zero of order (k + 1) at P

m(z)

n(z)
m has zero of order r at P lim

z→P

µ(ℓ−1)(z)

(ℓ− 1)!
,

n has zero of order (ℓ+ r) at P µ(z) = (z − P )ℓ
m(z)

n(z)

4.5.2 A Basic Example of the Indefinite Integral

To evaluate ∫ ∞

−∞

1

1 + x4
dx, (4.5.2.1)

we “complexify” the integrand to f(z) = 1/(1+ z4) and consider the integral
∮

γ
R

1

1 + z4
dx.

See Figure 4.6.

Now part of the game here is to choose the right piecewise C1 curve or
“contour” γR. The appropriateness of our choice is justified (after the fact)
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Figure 4.6: The integral in Subsection 4.5.2.

by the calculation that we are about to do. Assume that R > 1. Define

γ1
R(t) = t + i0 if −R ≤ t ≤ R ,

γ2
R(t) = Reit if 0 ≤ t ≤ π.

Call these two curves, taken together, γ or γR.
Now we set U = C, P1 = 1/

√
2 + i/

√
2, P2 = −1/

√
2 + i/

√
2, P3 =

−1/
√

2− i/
√

2, P4 = 1/
√

2− i/
√

2; the points P1, P2, P3, P4 are the poles of
1/[1 + z4]. Thus f(z) = 1/(1 + z4) is holomorphic on U \ {P1, . . . , P4} and
the Residue Theorem applies.

On the one hand,

∮

γ

1

1 + z4
dz = 2πi

∑

j=1,2

Indγ(Pj) · Resf(Pj) ,

where we sum only over the poles of f that lie inside γ. These are P1 and
P2. An easy calculation shows that

Resf(P1) =
1

4(1/
√

2 + i/
√

2)3
= −1

4

(
1√
2

+ i
1√
2

)

and

Resf (P2) =
1

4(−1/
√

2 + i/
√

2)3
= −1

4

(
− 1√

2
+ i

1√
2

)
.
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Of course the index at each point is 1. So
∮

γ

1

1 + z4
dz = 2πi

(
−1

4

)[(
1√
2

+ i
1√
2

)
+

(
− 1√

2
+ i

1√
2

)]

=
π√
2

. (4.5.2.2)

On the other hand,
∮

γ

1

1 + z4
dz =

∮

γ1
R

1

1 + z4
dz +

∮

γ2
R

1

1 + z4
dz.

Trivially,

∮

γ1
R

1

1 + z4
dz =

∫ R

−R

1

1 + t4
· 1 · dt →

∫ ∞

−∞

1

1 + t4
dt (4.5.2.3)

as R → +∞. That is good, because this last is the integral that we wish to
evaluate. Better still,

∣∣∣∣∣

∮

γ2
R

1

1 + z4
dx

∣∣∣∣∣
≤ {length(γ2

R)} · max
γ2

R

∣∣∣∣
1

1 + z4

∣∣∣∣ ≤ πR · 1

R4 − 1
.

[Here we use the inequality |1 + z4| ≥ |z|4 − 1, as well as (2.1.7.2).] Thus
∣∣∣∣∣

∮

γ2
R

1

1 + z4
dz

∣∣∣∣∣
→ 0 as R → ∞. (4.5.2.4)

Finally, (4.5.2.2)–(4.5.2.4) taken together yield

π√
2

= lim
R→∞

∮

γ

1

1 + z4
dz

= lim
R→∞

∮

γ1
R

1

1 + z4
dz + lim

R→∞

∮

γ2
R

1

1 + z4
dz

=

∫ ∞

−∞

1

1 + t4
dt + 0.

This solves the problem: the value of the integral is π/
√

2.
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Figure 4.7: The integral in Subsection 4.5.3.

In other problems, it will not be so easy to pick the contour so that the
superfluous parts (in the above example, this would be the integral over γ2

R)
tend to zero, nor is it always so easy to prove that they do tend to zero.
Sometimes, it is not even obvious how to complexify the integrand.

4.5.3 Complexification of the Integrand

We evaluate ∫ ∞

−∞

cos x

1 + x2
dx (4.5.3.1)

by using the contour γR as in Figure 4.7 (which is the same as Figure 4.6
from the previous example). The obvious choice for the complexification of
the integrand is

f(z) =
cos z

1 + z2
=

[eiz + e−iz]/2

1 + z2
=

[eixe−y + e−ixey]/2

1 + z2
. (4.5.3.2)

Now |eixe−y| = |e−y| ≤ 1 on γR but |e−ixey| = |ey| becomes quite large
on γR when R is large and positive. There is no evident way to alter the
contour so that good estimates result. Instead, we alter the function! Let
g(z) = eiz/(1 + z2).
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On the one hand (for R > 1),
∮

γR

g(z) = 2πi · Resg(i) · IndγR
(i)

= 2πi

(
1

2ei

)
· 1 =

π

e
.

On the other hand, with γ1
R(t) = t,−R ≤ t ≤ R, and γ2

R(t) = Reit, 0 ≤ t ≤ π,
we have ∮

γR

g(z) dz =

∮

γ1
R

g(z) dz +

∮

γ2
R

g(z) dz.

Of course ∮

γ1
R

g(z) dz →
∫ ∞

−∞

eix

1 + x2
dx as R → ∞.

And
∣∣∣∣∣

∮

γ2
R

g(z) dz

∣∣∣∣∣
≤ length(γ2

R) · max
γ2

R

|g| ≤ πR · 1

R2 − 1
→ 0 as R → ∞.

Here we have again used (2.1.7.2).
Thus

∫ ∞

−∞

cos x

1 + x2
dx = Re

∫ ∞

−∞

eix

1 + x2
dx = Re

(π
e

)
=
π

e
.

4.5.4 An Example with a More Subtle Choice of Con-
tour

Let us evaluate ∫ ∞

−∞

sinx

x
dx. (4.5.4.1)

Before we begin, we remark that sinx/x is bounded near zero; also, the
integral converges at ∞ (as an improper Riemann integral) by integration by
parts. So the problem makes sense. Using the lesson learned from the last
example, we consider the function g(z) = eiz/z. However, the pole of eiz/z is
at z = 0 and that lies on the contour in Figure 4.8. Thus that contour may
not be used. We instead use the contour µ = µR that is depicted in Figure
4.9.
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Figure 4.8: The integral in Subsection 4.5.4.

Figure 4.9: More on the integral in Subsection 4.5.4.
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Define

µ1
R(t) = t, −R ≤ t ≤ −1/R,

µ2
R(t) = eit/R, π ≤ t ≤ 2π,

µ3
R(t) = t, 1/R ≤ t ≤ R,

µ4
R(t) = Reit, 0 ≤ t ≤ π.

Clearly
∮

µ

g(z) dz =
4∑

j=1

∮

µj
R

g(z) dz.

On the one hand, for R > 0,
∮

µ

g(z) dz = 2πiResg(0) · Indµ(0) = 2πi · 1 · 1 = 2πi. (4.5.4.2)

On the other hand,
∮

µ1
R

g(z) dz +

∮

µ3
R

g(z) dz →
∫ ∞

−∞

eix

x
dx as R → ∞. (4.5.4.3)

Furthermore,

∣∣∣∣∣

∮

µ4
R

g(z) dz

∣∣∣∣∣
≤

∣∣∣∣∣∣∣

∮

µ4
R

Im y <
√

R

g(z) dz

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∮

µ4
R

Im y ≥
√

R

g(z) dz

∣∣∣∣∣∣∣

≡ A + B.

Now

A ≤ length(µ4
R ∩ {z : Im z <

√
R}) · max{|g(z)| : z ∈ µ4

R, y <
√

R}

≤ 4
√

R ·
(

1

R

)
→ 0 as R → ∞.

Also

B ≤ length(µ4
R ∩ {z : Im z ≥

√
R}) · max{|g(z)| : z ∈ µ4

R, y ≥
√

R}

≤ πR ·
(

e−
√

R

R

)

→ 0 as R → ∞.
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So ∣∣∣∣∣

∮

µ4
R

g(z) dz

∣∣∣∣∣
→ 0 as R → ∞. (4.5.4.4)

Finally,

∮

µ2
R

g(z) dz =

∫ 2π

π

ei(eit/R)

eit/R
·
(

i

R
eit

)
dt

= i

∫ 2π

π

ei(eit/R)dt.

As R → ∞ this tends to

= i

∫ 2π

π

1dt

= πi as R → ∞ . (4.5.4.5)

In summary, (4.5.4.2) − (4.5.4.5) yield

2πi =

∮

µ

g(z) dz =
4∑

j=1

∮

µj
R

g(z) dz

→
∫ ∞

−∞

eix

x
dx + πi as R → ∞.

Taking imaginary parts yields

π =

∫ ∞

−∞

sinx

x
dx.

4.5.5 Making the Spurious Part of the Integral Disap-
pear

Consider the integral ∫ ∞

0

x1/3

1 + x2
dx. (4.5.5.1)

We complexify the integrand by setting f(z) = z1/3/(1 + z2). Note that,
on the simply connected set U = C \ {iy : y < 0}, the expression z1/3 is
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Figure 4.10: The integral in Subsection 4.5.5.

unambiguously defined as a holomorphic function by setting z1/3 = r1/3eiθ/3

when z = reiθ,−π/2 < θ < 3π/2. We use the contour displayed in Figure
4.10.

We must do this since z1/3 is not a well-defined holomorphic function in
any neighborhood of 0. Let us use the notation from the figure. We refer to
the preceding examples for some of the parametrizations that we now use.

Clearly ∮

µ3
R

f(z) dz →
∫ ∞

0

t1/3

1 + t2
dt.

Of course that is good, but what will become of the integral over µ1
R? We

have

∮

µ1
R

=

∫ −1/R

−R

t1/3

1 + t2
dt

=

∫ R

1/R

(−t)1/3

1 + t2
dt

=

∫ R

1/R

eiπ/3t1/3

1 + t2
dt.

(by our definition of z1/3 !). Thus

∮

µ3
R

f(z) dz +

∮

µ1
R

f(z) dz →
(

1 +

(
1

2
+

√
3

2
i

))∫ ∞

0

t1/3

1 + t2
dt as R → ∞.



4.5. Applications to the Calculation of Integrals 75

On the other hand,
∣∣∣∣∣

∮

µ4
R

f(z) dz

∣∣∣∣∣
≤ πR · R1/3

R2 − 1
→ 0 as R → ∞

and
∮

µ2
R

f(z) dz =

∫ −2π

−π

(eit/R)1/3

1 + e2it/R2
(i)eit/R dt

= R−4/3

∫ −2π

−π

ei4t/3

1 + e2it/R2
dt → 0 as R → ∞.

So
∮

µR

f(z) dz →

(
3

2
+

√
3

2
i

)∫ ∞

0

t1/3

1 + t2
dt as R → ∞. (4.5.5.2)

The calculus of residues tells us that, for R > 1,
∮

µR

f(z) dz = 2πiResf (i) · IndµR
(i)

= 2πi

(
eiπ/6

2i

)
· 1

= π

(√
3

2
+

i

2

)

. (4.5.5.3)

Finally, (4.5.5.2) and (4.5.5.3) taken together yield
∫ ∞

0

t1/3

1 + t2
dt =

π√
3
.

4.5.6 The Use of the Logarithm

While the integral ∫ ∞

0

dx

x2 + 6x + 8
(4.5.6.1)

can be calculated using methods of calculus, it is enlightening to perform
the integration by complex variable methods. Note that if we endeavor to
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Figure 4.11: The integral in Subsection 4.5.6.

use the integrand f(z) = 1/(z2 + 6z + 8) together with the idea of the last
example, then there is no “auxiliary radius” that helps. More precisely,
((reiθ)2 + 6reiθ + 8) is a constant multiple of r2 + 6r + 8 only if θ is an
integer multiple of 2π. The following non-obvious device is often of great
utility in problems of this kind. Define log z on U ≡ C \ {x : x ≥ 0} by
log(reiθ) = (log r) + iθ when 0 < θ < 2π, r > 0. Here log r is understood to
be the standard real logarithm. Then, on U, log is a well-defined holomorphic
function. [Observe here that there are infinitely many ways to define the
logarithm function on U . One could set log(reiθ) = (log r) + i(θ + 2kπ)
for any integer choice of k. What we have done here is called “choosing a
branch” of the logarithm.]

We use the contour ηR displayed in Figure 4.11 and integrate the function
g(z) = log z/(z2 + 6z + 8). Let

η1
R(t) = t + i/

√
2R, 1/

√
2R ≤ t ≤ R,

η2
R(t) = Reit, θ0 ≤ t ≤ 2π − θ0,

where θ0(R) = tan−1(1/(R
√

2R))

η3
R(t) = R − t − i/

√
2R, 0 ≤ t ≤ R − 1/

√
2R,

η4
R(t) = e−it/

√
R, π/4 ≤ t ≤ 7π/4.
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Now
∮

ηR

g(z) dz = 2πi(ResηR
(−2) · 1 + ResηR

(−4) · 1)

= 2πi

(
log(−2)

2
+

log(−4)

−2

)

= 2πi

(
log 2 + πi

2
+

log 4 + πi

−2

)

= −πi log 2 . (4.5.6.2)

Also, it is straightforward to check that
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∣∣∣∣∣

∮

η2
R

g(z) dz

∣∣∣∣∣
→ 0,

(4.5.6.3)
∣∣∣∣∣

∮

η4
R

g(z) dz

∣∣∣∣∣
→ 0 , (4.5.6.4)

as R → ∞. The device that makes this technique work is that, as R → ∞,

log(x + i/
√

2R) − log(x− i/
√

2R) → −2πi .

So ∮

η1
R

g(z) dz +

∮

η3
R

g(z) dz → −2πi

∫ ∞

0

dt

t2 + 6t + 8
. (4.5.6.5)

Now (4.5.6.2)–(4.5.6.5) taken together yield
∫ ∞

0

dt

t2 + 6t + 8
=

1

2
log 2.

4.5.7 Summing a Series Using Residues

We sum the series
∞∑

j=1

x

j2π2 − x2
(4.5.7.1)

using contour integration. Define cot z = cos z/ sin z. For n = 1, 2, . . . let
Γn be the contour (shown in Figure 4.12) consisting of the counterclockwise
oriented square with corners {(±1± i) · (n + 1

2) · π}. For z fixed and n > |z|
we calculate using residues that

1

2πi

∮

Γn

cot ζ

ζ(ζ − z)
dζ =

n∑

j=1

1

jπ(jπ − z)
+

n∑

j=1

1

jπ(jπ + z)

+
cot z

z
− 1

z2
.

When n ≫ |z|, it is easy to estimate the left-hand side in modulus by
(

1

2π

)
· [4(2n + 1)π] ·

(
C

n(n − |z|)

)
→ 0 as n → ∞.
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Figure 4.12: The integral in Subsection 4.5.7.

Thus we see that

∞∑

j=1

1

jπ(jπ − z)
+

∞∑

j=1

1

jπ(jπ + z)
= −cot z

z
+

1

z2
.

We conclude that

∞∑

j=1

2

j2π2 − z2
= −cot z

z
+

1

z2

or
∞∑

j=1

z

j2π2 − z2
= −1

2
cot z +

1

2z
.

This is the desired result .

4.6 Singularities at Infinity

4.6.1 Meromorphic Functions

We have considered carefully those functions that are holomorphic on sets
of the form D(P, r) \ {P} or, more generally, of the form U \ {P}, where U
is an open set in C and P ∈ U . As we have seen in our discussion of the
calculus of residues, sometimes it is important to consider the possibility that
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a function could be “singular” at more than just one point. The appropriate,
precise definition requires a little preliminary consideration of what kinds of
sets might be appropriate as “sets of singularities.”

4.6.2 Definition of Meromorphic Function

Now fix an open set U ; we next define the central concept of meromorphic
function on U .

A meromorphic function f on U with singular set S is a function f :
U \ S → C such that

(4.6.3.1) S is discrete;

(4.6.3.2) f is holomorphic on U \ S (note that U \ S is necessarily open in
C);

(4.6.3.3) for each P ∈ S and r > 0 such that D(P, r) ⊆ U and S∩D(P, r) =
{P}, the function f

∣∣
D(P,r)\{P} has a (finite order) pole at P .

For convenience, one often suppresses explicit consideration of the set S
and just says that f is a meromorphic function on U . Sometimes we say,
informally, that a meromorphic function on U is a function on U that is
holomorphic “except for poles.” Implicit in this description is the idea that
a pole is an “isolated singularity.” In other words, a point P is a pole of f if
and only if there is a disc D(P, r) around P such that f is holomorphic on
D(P, r) \ {P} and has a pole at P . Back on the level of precise language,
we see that our definition of a meromorphic function on U implies that, for
each P ∈ U, either there is a disc D(P, r) ⊆ U such that f is holomorphic
on D(P, r) or there is a disc D(P, r) ⊆ U such that f is holomorphic on
D(P, r) \ {P} and has a pole at P .

4.6.3 Examples of Meromorphic Functions

Meromorphic functions are very natural objects to consider, primarily be-
cause they result from considering the (algebraic) reciprocals—or more gen-
erally the quotients—of holomorphic functions:

If U is a connected, open set in C and if f : U → C is a holomorphic
function having at least some zeros but with f ̸≡ 0, then the function

F : U \ {z : f(z) = 0} → C (4.6.4.1)
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defined by F (z) = 1/f(z) is a meromorphic function on U with singular set
(or pole set) equal to {z ∈ U : f(z) = 0}. More generally, meromorphic
functions locally have the form g(z)/f(z) for f, g holomorphic. In a sense
that can be made precise, all meromorphic functions arise as quotients of
holomorphic functions.

4.6.4 Meromorphic Functions with Infinitely Many Poles

It is quite possible for a meromorphic function on an open set U to have
infinitely many poles in U . The function 1/ sin(1/z) is an obvious example
on U = D \ {0}.

4.6.5 Singularities at Infinity

Our discussion so far of singularities of holomorphic functions can be gener-
alized to include the limit behavior of holomorphic functions as |z| → +∞.
This is a powerful method with many important consequences. Suppose for
example that f : C → C is an entire function. We can associate to f a
new function G : C \ {0} → C by setting G(z) = f(1/z). The behavior
of the function G near 0 reflects, in an obvious sense, the behavior of f as
|z| → +∞. For instance

lim
|z|→+∞

|f(z)| = +∞ (4.6.6.1)

if and only if G has a pole at 0.
Suppose that f : U → C is a holomorphic function on an open set U ⊆ C

and that, for some R > 0, U ⊇ {z : |z| > R}. Define G : {z : 0 < |z| <
1/R} → C by G(z) = f(1/z). Then we say that

(4.6.6.2) f has a removable singularity at ∞ if G has a removable singularity
at 0.

(4.6.6.3) f has a pole at ∞ if G has a pole at 0.

(4.6.6.4) f has an essential singularity at ∞ if G has an essential singularity
at 0.
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4.6.6 The Laurent Expansion at Infinity

The Laurent expansion of G around 0, G(z) =
∑+∞

−∞ anzn, yields immediately
a series expansion for f which converges for |z| > R, namely,

f(z) ≡ G(1/z) =
+∞∑

−∞

anz−n =
+∞∑

−∞

a−nzn. (4.6.7.1)

The series
∑+∞

−∞ a−nzn is called the Laurent expansion of f around ∞.
It follows from our definitions and from our earlier discussions that f has a
removable singularity at ∞ if and only if the Laurent series of f at ∞ has
no positive powers of z with non-zero coefficients. Also f has a pole at ∞ if
and only if the series has only a finite number of positive powers of z with
non-zero coefficients. Finally, f has an essential singularity at ∞ if and only
if the series has infinitely many positive powers.

4.6.7 Meromorphic at Infinity

Suppose that f : C → C is an entire function. Then lim|z|→+∞ |f(z)| = +∞ if
and only if f is a nonconstant polynomial. In other words, an entire function
that is not a polynomial will have an essential singularity at infinity.

To see this last assertion, supposed that f has a pole of order k at ∞.
Subtracting a polynomial p from f if necessary, we may arrange that f − p
vanishes to order k at the origin. Of course p has degree at most k. Then
the function

g(z) =
f(z) − p(z)

zk

is entire and is bounded. By Liouville’s theorem, g is constant. But then it
follows that f is a polynomial.

The entire function f has a removable singularity at ∞ if and only if f
is a constant. This claim if obvious because f will be bounded.

Suppose that f is a meromorphic function defined on an open set U ⊆ C

such that, for some R > 0, we have U ⊇ {z : |z| > R}. We say that f
is meromorphic at ∞ if the function G(z) ≡ f(1/z) is meromorphic in the
usual sense on {z : |z| < 1/R}.
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4.6.8 Meromorphic Functions in the Extended
Plane

The definition of “meromorphic at ∞” as given is equivalent to requiring
that, for some R′ > R, f has no poles in {z ∈ C : R′ < |z| < ∞} and that
f has a pole at ∞. The point is that a pole should not be an accumulation
point of other poles.

A meromorphic function f on C which is also meromorphic at ∞ must
be a rational function (that is, a quotient of polynomials in z). For we can
arrange for one of the poles to be at ∞. Multiplying f by a polynomial p, we
may arrange for p ·f to have no poles. So it must be a polynomial. It follows
that f is a quotient of polynomials. Conversely, every rational function is
meromorphic on C and at ∞.

Remark: It is conventional to rephrase the ideas just presented by saying
that the only functions that are meromorphic in the “extended plane” are
rational functions. We will say more about the extended plane in §§6.3.1–
6.3.3.





Chapter 5

The Argument Principle

5.1 Counting Zeros and Poles

5.1.1 Local Geometric Behavior of a Holomorphic
Function

In this chapter, we shall be concerned with questions that have a geometric,
qualitative nature rather than an analytical, quantitative one. These ques-
tions center around the issue of the local geometric behavior of a holomorphic
function.

5.1.2 Locating the Zeros of a Holomorphic Function

Suppose that f : U → C is a holomorphic function on a connected, open set
U ⊆ C and that D(P, r) ⊆ U . We know from the Cauchy integral formula
that the values of f on D(P, r) are completely determined by the values of f
on ∂D(P, r). In particular, the number and even the location of the zeros of f
in D(P, r) are determined in principle by f on ∂D(P, r). But it is nonetheless
a pleasant surprise that there is a simple formula for the number of zeros of
f in D(P, r) in terms of f (and f ′) on ∂D(P, r). In order to obtain a precise
formula, we shall have to agree to count zeros according to multiplicity (see
§§3.1.4). We now explain the precise idea.

Let f : U → C be holomorphic as before, and assume that f has some
zeros in U but that f is not identically zero. Fix z0 ∈ U such that f(z0) = 0.
Since the zeros of f are isolated, there is an r > 0 such that D(z0, r) ⊆ U
and such that f does not vanish on D(z0, r) \ {z0}.

85
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Now the power series expansion of f about z0 has a first non-zero term
determined by the least positive integer n such that f (n)(z0) ̸= 0. (Note that
n ≥ 1 since f(z0) = 0 by hypothesis.) Thus the power series expansion of f
about z0 begins with the nth term:

f(z) =
∞∑

j=n

1

j!

∂jf

∂zj
(z0)(z − z0)

j . (5.1.2.1)

Under these circumstances we say that f has a zero of order n (or multiplicity
n) at z0. When n = 1, then we also say that z0 is a simple zero of f .

5.1.3 Zero of Order n

The concept of zero of “order n,” or “multiplicity n,” for a function f is so
important that a variety of terminology has grown up around it (see also
§§3.1.4). It has already been noted that, when the multiplicity n = 1, then
the zero is sometimes called simple. For arbitrary n, we sometimes say that
“n is the order of z0 as a zero of f .” More generally if f(z0) = β so that, for
some n ≥ 1, the function f( · ) − β has a zero of order n at z0, then we say
either that “f assumes the value β at z0 to order n” or that “the order of
the value β at z0 is n.” When n > 1, then we call z0 a multiple point (and β
a multiple value) of the function f .

The next result provides a method for computing the multiplicity n of
the zero at z0 from the values of f, f ′ on the boundary of a disc centered at
z0.

5.1.4 Counting the Zeros of a Holomorphic Function

If f is holomorphic on a neighborhood of a disc D(P, r) and has a zero of
order n at P and no other zeros in the closed disc, then

1

2πi

∮

∂D(P,r)

f ′(ζ)

f(ζ)
dζ = n. (5.1.4.1)

More generally, we consider the case that f has several zeros—with dif-
ferent locations and different multiplicities—inside a disc: Suppose that
f : U → C is holomorphic on an open set U ⊆ C and that D(P, r) ⊆ U .
Suppose that f is non-vanishing on ∂D(P, r) and that z1, z2, . . . , zk are the



5.1. COUNTING ZEROS AND POLES 87

Figure 5.1: Counting the zeros of a holomorphic function.

zeros of f in the interior of the disc. Let nℓ be the order of the zero of f at
zℓ, ℓ = 1, . . . , k. Then

1

2π

∮

|ζ−P |=r

f ′(ζ)

f(ζ)
dζ =

k∑

ℓ=1

nℓ. (5.1.4.2)

Refer to Figure 5.1 for illustrations of both these situations.
The reasons for these formulas is actually quite simple. The primordial

situation is when P = 0 and f(z) = zk. In that case we may compute the
integral (5.1.4.1) directly and the result is immediate. We may write a more
general f as f(z) = f̃(z)·zk and then the integral (5.1.4.1) reduces, by simple
algebra, to the simpler situation just treated. Of course the integral over a
more general curve can be reduced to the integral over the boundary of a disc
by our usual device of deformation of curves. Finally, the situation of several
different zeros may be reduced to the situation of one zero by breaking up
the curve of integration into smaller curves, each having just one zero in its
interior.

5.1.5 The Argument Principle

This last formula (5.1.4.2), which is often called the argument principle, is
both useful and important. For one thing, there is no obvious reason why
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Figure 5.2: The argument principle.

the integral in the formula should be an integer, much less the crucial integer
that it is. Since it is an integer, it is a counting function; and we need to
learn more about it.

The integral
1

2π

∮

|ζ−P |=r

f ′(ζ)

f(ζ)
dζ (5.1.5.1)

can be reinterpreted as follows: Consider the C1 closed curve

γ(t) = f(P + reit) , t ∈ [0, 2π]. (5.1.5.2)

Then
1

2π

∮

|ζ−P |=r

f ′(ζ)

f(ζ)
dζ =

1

2π

∫ 2π

0

γ′(t)

γ(t)
dt, (5.1.5.3)

as you can check by direct calculation. The expression on the right is just
the index of the curve γ with respect to 0 (with the notion of index that
we defined earlier—§§4.4.4). See Figure 5.2. Thus the number of zeros of
f (counting multiplicity) inside the circle {ζ : |ζ − P | = r} is equal to the
index of γ with respect to the origin. This, intuitively speaking, is equal to
the number of times that the f -image of the boundary circle winds around
0 in C.

The argument principle can be extended to yield information about mero-
morphic functions, too. We can see that there is hope for this notion by
investigating the analog of the argument principle for a pole.
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5.1.6 Location of Poles

If f : U \ {Q} → C is a nowhere-zero holomorphic function on U \ {Q} with
a pole of order n at Q and if D(Q, r) ⊆ U, then

1

2π

∮

∂D(Q,r)

f ′(ζ)

f(ζ)
dζ = −n. (5.1.6.1)

Just as we argued for zeros, the verification of (5.1.6.1) can be reduced to
checking the identity for the function f(z) = z−k when Q = 0.

5.1.7 The Argument Principle for Meromorphic Func-
tions

Just as with the argument principle for holomorphic functions, this new argu-
ment principle gives a counting principle for zeros and poles of meromorphic
functions:

Suppose that f is a meromorphic function on an open set U ⊆ C, that
D(P, r) ⊆ U, and that f has neither poles nor zeros on ∂D(P, r). Assume
that n1, n2, . . . , np are the multiplicities of the zeros z1, z2, . . . , zp of f in
D(P, r) and m1, m2, . . . , mq are the orders of the poles w1, w2, . . . , wq of f in
D(P, r).

Then
1

2π

∮

∂D(P,r)

f ′(ζ)

f(ζ)
dζ =

p∑

j=1

nj −
q∑

k=1

mk. (5.1.7.1)

5.2 The Local Geometry of Holomorphic Func-
tions

5.2.1 The Open Mapping Theorem

The argument principle for holomorphic functions has a consequence that is
one of the most important facts about holomorphic functions considered as
geometric mappings:

Theorem: If f : U → C is a non-constant holomorphic function
on a connected open set U, then f(U) is an open set in C.
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Figure 5.3: The open mapping principle.

(5.2.1.1)

See Figure 5.3. The result says, in particular, that if U ⊆ C is connected
and open and if f : U → C is holomorphic, then either f(U) is a connected
open set (the non-constant case) or f(U) is a single point.

To see why the open mapping principle is true, let β be a value of the
holomorphic function f . Say that f(b) = β, and let D(b, r) be a small disc
as usual in the domain of f . Suppose for simplicity that β is a simple value
of f . Then of course

1 =
1

2πi

∮

∂D(b,r)

f ′(ζ)

f(ζ) − β
dζ . (5.2.1.2)

If we perturb β a little bit on the righthand side of this integral (a perturba-
tion much smaller than r), then the integral will still be integer-valued, and
its value will be very close to 1. So in fact it must be 1. Thus we conclude
that f also takes on that small perturbed value of β. We have argued then
that f assumes all values near β. But this means that the image of f is open.

In the subject of topology, a function f is defined to be continuous if the
inverse image of any open set under f is also open. In contexts where the
ϵ− δ definition makes sense, the ϵ− δ definition (§§2.2.1, 2.2.2) is equivalent
to the inverse-image-of-open-sets definition. By contrast, functions for which
the direct image of any open set is open are called “open mappings.”

Here is a quantitative, or counting, statement that comes from the proof
of the open mapping principle: Suppose that f : U → C is a non-constant
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holomorphic function on a connected open set U such that P ∈ U and
f(P ) = Q with order k. Then there are numbers δ, ϵ > 0 such that each
q ∈ D(Q, ϵ) \ {Q} has exactly k distinct pre-images in D(P, δ) and each
pre-image is a simple point of f . Of course the justification is again a simple
application of (5.2.1.2).

The considerations that establish the open mapping principle can also
be used to establish the fact that if f : U → V is a one-to-one and onto
holomorphic function, then f−1 : V → U is also holomorphic.

5.3 Further Results on the Zeros of Holomor-
phic Functions

5.3.1 Rouché’s Theorem

Now we consider global aspects of the argument principle.
Suppose that f, g : U → C are holomorphic functions on an open set

U ⊆ C. Suppose also that D(P, r) ⊆ U and that, for each ζ ∈ ∂D(P, r),

|f(ζ) − g(ζ)| < |f(ζ)| + |g(ζ)|. (5.3.1.1)

Then
1

2π

∮

∂D(P,r)

f ′(ζ)

f(ζ)
dζ =

1

2π

∮

∂D(P,r)

g′(ζ)

g(ζ)
dζ. (5.3.1.2)

That is, the number of zeros of f in D(P, r) counting multiplicities equals
the number of zeros of g in D(P, r) counting multiplicities.

Remark: Rouché’s theorem is often stated with the stronger hypothesis that

|f(ζ) − g(ζ)| < |g(ζ)| (5.3.1.3)

for ζ ∈ ∂D(P, r). Rewriting this hypothesis as
∣∣∣∣
f(ζ)

g(ζ)
− 1

∣∣∣∣ < 1, (5.3.1.4)

we see that it says that the image γ under f/g of the circle ∂D(P, r) lies in
the disc D(1, 1). See Figure 5.4. Our weaker hypothesis that |f(ζ)− g(ζ)| <
|f(ζ)|+ |g(ζ)| has the geometric interpretation that f(ζ)/g(ζ) lies in the set
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Figure 5.4: Rouché’s theorem.

C \ {x + i0 : x ≤ 0}. Either hypothesis implies that the image of the circle
∂D(P, r) under f has the same “winding number” around 0 as does the image
under g of that circle.

5.3.2 Typical Application of Rouché’s Theorem

EXAMPLE 5.3.2.1 Let us determine the number of roots of the polyno-
mial f(z) = z7 + 5z3 − z − 2 in the unit disc. We do so by comparing the
function f to the holomorphic function g(z) = 5z3 on the unit circle. For
|z| = 1 we have

|f(z) − g(z)| = |z7 − z − 2| ≤ 4 < |g(ζ)| ≤ |f(ζ)| + |g(ζ)|.

By Rouché’s theorem, f and g have the same number of zeros, counting
multiplicity, in the unit disc. Since g has three zeros, so does f .

5.3.3 Rouché’s Theorem and the Fundamental Theo-
rem of Algebra

Rouché’s theorem provides a useful way to locate approximately the zeros
of a holomorphic function that is too complicated for the zeros to be ob-
tained explicitly. As an illustration, we analyze the zeros of a non-constant
polynomial

P (z) = zn + an−1z
n−1 + an−2z

n−2 + · · · + a1z + a0. (5.3.3.1)
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If R is sufficiently large (say R > max
{
1, n · max0≤j≤n−1 |aj|

}
) and |z| = R,

then
|an−1zn−1 + an−2zn−2 + · · · + a0|

|zn| < 1. (5.3.3.2)

Thus Rouché’s theorem applies on D(0, R) with f(z) = zn and g(z) = P (z).
We conclude that the number of zeros of P (z) inside D(0, R), counting mul-
tiplicities, is the same as the number of zeros of zn inside D(0, R), counting
multiplicities—namely n. Thus we recover the Fundamental Theorem of Al-
gebra. Incidentally, this example underlines the importance of counting zeros
with multiplicities: the function zn has only one root in the näıve sense of
counting the number of points where it is zero; but it has n roots when they
are counted with multiplicity.

5.3.4 Hurwitz’s Theorem

A second useful consequence of the argument principle is the following result
about the limit of a sequence of zero-free holomorphic functions:

Hurwitz’s theorem Suppose that U ⊆ C is a connected open
set and that {fj} is a sequence of nowhere-vanishing holomorphic
functions on U . If the sequence {fj} converges uniformly on com-
pact subsets of U to a (necessarily holomorphic) limit function
f0, then either f0 is nowhere-vanishing or f0 ≡ 0.

We leave the proof to the reader: Examine the integral

1

2πi

∮

∂D(P,r)

f ′
j(ζ)

fj(ζ)
dζ

for a suitable disc in the common domain of the functions in question.

5.4 The Maximum Principle

5.4.1 The Maximum Modulus Principle

We repeat that a domain in C is a connected open set (§§1.3.1). A bounded
domain is a connected open set U such that there is an R > 0 with |z| < R
for all z ∈ U—or U ⊆ D(0, R).
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The Maximum Modulus Principle

Theorem: Let U ⊆ C be a domain. Let f be a holomorphic
function on U . If there is a point P ∈ U such that |f(P )| ≥ |f(z)|
for all z ∈ U , then f is constant.

Here is a sharper variant of the theorem:

Theorem: Let U ⊆ C be a domain and let f be a holomorphic
function on U . If there is a point P ∈ U at which |f | has a local
maximum, then f is constant.

There are a variety of ways to prove the maximum principle. A standard
method is to first establish this mean value property: If f is holomorphic in
a neighborhood of D(P, r) then

f(P ) =
1

2π

∫ 2π

0

f(P + reit) dt .

One establishes this formula by first taking P = 0 and checking the result for
the case f(z) = zk, any k ≥ 0. Then one extends to an arbitrary holomorphic
function by using power series.

Now to establish the maximum principle, assume that f is not constant
as asserted. Let E be the set on which |f | assumes its maximum value
|f(P )| ≡ λ. Let w be a point of E that is nearest to ∂U . If r > 0 is a small
number then

λ = |f(w)| =
1

2π

∣∣∣∣

∫ 2π

0

f(w + reit) dt

∣∣∣∣ ≤
1

2π

∫ 2π

0

|f(w + reit)| dt .

Now because w is an extreme point of E, it is not the case that w + reit lies
in E for all values of t. As a result, |f(w + reit)| < λ for t in an open arc of
[0, 2π]. Thus we may conclude that the last line is

<
1

2π

∫ 2π

0

λdt = λ .

We conclude that λ < λ, and that is a contradiction.
We leave the details of the sharper version of the maximum principle for

the interested reader.
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5.4.2 Boundary Maximum Modulus Theorem

The following version of the maximum principle is intuitively appealing, and
is frequently useful.

Theorem: Let U ⊆ C be a bounded domain. Let f be a con-
tinuous function on U that is holomorphic on U . Then the max-
imum value of |f | on U (which must occur, since U is closed and
bounded—see [RUD1], [KRA3]) must in fact occur on ∂U .

In other words,

max
U

|f | = max
∂U

|f |.

The proof is straightforward and we omit it.

5.4.3 The Minimum Principle

Holomorphic functions (or, more precisely, their moduli) can have interior
minima. The function f(z) = z2 on D(0, 1) has the property that z = 0 is
a global minimum for |f |. However, it is not accidental that this minimum
value is 0:

Theorem: Let f be holomorphic on a domain U ⊆ C. As-
sume that f never vanishes. If there is a point P ∈ U such that
|f(P )| ≤ |f(z)| for all z ∈ U , then f is constant. This result is
proved by applying the maximum principle to the function 1/f .

There is also a boundary minimum principle:

Theorem: Let U ⊆ C be a bounded domain. Let f be a con-
tinuous function on U that is holomorphic on U . Assume that
f never vanishes on U . Then the minimum value of |f | on U
(which must occur, since U is closed and bounded—see [RUD1],
[KRA3]) must occur on ∂U .

In other words,

min
U

|f | = min
∂U

|f |.
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5.4.4 The Maximum Principle on an Unbounded Do-
main

It should be noted that the boundary maximum modulus theorem is not
always true on an unbounded domain. The standard example is the function
f(z) = exp(exp(z)) on the domain U = {z = x + iy : −π/2 < y < π/2}.
Check for yourself that |f | = 1 on the boundary of U . But the restriction
of f to the real number line is unbounded at infinity. The theorem does,
however, remain true with some additional restrictions. The result, known
as the Phragmen-Lindelöf theorem,1 is one method of treating maximum
modulus theorems on unbounded domains (see [RUD2]).

5.5 The Schwarz Lemma

This section treats certain estimates that bounded holomorphic functions on
the unit disc necessarily satisfy. We present the classical, analytic viewpoint
in the subject (instead of the geometric viewpoint—see [KRA2]).

5.5.1 Schwarz’s Lemma

Theorem: Let f be holomorphic on the unit disc. Assume that

(5.5.1.1) |f(z)| ≤ 1 for all z.

(5.5.1.2) f(0) = 0.

Then |f(z)| ≤ |z| and |f ′(0)| ≤ 1.

If either |f(z)| = |z| for some z ̸= 0 or if |f ′(0)| = 1, then f
is a rotation: f(z) ≡ αz for some complex constant α of unit
modulus.

For the proof, consider the function g(z) = f(z)/z. This function is holo-
morphic and is still bounded by 1 as |z| → 1. The result then follows from
the maximum principle.

Schwarz’s lemma is a profound geometric fact that has exerted consid-
erable influence in the subject. We cannot explore these avenues here, but

1This theorem imposes a Tauberian hypothesis on the function to make up for the fact
that the domain is unbounded.



5.5. THE SCHWARZ LEMMA 97

see [KRA2]. One nice application is that the lemma enables one to clas-
sify the invertible holomorphic self-maps of the unit disc (see [GK]). (Here
a self-map of a domain U is a mapping F : U → U of the domain to it-
self.) These are commonly referred to as the “conformal self-maps” of the
disc. The classification is as follows: If 0 ≤ θ < 2π, then define the rotation
through angle θ to be the function ρθ(z) = eiθz; if a is a complex number
of modulus less than one, then define the associated Möbius transformation
to be ϕa(z) = [z − a]/[1 − az]. Any conformal self-map of the disc is the
composition of some rotation ρθ with some Möbius transformation ϕa. This
topic is treated in detail in §6.2.

The classification works as follows. Let ψ be a conformal self-map of the
disc D. Suppose that ψ(0) = a. Then consider h = ϕa ◦ ψ. We see that
h : D → D and h(0) = 0. Thus the Schwarz lemma applies and |h(z)| ≤ |z|.
The same reasoning applies to h−1 so that |h(z)| ≥ |z|. We conclude that
|h(z)| = |z| so that h is a rotation. The result follows.

We conclude this section by presenting a generalization of the Schwarz
lemma, in which we consider holomorphic mappings f : D → D, but we
discard the hypothesis that f(0) = 0. This result is known as the Schwarz-
Pick lemma.

5.5.2 The Schwarz-Pick Lemma

Theorem: Let f be holomorphic on the unit disc. Assume that

(5.5.2.1) |f(z)| ≤ 1 for all z.

(5.5.2.2) f(a) = b for some a, b ∈ D(0, 1).

Then

|f ′(a)| ≤ 1 − |b|2

1 − |a|2
. (5.5.2.3)

Moreover, if f(a1) = b1 and f(a2) = b2, then

∣∣∣∣
b2 − b1

1 − b1b2

∣∣∣∣ ≤
∣∣∣∣

a2 − a1

1 − a1a2

∣∣∣∣ . (5.5.2.4)
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There is a “uniqueness” result in the Schwarz-Pick Lemma. If either

|f ′(a)| =
1 − |b|2

1 − |a|2 or

∣∣∣∣
b2 − b1

1 − b1b2

∣∣∣∣ =
∣∣∣∣

a2 − a1

1 − a1a2

∣∣∣∣ with a1 ̸= a2 ,

(5.5.2.5)
then the function f is a conformal self-mapping (one-to-one, onto holomor-
phic function) of D(0, 1) to itself.

The proof of Schwarz-Pick is nearly obvious. Consider h = ϕb ◦ f ◦ ϕ−a.
Then h : D → D, h(0) = 0, and the Schwarz lemma applies.
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Chapter 6

The Geometric Theory of
Holomorphic Functions

6.1 The Idea of a Conformal Mapping

6.1.1 Conformal Mappings

The main objects of study in this chapter are holomorphic functions h : U →
V, with U and V open in C, that are one-to-one and onto. Such a holomorphic
function is called a conformal (or biholomorphic) mapping. The fact that h
is supposed to be one-to-one implies that h′ is nowhere zero on U [remember
that if h′ vanishes to order k ≥ 0 at a point P ∈ U , then h is (k + 1)-to-1
in a small neighborhood of P—see §§5.2.1]. As a result, h−1 : V → U is also
holomorphic—as we discussed in §§5.2.1. A conformal map h : U → V from
one open set to another can be used to transfer holomorphic functions on U
to V and vice versa: that is, f : V → C is holomorphic if and only if f ◦ h
is holomorphic on U ; and g : U → C is holomorphic if and only if g ◦ h−1 is
holomorphic on V .

Thus, if there is a conformal mapping from U to V, then U and V are
essentially indistinguishable from the viewpoint of complex function theory.
On a practical level, one can often study holomorphic functions on a rather
complicated open set by first mapping that open set to some simpler open
set, then transferring the holomorphic functions as indicated.
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6.1.2 Conformal Self-Maps of the Plane

The simplest open subset of C is C itself. Thus it is natural to begin our
study of conformal mappings by considering the conformal mappings of C to
itself. In fact the conformal mappings from C to C can be explicitly described
as follows:

Theorem: A function f : C → C is a conformal mapping if and
only if there are complex numbers a, b with a ̸= 0 such that

f(z) = az + b , z ∈ C. (6.1.2.1)

One aspect of the result is fairly obvious: If a, b ∈ C and a ̸= 0, then the
map z +→ az + b is certainly a conformal mapping of C to C. In fact one
checks easily that z +→ (z− b)/a is the inverse mapping. The interesting part
of the assertion is that these are in fact the only conformal maps of C to C.

For the proof, note that the holomorphic function f satisfies

lim
|z|→+∞

|f(z)| = +∞.

That is, given ϵ > 0, there is a number C > 0 such that if |z| > C then
|f(z)| > 1/ϵ. The set {z : |z| ≤ 1/ϵ} is a compact subset of C. Since f−1 :
C → C is holomorphic, it is continuous. And the continuous image of a
compact set is compact. Therefore S = f−1

(
{z : |z| ≤ 1/ϵ}

)
is compact.

By the Heine-Borel theorem, S must be bounded. Thus there is a positive
number C such that S ⊆ {z : |z| ≤ C}.

Taking contrapositives, we see that if |w| > C then w is not an element
of f−1

(
{z : |z| ≤ 1/ϵ}

)
. Therefore f(w) is not an element of {z : |z| ≤ 1/ϵ}.

In other words, |f(w)| > 1/ϵ. That is the desired result.
Further understanding of the behavior of f(z) when z has large absolute

value may be obtained by applying the technique already used in Chapter
4 to talk about singularities at ∞. Define, for all z ∈ C such that z ̸= 0
and f(1/z) ̸= 0, a function g(z) = 1/f(1/z). By Lemma x.y.z, there is a
number C such that |f(z)| > 1 if |z| > C. Clearly g is defined on {z : 0 <
|z| < 1/C}. Furthermore, g is bounded on this set by 1. By the Riemann
removable singularities theorem, g extends to be holomorphic on the full disc
D(0, 1/C) = {z : |z| < 1/C}. Lemma x.y.z tells us that in fact g(0) = 0.
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Now, because f : C → C is one-to-one, it follows that g is one-to-one on
the disc D(0, 1/C). In particular, g′(0) cannot be 0. Since

0 ̸= |g′(0)| = lim
|z|→0+

∣∣∣∣
g(z) − g(0)

z

∣∣∣∣ = lim
|z|→0+

∣∣∣∣
g(z)

z

∣∣∣∣ ,

we see that there is a constant A > 0 such that

|g(z)| ≥ A|z|

for z sufficiently small. We next translate this to information about the
original function f.

Now we claim that there are numbers B, D > 0 such that, if |z| > D,
then

|f(z)| < B|z| .

To see this, as noted above, there is a number δ > 0 such that if |z| < δ then
|g(z)| ≥ A|z|. If |z| > 1/δ then

|f(z)| =
1

|g(1/z)| ≤
1

A|1/z| =
1

A
|z|.

Thus the lemma holds with B = 1/A and D = 1/δ.
The proof of our main result is now easily given. By (6.1.2.1), f is a

polynomial of degree at most 1, i.e. f(z) = az + b for some a, b ∈ C. Clearly
f is one-to-one and onto if and only if a ̸= 0. That proves the result.

One part of the proof just given is worth considering in the more general
context of singularities at ∞, as discussed in Section 4.7. Suppose now that
h is holomorphic on a set {z : |z| > α}, for some positive α, and that

lim
|z|→+∞

|h(z)| = +∞.

Then it remains true that g(z) ≡ 1/h(1/z) is defined and holomorphic on
{z : 0 < |z| < η}, some η > 0. Also, by the same reasoning as above, g
extends holomorphically to D(0, η) with g(0) = 0. If we do not assume in
advance that h is one-to-one then we may not say (as we did before) that
g′(0) ̸= 0. But g is not constant, since h is not, so there is a positive integer
n and a positive number A such that

|g(z)| ≥ A|z|n
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for all z with |z| sufficiently small. It then follows (as in the proof of Lemma
6.1.2) that

|h(z)| ≤ 1

A
|z|n

for |z| sufficiently large. This line of reasoning, combined with Theorem 3.4.4,
recovers Theorem 4.7.6: If h : C → C is a holomorphic function such that

lim
|z|→+∞

|h(z)| = +∞,

then h is a polynomial.
A generalization of this result about conformal maps of the plane is the

following (consult §§4.6.8 as well as the detailed explanation in [GRK]):

If h : C → C is a holomorphic function such that

lim
|z|→+∞

|h(z)| = +∞,

then h is a polynomial.

We in fact treated this result, using slightly different terminology, when
we discussed isolated singularities at infinity.

6.2 Linear Fractional Transformations

6.2.1 Linear Fractional Mappings

The automorphisms (that is, conformal self-mappings) of the unit disc D are
special cases of functions of the form

z +→ az + b

cz + d
, a, b, c, d ∈ C. (6.3.1.1)

It is worthwhile to consider functions of this form in generality. One restric-
tion on this generality needs to be imposed, however; if ad − bc = 0, then
the numerator is a constant multiple of the denominator provided that the
denominator is not identically zero. So if ad − bc = 0, then the function is
either constant or has zero denominator and is nowhere defined. Thus only
the case ad − bc ̸= 0 is worth considering in detail.
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A function of the form

z +→ az + b

cz + d
, ad − bc ̸= 0, (6.3.1.2)

is called a linear fractional transformation.
Note that (az + b)/(cz + d) is not necessarily defined for all z ∈ C.

Specifically, if c ̸= 0, then it is undefined at z = −d/c. In case c ̸= 0,

lim
z→−d/c

∣∣∣∣
az + b

cz + d

∣∣∣∣ = +∞. (6.3.1.3)

This observation suggests that one might well, for linguistic convenience,
adjoin formally a “point at ∞” to C and consider the value of (az+b)/(cz+d)
to be ∞ when z = −d/c (c ̸= 0). Thus we will think of both the domain
and the range of our linear fractional transformation to be C ∪ {∞} (we
sometimes also use the notation Ĉ instead of C ∪ {∞}). Specifically, we
are led to the following alternative method for describing a linear fractional
transformation.

A function f : C ∪ {∞} → C ∪ {∞} is a linear fractional transformation
if there exists a, b, c, d ∈ C, ad − bc ̸= 0, such that either

(6.3.1.4) c = 0, d ̸= 0, f(∞) = ∞, and f(z) = (a/d)z + (b/d) for all z ∈ C;

or

(6.3.1.5) c ̸= 0, f(∞) = a/c, f(−d/c) = ∞, and f(z) = (az + b)/(cz + d)
for all z ∈ C, z ̸= −d/c.

It is important to realize that, as before, the status of the point ∞ is
entirely formal: we are just using it as a linguistic convenience, to keep track
of the behavior of f(z) both where it is not defined as a map on C and to keep
track of its behavior when |z| → +∞. The justification for the particular
devices used is the fact that

(6.3.1.6) lim|z|→+∞ f(z) = f(∞) [c = 0; case (6.3.1.4) of the definition]

(6.3.1.7) limz→−d/c |f(z)| = +∞ [c ̸= 0; case (6.3.1.5) of the definition].
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6.2.2 The Topology of the Extended Plane

The limit properties of f that we described in §§6.3.1 can be considered as
continuity properties of f from C ∪ {∞} to C ∪ {∞} using the definition of
continuity that comes from the topology on C∪ {∞}. It is easy to formulate
that topology in terms of open sets. But it is also convenient to formulate
that same topological structure in terms of convergence of sequences:

A sequence {pi} in C ∪ {∞} converges to p0 ∈ C ∪ {∞} (notation
limi→∞ pi = p0) if either

(6.3.2.1) p0 = ∞ and limi→+∞ |pi| = +∞ where the limit is taken for all i
such that pi ∈ C;

or

(6.3.2.2) p0 ∈ C, all but a finite number of the pi are in C and limi→∞ pi = p0

in the usual sense of convergence in C.

6.2.3 The Riemann Sphere

Stereographic projection puts Ĉ = C ∪ {∞} into one-to-one correspondence
with the two-dimensional sphere S in R3, S = {(x, y, z) ∈ R3 : x2 + y2 +
z2 = 1} in such a way that topology is preserved in both directions of the
correspondence.

In detail, begin by imagining the unit sphere bisected by the complex
plane with the center of the sphere (0, 0, 0) coinciding with the origin in the
plane—see Figure 6.1. We define the stereographic projection as follows: If
P = (x, y) ∈ C, then connect P to the “north pole” N of the sphere with a
line segment. The point π(P ) of intersection of this segment with the sphere
is called the stereographic projection of P . Note that, under stereographic
projection, the “point at infinity” in the plane corresponds to the north pole
N of the sphere. For this reason, C ∪ {∞} is often thought of as “being” a
sphere, and is then called, for historical reasons, the Riemann sphere.

The construction we have just described is another way to think about
the “extended complex plane”—see §§6.3.2. In these terms, linear fractional
transformations become homeomorphisms of C ∪ {∞} to itself. (Recall that
a homeomorphism is, by definition, a one-to-one, onto, continuous mapping
with a continuous inverse.)



6.3. Linear Fractional Transformations 107

Figure 6.1: Stereographic projection.

Proposition: If f : C∪{∞} → C∪{∞} is a linear fractional
transformation, then f is a one-to-one, onto, continuous function.
Also, f−1 : C ∪ {∞} → C ∪ {∞} is a linear fractional transfor-
mation, and is thus a one-to-one, onto, continuous function.

Proposition: If g : C ∪ {∞} → C ∪ {∞} is also a linear
fractional transformation, then f ◦ g is a linear fractional trans-
formation.

The simplicity of language obtained by adjoining ∞ to C (so that the
composition and inverse properties of linear fractional transformations obvi-
ously hold) is well worth the trouble. Certainly one does not wish to consider
the multiplicity of special possibilities when composing (Az + B)/(Cz + D)
with (az + b)/(cz + d) (namely c = 0, c ̸= 0, aC + cD ̸= 0, aC + cD = 0, etc.)
that arise every time composition is considered.

In fact, it is worth summarizing what we have learned in a theorem (see
§§6.3.4). First note that it makes sense now to talk about a homeomorphism
from C ∪ {∞} to C ∪ {∞} being conformal: this just means that it (and
hence its inverse) are holomorphic in our extended sense. If ϕ is a conformal
map of C ∪ {∞} to itself, then, after composing with a linear fractional
transformation, we may suppose that ϕ maps ∞ to itself. Thus ϕ, after
composition with a linear fraction transformation, is linear. It follows that
ϕ itself is linear fractional. The following result summarizes the situation:
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6.2.4 Conformal Self-Maps of the Riemann Sphere

Theorem: A function ϕ is a conformal self-mapping of Ĉ =
C ∪ {∞} to itself if and only if ϕ is linear fractional.

We turn now to the actual utility of linear fractional transformations
(beyond their having been the form of automorphisms of D—see §§6.2.1–
6.2.3—and the form of all conformal self maps of C ∪ {∞} to itself in the
present section). One of the most frequently occurring uses is the following:

6.2.5 The Cayley Transform

Theorem (The Cayley Transform): The linear fractional transformation
z +→ (i − z)/(i + z) maps the upper half plane {z : Imz > 0} conformally
onto the unit disc D = {z : |z| < 1}.

6.2.6 Generalized Circles and Lines

Calculations of the type that we have been discussing are straightforward
but tedious. It is thus worthwhile to seek a simpler way to understand what
the image under a linear fractional transformation of a given region is. For
regions bounded by line segments and arcs of circles the following result gives
a method for addressing this issue:

Let C be the set of subsets of C∪{∞} consisting of (i) circles and (ii) sets of
the form L∪{∞} where L is a line in C. We call the elements of C “generalized
circles.” Then every linear fractional transformation ϕ takes elements of C
to elements of C. One verifies this last assertion by noting that any linear
fractional transformation is the composition of dilations, translations, and
the inversion map z +→ 1/z; and each of these component maps clearly sends
generalized circles to generalized circles.

6.2.7 The Cayley Transform Revisited

To illustrate the utility of this last result, we return to the Cayley transfor-
mation

z +→ i − z

i + z
. (6.3.7.1)

Under this mapping the point ∞ is sent to −1, the point 1 is sent to
(i − 1)/(i + 1) = i, and the point −1 is sent to (i − (−1))/(i + (−1)) = −i.
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Thus the image under the Cayley transform (a linear fractional transfor-
mation) of three points on R∪ {∞} contains three points on the unit circle.
Since three points determine a (generalized) circle, and since linear fractional
transformations send generalized circles to generalized circles, we may con-
clude that the Cayley transform sends the real line to the unit circle. Now
the Cayley transform is one-to-one and onto from C ∪ {∞} to C∪ {∞}. By
continuity, it either sends the upper half plane to the (open) unit disc or to
the complement of the closed unit disc. The image of i is 0, so in fact the
Cayley transform sends the upper half plane to the unit disc.

6.2.8 Summary Chart of Linear Fractional
Transformations

The next chart summarizes the properties of some important linear fractional
transformations. Note that U = {z ∈ C : Im z > 0} is the upper half-plane
and D = {z ∈ C : |z| < 1} is the unit disc; the domain variable is z and the
range variable is w.

Linear Fractional Transformations

Domain Image Conditions Formula

z ∈ Ĉ w ∈ Ĉ w = az+b
cz+d

z ∈ D w ∈ U w = i · 1−z
1+z

z ∈ U w ∈ D w = i−z
i+z

z ∈ D w ∈ D w = z−a
1−az ,

|a| < 1

C C L(z1) = w1 L(z) = S−1 ◦ T

L(z2) = w2 T (z) = z−z1

z−z3
· z2−z3

z2−z1

L(z3) = w3 S(m) = m−w1

m−w3
· w2−w3

w2−w1
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6.3 The Riemann Mapping Theorem

6.3.1 The Concept of Homeomorphism

Two open sets U and V in C are homeomorphic if there is a one-to-one, onto,
continuous function f : U → V with f−1 : V → U also continuous. Such a
function f is called a homeomorphism from U to V (see also §§6.3.3).

6.3.2 The Riemann Mapping Theorem

The Riemann mapping theorem, sometimes called the greatest theorem of
the nineteenth century, asserts in effect that any planar domain (other than
the entire plane itself) that has the topology of the unit disc also has the
conformal structure of the unit disc. Even though this theorem has been
subsumed by the great uniformization theorem of Köbe (see [FAK]), it is
still striking in its elegance and simplicity:

If U is an open subset of C, U ̸= C, and if U is homeomorphic
to D, then U is conformally equivalent to D. That is, there is a
holomorphic mapping ψ : U → D which is one-to-one and onto.

6.3.3 The Riemann Mapping Theorem: Second
Formulation

An alternative formulation of this theorem uses the concept of “simply con-
nected” (see also §§2.3.3.). We say that a connected open set U in the
complex plane is simply connected if any closed curve in U can be continu-
ously deformed to a point. (This is just a precise way of saying that U has
no holes. Yet another formulation of the notion is that the complement of U
has only one connected component.)

Theorem: If U is an open subset of C, U ̸= C, and if U is simply
connected, then U is conformally equivalent to D.

The proof of the Riemann mapping theorem is long and complex and
introduces many fundamentally new ideas and techniques. We cannot treat
it in detail here, but see [GRK]. Certainly the ideas introduced in this proof
have been profoundly influential.
Key Steps in the Proof of the Riemann Mapping Theorem:

Fix a point P ∈ U . Assume for simplicity that U is bounded.
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1. Consider

S = {f : f maps D to U, f(0) = P};

2. Define

α = sup
f∈S

|f(0)| .

3. Use a normal families argument (Montel’s theorem) to show that there
is a function f0 ∈ S so that |f ′

0(0)| = α.

4. Show, using the argument principle, that f0 must be univalent.

5. Show, with a clever proof by contradiction, that if f0 is not onto then
it cannot be the solution of the extremal problem enunciated in 3.

6. The function f0 is the conformal map that we seek.

The full details of the proof of the Riemann mapping theorem appear in
[GRK].

6.4 Conformal Mappings of Annuli

6.4.1 A Riemann Mapping Theorem for Annuli

The Riemann mapping theorem tells us that, from the point of view of com-
plex analysis, there are only two simply connected planar domains: the disc
and the plane. Any other simply connected region is biholomorphic to one
of these. It is natural then to ask about domains with holes. Take, for ex-
ample, a domain U with precisely one hole. Is it conformally equivalent to
an annulus?

Note that if c > 0 is a constant, then for any R1 < R2 the annuli

A1 ≡ {z : R1 < |z| < R2} and A2 ≡ {z : cR1 < |z| < cR2} (6.5.1.1)

are biholomorphically equivalent under the mapping z +→ cz. The surprising
fact that we shall learn is that these are the only circumstances under which
two annuli are equivalent:
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6.4.2 Conformal Equivalence of Annuli

Let
A1 = {z ∈ C : 1 < |z| < R1} (6.5.2.1)

and
A2 = {z ∈ C : 1 < |z| < R2}. (6.5.2.2)

Then A1 is conformally equivalent to A2 if and only if R1 = R2.
A perhaps more striking result, and more difficult to prove, is this:

Let U ⊆ C be any bounded domain with one hole—this means
that the complement of U has two connected components, one
bounded and one not. Then U is conformally equivalent to some
annulus.

See [AHL] as well as [KRA4] for a discursive discussion of this result.

6.4.3 Classification of Planar Domains

The classification of planar domains up to biholomorphic equivalence is a part
of the theory of Riemann surfaces. For now, we comment that one of the
startling classification theorems (a generalization of the Riemann mapping
theorem) is that any bounded planar domain with finitely many “holes” is
conformally equivalent to the unit disc with finitely many closed circular arcs,
coming from circles centered at the origin, removed. (Here a “hole” in the
present context means a bounded, connected component of the complement
of the domain in C, a concept which coincides with the intuitive idea of
a hole.) An alternative equivalent statement is that any bounded planar
domain with finitely many holes is conformally equivalent to the plane with
finitely many vertical slits (see [AHL]). The analogous result for domains
with infinitely many holes is known to be true when the number of holes is
countable (see [HES]).



Chapter 7

Harmonic Functions

7.1 Basic Properties of Harmonic Functions

7.1.1 The Laplace Equation

We reiterate the definition of “harmonic”. Let F be a holomorphic function
on an open set U ⊆ C. Write F = u+ iv, where u and v are real-valued. The
real part u satisfies a certain partial differential equation known as Laplace’s
equation: (

∂2

∂x2
+

∂2

∂y2

)
u = 0. (7.1.1.1)

(Of course the imaginary part v satisfies the same equation.) In this chapter
we shall study systematically those C2 functions that satisfy this equation.
They are called harmonic functions. (Note that we encountered some of these
ideas already in §1.4.)

7.1.2 Definition of Harmonic Function

Recall the precise definition of harmonic function:
A real-valued function u : U → R on an open set U ⊆ C is harmonic if it

is C2 on U and
∆u ≡ 0, (7.1.2.1)

where the Laplacian ∆u is defined by

∆u =

(
∂2

∂x2
+

∂2

∂y2

)
u. (7.1.2.2)

113



114 CHAPTER 7. HARMONIC FUNCTIONS

7.1.3 Real- and Complex-Valued Harmonic Functions

The definition of harmonic function just given applies as well to complex-
valued functions. A complex-valued function is harmonic if and only if its
real and imaginary parts are each harmonic.

The first thing that we need to check is that real-valued harmonic func-
tions are just those functions that arise as the real parts of holomorphic
functions—at least locally.

7.1.4 Harmonic Functions as the Real Parts of
Holomorphic Functions

If u : D(P, r) → R is a harmonic function on a disc D(P, r), then there is a
holomorphic function F : D(P, r) → C such that Re F ≡ u on D(P, r). We
already indicated in Section x.y that this result reduces to solving a coupled
system of partial differential equations—a situation that can be handled with
multi-variable calculus.

Note that v is uniquely determined by u except for an additive constant:
the Cauchy-Riemann equations determine the partial derivatives of v and
hence determine v up to an additive constant. One can also think of the
determination, up to a constant, of v by u in another way: If ṽ is another
function such that u+iṽ is holomorphic, then H ≡ i(v−ṽ) = (u+iv)−(u+iṽ)
is a holomorphic function with zero real part; hence its image is not open.
Thus H must be a constant, and v and ṽ differ by a constant. Any (harmonic)
function v such that u + iv is holomorphic is called a harmonic conjugate of
u (again see §§1.4.2).

Theorem: If U is a simply connected open set (see §§6.4.3) and
if u : U → R is a harmonic function, then there is a C2 (indeed a
C∞) harmonic function v such that u+iv : U → C is holomorphic.

Another important relationship between harmonic and holomorphic func-
tions is this:

If u : U → R is harmonic and if H : V → U is holomorphic, then
u ◦ H is harmonic on V .

This result is proved by direct calculation (i.e., differentiation, using the chain
rule).
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7.1.5 Smoothness of Harmonic Functions

If u : U → R is a harmonic function on an open set U ⊆ C, then u ∈
C∞. In fact a harmonic function is always real analytic (has a local power
series expansion in powers of x and y). This follows, for instance, because
a harmonic function is locally the real part of a holomorphic function (see
§§1.4.2, §§7.1.4). A holomorphic function has a power series expansion about
each point, so is certainly infinitely differentiable.

7.2 The Maximum Principle and the Mean
Value
Property

7.2.1 The Maximum Principle for Harmonic Functions

Theorem: If u : U → R is harmonic on a connected open
set U and if there is a point P0 ∈ U with the property that
u(P0) = maxz∈U u(z), then u is constant on U . Compare the
maximum modulus principle for holomorphic functions in §§5.4.1.
The proof, using (7.2.4.1) below, is essentially the same as that
for the maximum principle for holomorphic functions.

7.2.2 The Minimum Principle for Harmonic Functions

Theorem: If u : U → R is a harmonic function on a connected
open set U ⊆ C and if there is a point P0 ∈ U such that u(P0) =
minQ∈U u(Q), then u is constant on U . Compare the minimum
principle for holomorphic functions in §§5.4.3.

The reader may note that the minimum principle for holomorphic func-
tions requires an extra hypothesis (i.e., non-vanishing of the function) while
that for harmonic functions does not. The difference may be explained by
noting that with harmonic functions we are considering the real-valued func-
tion u, while with holomorphic functions we must restrict attention to the
modulus function |f |.
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7.2.3 The Boundary Maximum and Minimum Princi-
ples

An important and intuitively appealing consequence of the maximum princi-
ple is the following result (which is sometimes called the “boundary maximum
principle”). Recall that a continuous function on a compact set assumes a
maximum value. When the function is harmonic, the maximum occurs at
the boundary in the following precise sense:

Theorem: Let U ⊆ C be a bounded domain. Let u be a contin-
uous, real-valued function on the closure U of U that is harmonic
on U . Then

max
U

u = max
∂U

u. (7.2.3.1)

The analogous result for the minimum is:

Theorem: Let U ⊆ C be a domain and let u be a continuous
function on the closure U of U that is harmonic on U . Then

min
U

u = min
∂U

u. (7.2.3.2)

Compare the analogous results for holomorphic functions in §§5.4.2, 5.4.3.

7.2.4 The Mean Value Property

Suppose that u : U → R is a harmonic function on an open set U ⊆ C and
that D(P, r) ⊆ U for some r > 0. Then

u(P ) =
1

2π

∫ 2π

0

u(P + reiθ) dθ. (7.2.4.1)

We will see in §§7.4.1 that the mean value property characterizes harmonic
functions.

The mean value property for harmonic functions can be proved on the
unit disc by first verifying it for the monomials zj and zj and then noting
that any harmonic function is in the closed linear span of these. It can
also be checked because a harmonic function is (locally) the real part of a
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holomorphic function and so the result can be derived (by taking the real
part) from that for a holomorphic function. A very interesting proof may
also be gotten from Green’s theorem (see [KRA5]).

We conclude this subsection with two alternative formulations of the mean
value property (MVP). Either one may be derived with simple changes of
variable in the integral. In both cases, u, U, P, r are as above.

First Alternative Formulation of MVP

u(P ) =
1

πr2

∫∫

D(P,r)

u(x, y) dxdy.

Second Alternative Formulation of MVP

u(P ) =
1

2πr

∫

∂D(P,r)

u(ζ) dσ(ζ),

where dσ is arc-length measure on ∂D(P, r).

7.2.5 Boundary Uniqueness for Harmonic Functions

If u1 : D(0, 1) → R and u2 : D(0, 1) → R are two continuous functions, each
of which is harmonic on D(0, 1) and if u1 = u2 on ∂D(0, 1) = {z : |z| = 1},
then u1 ≡ u2. This assertion follows from the boundary maximum principle
(§§7.2.3.1) applied to u1 − u2. Thus, in effect, a harmonic function u on
D(0, 1) that extends continuously to D(0, 1) is completely determined by its
values on D(0, 1) \ D(0, 1) = ∂D(0, 1). Of course an analogous result holds
on any domain in C.

7.3 The Poisson Integral Formula

7.3.1 The Poisson Integral

The next result builds on the boundary uniqueness idea. After all, if a
harmonic function on the interior of a disc is completely determined by its
boundary values, then we ought to be able to calculate the interior values
from the boundary values. This is in fact what the Poisson integral formula
does for us.
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Let u : U → R be a harmonic function on a neighborhood of D(0, 1).
Then, for any point a ∈ D(0, 1),

u(a) =
1

2π

∫ 2π

0

u(eiψ) · 1 − |a|2

|a − eiψ|2 dψ. (7.3.1.1)

7.3.2 The Poisson Kernel

The expression
1

2π

1 − |a|2

|a − eiψ|2 (7.3.2.1)

is called the Poisson kernel for the unit disc. It is often convenient to rewrite
the formula we have just enunciated by setting a = |a|eiθ = reiθ. Then the
result says that

u(reiθ) =
1

2π

∫ 2π

0

u(eiψ)
1 − r2

1 − 2r cos(θ − ψ) + r2
dψ. (7.3.2.2)

In other words

u(reiθ) =

∫ 2π

0

u(eiθ)Pr(θ − ψ) dψ, (7.3.2.3)

where

Pr(θ − ψ) =
1

2π

1 − r2

1 − 2r cos(θ − ψ) + r2
. (7.3.2.4)

There are a number of ways to verify the Poisson integral formula. First,
one could use Green’s theorem (for which see again [KRA5]). Alternatively,
one could first verify the formula with barehand calculation in the case that
f(z) = zk or f(z) = zk. A third possibility is to note that formula (7.3.2.2)
is plainly true at the origin (i.e., when r = 0). Then spread the result to
the rest of the disc using conformal self-maps of the disc and the conformal
invariance of harmonic functions. We leave the details to the reader.

7.3.3 The Dirichlet Problem

The Poisson integral formula both reproduces and creates harmonic func-
tions. But, in contrast to the holomorphic case (§2.4), there is a simple
connection between a continuous function f on ∂D(0, 1) and the created
harmonic function u on D. The following theorem states this connection
precisely. The theorem is usually called “the solution of the Dirichlet prob-
lem on the disc”:
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7.3.4 The Solution of the Dirichlet Problem on the
Disc

Theorem: Let f be a continuous function on ∂D(0, 1). Define

u(z) =

⎧
⎪⎨

⎪⎩

1

2π

∫ 2π

0

f(eiψ) · 1 − |z|2

|z − eiψ|2 dψ if z ∈ D(0, 1)

f(z) if z ∈ ∂D(0, 1).
(7.3.4.1)

Then u is continuous on D(0, 1) and harmonic on D(0, 1). The
proof of this theorem is rather technical, and we refer the reader
to [GRK] or [KRA5].

Closely related to this result is the reproducing property of the Poisson
kernel:

Theorem: Let u be harmonic on a neighborhood of D(0, 1).
Then, for z ∈ D(0, 1),

u(z) =
1

2π

∫ 2π

0

u(eiψ) · 1 − |z|2

|z − eiψ|2 dψ . (7.3.4.2)

See (7.3.1.1). One way to understand this last formula is to ver-
ify by hand that the Poisson kernel is harmonic in the variable
z. Then (7.3.4.2) creates a function that agrees with u on the
boundary of the disc and is harmonic inside, so it must be u
itself.

7.3.5 The Dirichlet Problem on a General Disc

A change of variables shows that the results of §§7.3.4 remain true on a
general disc. To wit, let f be a continuous function on ∂D(P, r). Define

u(z) =

⎧
⎪⎨

⎪⎩

1

2π

∫ 2π

0

f(eiψ) · R − |z − P |2

|(z − P ) −Reiψ|2 dψ if z ∈ D(P, R)

f(z) if z ∈ ∂D(P, R).
(7.3.5.1)

Then u is continuous on D(P, R) and harmonic on D(P, R).
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If instead u is harmonic on a neighborhood of D(P, R), then, for z ∈
D(P, R),

u(z) =
1

2π

∫ 2π

0

u(P + Reiψ) · R2 − |z − P |2

|(z − P ) − Reiψ|2
dψ. (7.3.5.2)

7.4 Regularity of Harmonic Functions

7.4.1 The Mean Value Property on Circles

A continuous function h : U → R on an open set U ⊆ C has the ϵP -
mean value property if, for each point P ∈ U, there is an ϵP > 0 such that
D(P, ϵP ) ⊆ U and, for every 0 < ϵ < ϵP ,

h(P ) =
1

2π

∫ 2π

0

h(P + ϵeiθ)dθ. (7.4.1.1)

The ϵP -mean value property allows the size of ϵP to vary arbitrarily with
P .

Theorem: If h : U → R is a continuous function on an open set
U with the ϵP -mean value property, then h is harmonic.

Again, the proof of this result is too technical to treat here. See [GRK].

7.4.2 The Limit of a Sequence of Harmonic Functions

If {hj} is a sequence of real-valued harmonic functions that converges uni-
formly on compact subsets of U to a function h : U → R, then h is harmonic
on U . This is immediate from the Poisson integral formula, since we now
know that the Poisson kernel is harmonic.

7.5 The Schwarz Reflection Principle

7.5.1 Reflection of Harmonic Functions

We present in this section an application of what we have learned so far to
a question of extension of a harmonic function to a larger domain. This will
already illustrate the importance and power of harmonic function theory and
will provide us with a striking result about holomorphic functions as well.
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7.5.2 Schwarz Reflection Principle for Harmonic Func-
tions

Let V be a connected open set in C. Suppose that

V ∩ (real axis) = {x ∈ R : a < x < b}.

Set U = {z ∈ V : Im z > 0}. Assume that v : U → R is harmonic
and that, for each ζ ∈ V ∩ (real axis),

lim
U∋z→ζ

v(z) = 0. (7.5.2.1)

Set Ũ = {z : z ∈ U}. Define

v̂(z) =

⎧
⎨

⎩

v(z) if z ∈ U
0 if z ∈ V ∩ (real axis)
−v(z) if z ∈ Ũ .

(7.5.2.2)

Then v̂ is harmonic on U∗ ≡ U ∪ Ũ ∪ {x ∈ R : a < x < b}.

This result provides a way of extending a harmonic function from a given
open set to a larger (reflected) open set. The method is known as the Schwarz
Reflection Principle. One can think of Û as the reflection of U in the real
axis, and the definition of v̂ on Û as the correspondingly appropriate idea of
reflecting the function v. See Figure 7.1.

The proof of Schwarz reflection is a clever argument involving the sym-
metries of the Poisson integral formula. We refer the reader to [GRK] for the
details.

7.5.3 The Schwarz Reflection Principle for Holomor-
phic Functions

Theorem: Let V be a connected open set in C such that V ∩
(the real axis) = {x ∈ R : a < x < b} for some a, b ∈ R. Set
U = {z ∈ V : Im z > 0}. Suppose that F : U → C is holomorphic
and that
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Figure 7.1: Schwarz reflection.

lim
U∋z→x

Im F (z) = 0 (7.5.3.1)

for each ζ ∈ V ∩ (real axis). Define Ũ = {z ∈ C : z ∈ U}. Then
there is a holomorphic function G on U ∪ Ũ ∪{x ∈ R : a < x < b}
such that G

∣∣
U

= F . In fact ϕ(ζ) ≡ limU∋z→ζ Re F (z) exists for
each ζ ∈ V ∩ (real axis) and

G(z) =

⎧
⎪⎨

⎪⎩

F (z) if z ∈ U
ϕ(z) + i0 if z ∈ V ∩ (real axis)

F (z) if z ∈ Ũ .

(7.5.3.2)

7.5.4 More General Versions of the Schwarz Reflection
Principle

We take this opportunity to note that Schwarz reflection is not simply a
fact about reflection in lines. Since lines are conformally equivalent (by way
of linear fractional transformations) to circles, it is also possible to perform
Schwarz reflection in a circle (with suitably modified hypotheses). More is
true: in fact one can conformally map a neighborhood of any real analytic
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curve to a line segment; so, with some extra effort, Schwarz reflection may
be performed in any real analytic arc.

7.6 Harnack’s Principle

7.6.1 The Harnack Inequality

Theorem: Let u be a non-negative, harmonic function on D(0, R).
Then, for any z ∈ D(0, R),

R − |z|
R + |z| · u(0) ≤ u(z) ≤ R + |z|

R − |z| · u(0). (7.6.1.1)

More generally:

Let u be a non-negative, harmonic function on D(P, R). Then,
for any z ∈ D(P, R),

R − |z − P |
R + |z − P | · u(P ) ≤ u(z) ≤ R + |z − P |

R − |z − P | · u(P ). (7.6.1.2)

In fact these extremely useful estimates are a direct reflection of the size
of the Poisson kernel. The reader may provide the details.

7.6.2 Harnack’s Principle

Theorem: Let u1 ≤ u2 ≤ . . . be harmonic functions on a con-
nected open set U ⊆ C. Then either uj → ∞ uniformly on
compact sets or there is a (finite-valued) harmonic function u on
U such that uj → u uniformly on compact sets.

The reader may prove this assertion as a simple application of the Harnack
inequalities and a little logic.
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7.7 The Dirichlet Problem and Subharmonic
Functions

7.7.1 The Dirichlet Problem

Let U ⊆ C be an open set, U ̸= C. Let f be a given continuous function
on ∂U . Does there exist a continuous function u on U such that u

∣∣
∂U

= f
and u is harmonic on U? If u exists, is it unique? These two questions
taken together are called the Dirichlet problem for the domain U . [Note that
we have already solved the Dirichlet problem when U is the unit disc—see
§§7.3.1, §§7.3.4.] It has many motivations from physics (see [COH], [LOG]).
For instance, suppose that a flat, thin film of heat-conducting material is
in thermal equilibrium. That is, the temperature at each point of the film
is constant with passing time (§§14.2.2). Then its temperature at various
points is a harmonic function (see [KRA1]). Physical intuition suggests that
if the boundary ∂U of the film has a given temperature distribution f :
∂U → R, then the temperatures at interior points are uniquely determined.
Historically, physicists have found this intuition strongly compelling.

From the viewpoint of mathematical proof, as opposed to physical intu-
ition, the situation is more complicated. The result of §§7.3.4 asserts in effect
that the Dirichlet problem on the unit disc always has a solution. And, on
any bounded domain U , it has only one solution corresponding to any given
boundary function f , because of the (boundary) maximum principle: If u1

and u2 are both solutions, then u ≡ u1 − u2 is harmonic and is zero on
the boundary, so that u1 − u2 ≡ 0, hence u1 ≡ u2. While this reasoning
demonstrates that the Dirichlet problem on a bounded open set U can have
at most one solution, it is also the case that on more complicated domains
the Dirichlet problem may not have any solution.

7.7.2 Conditions for Solving the Dirichlet Problem

The Dirichlet problem is not always solvable on the domain U = D(0, 1)\{0};
in fact the data f(z) = 1 when |z| = 1 and f(z) = 0 when z = 0 have no
solution—see [GK, p. 229]. Thus some conditions on ∂U are necessary in
order that the Dirichlet problem be solvable for U . It will turn out that if
∂U consists of “smooth” curves, then the Dirichlet problem is always solvable.
The best possible general result is that if each connected component of the
boundary of U contains more than one point, then the Dirichlet problem
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Figure 7.2: A convex function.

can always be solved. Later, we shall enunciate a classical condition for
solvability of the Dirichlet formulated in the language of barriers.

7.7.3 Motivation for Subharmonic Functions

We first consider the concept of subharmonicity. This is a complex-analytic
analogue of the notion of convexity that we motivate by considering convexity
on the real line. For the moment, fix attention on functions F : R → R.

On the real line, the analogue of the Laplacian is the operator d2/dx2.
The analogue of real-valued harmonic functions (that is, the functions u with
△u = 0) are therefore the functions h(x) such that [d2/dx2][h(x)] ≡ 0; these
are the linear ones. Let S be the set of continuous functions f : R → R such
that whenever I = [a, b] ⊆ R and h is a real-valued harmonic function on
R with f(a) ≤ h(a) and f(b) ≤ h(b), then f(x) ≤ h(x) for all x ∈ I . (Put
simply, if a harmonic function h is at least as large as f at the endpoints of
an interval, then it is at least as large as f on the entire interval.) Which
functions are in S? The answer is the collection of all convex functions (in
the usual sense). Refer to Figure 7.2. [Recall here that a function f :
[a, b] → R is said to be convex if, whenever c, d ∈ [a, b] and 0 ≤ λ ≤ 1
then f((1 − λ)c + λd) ≤ (1 − λ)f(c) + λf(d).] These considerations give
us a geometric way to think about convex functions (without resorting to
differentiation). See [HOR] for more on this view of subharmonic functions.
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7.7.4 Definition of Subharmonic Function

Our definition of subharmonic function on a domain in C (or R2) is motivated
by the discussion of convexity in the preceding subsection.

Definition: Let U ⊆ C be an open set and f a real-valued,
continuous function on U . Suppose that for each D(P, r) ⊆ U and
every real-valued harmonic function h defined on a neighborhood
of D(P, r) which satisfies f ≤ h on ∂D(P, r), it holds that f ≤ h
on D(P, r). Then f is said to be subharmonic on U .

7.7.5 Other Characterizations of Subharmonic
Functions

A function f : U → R that is C2 is subharmonic if and only if △f ≥ 0 every-
where. This is analogous to the fact that a C2 function on (an open set in) R

is convex if and only if it has non-negative second derivative everywhere—and
the proof is quite similar. The next result will allow us to identify many sub-
harmonic functions which are only continuous, not C2, so that the △f ≥ 0
criterion is not applicable.

Let f : U → R be continuous. Suppose that, for each D(P, r) ⊆ U ,

f(P ) ≤ 1

2π

∫ 2π

0

f(P + reiθ)dθ (7.7.5.1)

(this is called the sub-mean value property). Then f is subharmonic. This
result is derived directly from the mean value property for harmonic func-
tions.

Conversely, if f : U → R is a continuous, subharmonic function and if
D(P, r) ⊆ U , then the inequality (7.7.5.1) holds.

7.7.6 The Maximum Principle

A consequence of the sub-mean value property (7.7.5.1) is the maximum
principle for subharmonic functions:

If f is subharmonic on U and if there is a P ∈ U such that
f(P ) ≥ f(z) for all z ∈ U , then f is constant.



7.7. The Dirichlet Problem 127

It may be noted that if f is holomorphic then |f | is subharmonic; this explains
why a holomorphic function satisfies the maximum principle. The proof of
this new maximum principle is identical to proofs of this principle that we
have seen in other contexts—see, for example, §§7.2.1, 7.2.2, 7.2.3.

7.7.7 Lack of A Minimum Principle

We note in passing that there is no “minimum principle” for subharmonic
functions. Subharmonicity is a “one-sided” property. Put in other words,
the negative of a subharmonic function is not subharmonic.

7.7.8 Basic Properties of Subharmonic Functions

Here are some properties of subharmonic functions that are worth noting.
The third of these explains why subharmonic functions are a much more
flexible tool than holomorphic or even harmonic functions. The proofs are
immediate from the definitions and the properties of harmonic funcitons dis-
cussed thus far.

1. If f1, f2 are subharmonic functions on U , then so is f1 + f2.

2. If f1 is subharmonic on U and α > 0 is a constant, then αf1 is subhar-
monic on U .

3. If f1, f2 are subharmonic on U then g(z) ≡ max{f1(z), f2(z)} is also
subharmonic on U .

7.7.9 The Concept of a Barrier

The next notion that we need to introduce is that of a barrier. Namely, we
want to put a geometric-analytic condition on the boundary of a domain
that will rule out examples like the punctured disc in §§7.7.2 (in which the
Dirichlet problem could not be solved). The definition of a barrier at a point
P ∈ ∂U is a bit technical, but the existence of a barrier will turn out to
be exactly the hypothesis needed for the construction of the solution of the
Dirichlet problem.

Definition: Let U ⊆ C be an open set and P ∈ ∂U . We call a
function b : U → R a barrier for U at P if
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P

Figure 7.3: The concept of a barrier.

(7.7.9.1) b is continuous;

(7.7.9.2) b is subharmonic on U ;

(7.7.9.3) b
∣∣
∂U

≤ 0;

(7.7.9.4) {z ∈ ∂U : b(z) = 0} = {P}.

Thus the barrier b singles out P in a special function-theoretic fashion.
If U is bounded by a C1 smooth curve (no corners present), then every

point of ∂U has a barrier (just conformally map U to a disc). See Figure 7.3.

7.8 The General Solution of the Dirichlet Prob-
lem

7.8.1 Enunciation of the Solution of the Dirichlet Prob-
lem

Let U be a bounded, connected open subset of C such that U has a barrier
bP for each P ∈ ∂U . Then the Dirichlet problem can always be solved on
U . That is, if f is a continuous function on ∂U , then there is a function u
continuous on U , harmonic on U , such that u

∣∣
∂U

= f . The function u is
uniquely determined by these conditions.

The result in the preceding paragraph is the standard textbook result
about regularity for the Dirichlet problem. More advanced techniques estab-
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lish that if each connected component of ∂U has at least two points then the
Dirichlet problem is solvable on U .

The solution of the Dirichlet problem in the generality that we have been
discussing here is a technical tour de force. See [GRK] for all the details.
The basic idea is that (i) there exists some subharmonic function whose
boundary limits lie below the given boundary data function f ; (ii) we define
a new function u to be the pointwise supremum of all such subharmonic
functions; and (iii) then the Harnack principle and the maximum principle
(along with the barriers) can be used to show that the function u constructed
in (ii) is harmonic and agrees with f at each boundary point.
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Chapter 8

Infinite Series and Products

8.1 Basic Concepts Concerning Infinite Sums
and Products

8.1.1 Uniform Convergence of a Sequence

Let U ⊆ C be an open set and gj : U → C functions. Recall (§3.1.5) that
the sequence {gj} is said to converge uniformly on compact subsets of U
to a function g if the following condition holds: For each compact K ⊆ U
(see §§3.1.5) and each ϵ > 0 there is an N > 0 such that if j > N , then
|g(z) − gj(z)| < ϵ for all z ∈ K. It should be noted that, in general, the
choice of N depends on ϵ and on K, but not on the particular point z ∈ K.

8.1.2 The Cauchy Condition for a Sequence of Func-
tions

Because of the completeness (see [RUD1], [KRA2]) of the complex numbers,
a sequence of functions is uniformly convergent on compact sets if and only
if it is (what is called) uniformly Cauchy on compact sets. Here a sequence
of functions is said to be uniformly Cauchy on compact sets if, for each K
compact in U and each ϵ > 0, there is an N > 0 such that: for all j, k > N and
all z ∈ K we have |gj(z)−gk(z)| < ϵ. The Cauchy condition is useful because
it does not make explicit reference to the limit function g. One can thereby
verify uniform convergence to some limit without previously determining the
limit function explicitly.

131
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8.1.3 Normal Convergence of a Sequence

For the purposes of complex analysis, the basic fact about uniform conver-
gence on compact sets is our result which states that if {gj} are holomorphic
functions on U and if the gj converge uniformly on compact subsets of U to
a function g, then g is holomorphic (§§3.1.5). In these circumstances we will
say that {gj} converges normally to g.

8.1.4 Normal Convergence of a Series

If f1, f2, . . . are functions on U , then we may study the convergence properties
of

∞∑

j=1

fj. (8.1.4.1)

The series converges normally if its sequence of partial sums

SN(z) =
N∑

j=1

fj(z) , N = 1, 2, . . . (8.1.4.2)

converges normally in U . The function

f(z) =
∞∑

j=1

fj(z) (8.1.4.3)

will then be holomorphic because it is the normal limit of the partial sums
SN (each of which is holomorphic).

8.1.5 The Cauchy Condition for a Series

There is a Cauchy condition for normal convergence of a series: the series

∞∑

j=1

fj(z) (8.1.5.1)

is said to be uniformly Cauchy on compact sets if, for each compact K ⊆ U
and each ϵ > 0, there is an N > 0 such that for all M ≥ L > N it holds that

∣∣∣∣∣

M∑

j=L

fj(z)

∣∣∣∣∣
< ϵ. (8.1.5.2)
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[Note that this is just a reformulation of the Cauchy condition for the se-
quence of partial sums SN (z).] It is easy to see that a series that is uniformly
Cauchy converges normally to its limit function.

8.1.6 The Concept of an Infinite Product

Now we turn to products. One of the principal activities in complex analysis
is to construct holomorphic or meromorphic functions with certain prescribed
behavior. For some problems of this type, it frequently turns out that infinite
products are more useful than infinite sums. The reason is that, for instance,
if we want to construct a function that will vanish on a certain infinite set
{aj}, then we could hope to find individual functions fj that vanish at aj and
then multiply the fj’s together. This process requires that we make sense of
the notion of “infinite product.”

8.1.7 Infinite Products of Scalars

We begin with infinite products of complex numbers, and then adapt the
ideas to infinite products of functions. For reasons that will become apparent
momentarily, it is convenient to write products in the form

∞∏

j=1

(1 + aj), (8.1.7.1)

where aj ∈ C. The symbol
∏

stands for multiplication. We want to define
what it means for a product such as (8.1.7.1) to converge.

8.1.8 Partial Products

First define the partial products PN of (8.1.7.1) to be

PN =
N∏

j=1

(1 + aj) ≡ (1 + a1) · (1 + a2) · · · (1 + aN ). (8.1.8.1)

We might be tempted to say that the infinite product

∞∏

j=1

(1 + aj) (8.1.8.2)
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converges if the sequence of partial products {PN} converges. But, for tech-
nical reasons, a different definition is more useful.

8.1.9 Convergence of an Infinite Product

An infinite product
∞∏

j=1

(1 + aj) (8.1.9.1)

is said to converge if

(8.1.8.2) Only a finite number aj1 , . . . , ajk
of the aj’s are equal to −1.

(8.1.9.3) If N0 > 0 is so large that aj ̸= −1 for j > N0, then

lim
N→+∞

N∏

j=N0+1

(1 + aj) (8.1.9.3.1)

exists and is non-zero.

8.1.10 The Value of an Infinite Product

If
∏∞

j=1(1 + aj) converges, then we define its value to be (with N0 as in
(8.1.9.3))

[
N0∏

j=1

(1 + aj)

]

· lim
N→+∞

N∏

N0+1

(1 + aj). (8.1.10.1)

8.1.11 Products That Are Disallowed

As the exposition develops, it will become clear why we wish to disallow
products with

lim
N→+∞

N∏

j=N0+1

(1 + aj) = 0. (8.1.11.1)
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8.1.12 Condition for Convergence of an Infinite Prod-
uct

If
∞∑

j=1

|aj| < ∞ , (8.1.12.1)

then
∞∏

j=1

(1 + |aj|) (8.1.12.2)

converges. [See (8.1.12.6), (8.1.12.7) for part of the mathematical reason as
to why these assertions are true.] The facts all hinge on the basic identity
eα = 1 + α+ · · · .

If
∞∏

j=1

(1 + |aj|) (8.1.12.3)

converges, then
∞∑

j=1

|aj| (8.1.12.4)

converges.
Let aj ∈ C. Set

PN =
N∏

j=1

(1 + aj) , P̃N =
N∏

j=1

(1 + |aj|). (8.1.12.5)

Then

(8.1.12.6) P̃N ≤ exp (|a1| + · · · + |aN |).

(8.1.12.7) |PN − 1| ≤ P̃N − 1.

If the infinite product
∞∏

j=1

(1 + |aj|) (8.1.12.8)

converges, then so does
∞∏

j=1

(1 + aj). (8.1.12.9)
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If
∞∑

j=1

|aj| < ∞ , (8.1.12.10)

then
∞∏

j=1

(1 + aj) (8.1.12.11)

converges.
This last is our most useful convergence result for infinite products. It is

so important that it is worth restating in a standard alternative form: If

∞∑

j=1

|1 − aj| < ∞ , (8.1.12.12)

then
∞∏

j=1

aj (8.1.12.13)

converges. The proof is just a change of notation.

8.1.13 Infinite Products of Holomorphic Functions

We now apply these considerations to infinite products of holomorphic func-
tions.

Let U ⊆ C be open. Suppose that fj : U → C are holomorphic and that

∞∑

j=1

|fj| (8.1.13.1)

converges uniformly on compact subsets of U . Then the sequence of partial
products

FN (z) =
N∏

j=1

(1 + fj(z)) (8.1.13.2)

converges uniformly on compact subsets of U . In particular, the limit of
these partial products defines a holomorphic function on U .
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8.1.14 Vanishing of an Infinite Product

The function f defined on a domain U by the product

f(z) =
∞∏

j=1

(1 + fj(z)) (8.1.14.1)

vanishes at a point z0 ∈ U if and only if fj(z0) = −1 for some j. The
multiplicity of the zero at z0 is the sum of the multiplicities of the zeros of
the functions 1 + fj at z0.

8.1.15 Uniform Convergence of an Infinite Product
of Functions

Remark: For convenience, one says that the product
∏∞

1 (1 + fj(z)) con-
verges uniformly on a set E if

(8.1.15.1) it converges for each z in E

and

(8.1.15.2) the sequence {
∏N

1 (1+fj(z))} converges uniformly on E to
∏∞

1 (1+
fj(z)).

Then our main convergence result can be summarized as follows:

8.1.16 Condition for the Uniform Convergence of an
Infinite Product of Functions

Theorem: If
∑∞

j=1 |fj | converges uniformly on compact sets,
then the product

∏∞
1 (1+ fj(z)) converges uniformly on compact

sets.

It should be noted that the convergence conditions in §§8.1.9 are satisfied
automatically in the situation of this last theorem.
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8.2 The Weierstrass Factorization Theorem

8.2.1 Prologue

One of the most significant facts about a polynomial function p(z) of z ∈ C

is that it can be factored (see §§3.1.4):

p(z) = c ·
k∏

j=1

(z − aj). (8.2.1.1)

Among other things, such a factorization facilitates the study of the zeros
of p. In this section we shall show that in fact any entire function can be
factored in such a way that each multiplicative factor possesses precisely one
zero (of first order). Since a function holomorphic on all of C (called an
entire function) can have infinitely many zeros, the factorization must be an
infinite product in at least some cases. We consider such a factorization in
this section.

8.2.2 Weierstrass Factors

To obtain the Weierstrass factors, we define

E0(z) = 1 − z (8.2.2.1)

and for 1 ≤ p ∈ Z we let

Ep(z) = (1 − z) exp

(
z +

z2

2
+ · · · + zp

p

)
. (8.2.2.2)

Of course each Ep is holomorphic on all of C. The factorization theory hinges
on a technical calculation that says that, in some sense, Ep is close to 1 if |z|
is small. This assertion is not surprising since

(
z +

z2

2
+ · · · + zp

p

)
(8.2.2.3)

is the initial part of the power series of − log(1 − z). Thus

(1 − z) exp

(
z +

z2

2
+ · · · + zp

p

)
(8.2.2.4)

might be expected to be close to 1 for z small (and p large).
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8.2.3 Convergence of the Weierstrass Product

Theorem: Let {an}∞n=1 be a sequence of non-zero complex num-
bers with no accumulation point in the complex plane (note, how-
ever, that the ans need not be distinct). If {pn} are positive
integers that satisfy

∞∑

n=1

(
r

|an|

)pn+1

< ∞ (8.2.3.1)

for every r > 0, then the infinite product

∞∏

n=1

Epn

(
z

an

)
(8.2.3.2)

(called a Weierstrass product) converges uniformly on compact
subsets of C to an entire function F . The zeros of F are precisely
the points {an}, counted with multiplicity.

8.2.4 Existence of an Entire Function with Prescribed
Zeros

Let {an}∞n=1 be any sequence in the plane with no finite accumulation point.
Then there exists an entire function f with zero set precisely equal to {an}∞n=1

(counting multiplicities). The function f is given by a Weierstrass product.

8.2.5 The Weierstrass Factorization Theorem

Theorem: Let f be an entire function. Suppose that f vanishes
to order m at 0, m ≥ 0. Let {an} be the other zeros of f, listed
with multiplicities. Then there is an entire function g such that

f(z) = zm · eg(z)
∞∏

n=1

En−1

(
z

an

)
. (8.2.5.1)
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8.3 The Theorems of Weierstrass and
Mittag-Leffler

8.3.1 The Concept of Weierstrass’s Theorem

Let U ⊂ C be a domain. The only necessary condition that we know for a
set {aj} ⊆ U to be the zero set of a function f holomorphic on U is that
{aj} have no accumulation point in U . It is remarkable that this condition
is also sufficient: that is the content of Weierstrass’s theorem.

8.3.2 Weierstrass’s Theorem

Theorem: Let U ⊆ C be any open set. Let a1, a2, . . . be a
finite or infinite sequence in U (possibly with repetitions) that
has no accumulation point in U . Then there exists a holomorphic
function f on U whose zero set is precisely {aj}. (The function
f is constructed by taking an infinite product.)

The proof converts the problem to a situation on the entire plane, and then
uses the Weierstrass product.

We next want to formulate a result about maximal domains of existence
(or domains of definition) of holomorphic functions. But first we need a
geometric fact about open subsets of the plane.

8.3.3 Construction of a Discrete Set

Let U ⊄
=

C be any open set. Then there exists a countably infinite set A ⊆ U

such that

(8.3.3.1) A has no accumulation point in U .

(8.3.3.2) Every P ∈ ∂U is an accumulation point of A.

See Figure 8.1. Details of this construction appear in [GRK, p. 268].

8.3.4 Domains of Existence for Holomorphic Functions
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Figure 8.1: Any domain in C is a domain of holomorphy.

Theorem: Let U ⊆ C be any proper, connected, open subset.
There is a function f holomorphic on U such that f cannot be
analytically continued past any P ∈ ∂U (see also §§9.2.2 on the
concept of “regular boundary point”).

The verification of this last result is just to apply Weierstrass’s theorem to
the discrete set described in §§8.3.3. This yields a non-constant holomorphic
function f on U whose zero set accumulates at every boundary point of U .
If f were to analytically continue to any strictly larger open set Ũ , then
Ũ would contain a point of ∂U , hence would have an interior accumulation
point of the zeros of f . Thus f would be identically zero, and that would be
a contradiction.

8.3.5 The Field Generated by the Ring of Holomorphic
Functions

Another important corollary of Weierstrass’s theorem is that, for any open
U, the field generated by the ring of holomorphic functions on U is the field
of all meromorphic functions on U . In simpler language:

Let U ⊆ C be open. Let m be meromorphic on U . Then there
are holomorphic functions f, g on U such that
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m(z) =
f(z)

g(z)
. (8.3.5.1)

8.3.6 The Mittag-Leffler Theorem

Since it is possible to prescribe zeros of a holomorphic function on any open
U, then of course we can (in principle) prescribe poles—since 1/f has poles
exactly where f has zeros. But we can do better: with a little extra work
we can prescribe the negative power portion of the Laurent series on any
discrete subset of U .

We now formulate the basic result on prescribing pole behavior, known
as the Mittag-Leffler theorem, in two different (but equivalent) ways: one
qualitative and the other quantitative.

Mittag-Leffler Theorem: First Version

Let U ⊆ C be any open set. Let α1,α2, . . . be a finite or countably
infinite set of distinct elements of U with no accumulation point in
U . Suppose, for each j, that Uj is a neighborhood of αj. Further
assume, for each j, that mj is a meromorphic function defined
on Uj with a pole at αj and no other poles. Then there exists a
meromorphic m on U such that m−mj is holomorphic on Uj for
every j.

The Mittag-Leffler Theorem: Alternative Formulation

Let U ⊆ C be any open set. Let α1,α2, . . . be a finite or countably
infinite set of distinct elements of U , having no accumulation
point in U . Let sj be a sequence of Laurent polynomials (or
“principal parts”),

sj(z) =
−1∑

ℓ=−p(j)

aj
ℓ · (z − αj)

ℓ (8.3.6.1)

(see §§4.3.1). Then there is a meromorphic function on U whose
principal part at each αj is sj.
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8.3.7 Prescribing Principal Parts

The theorems of Weierstrass and Mittag-Leffler can be combined to allow
specification of a finite part of the Laurent series at a discrete set of points:

Let U ⊆ C be an open set and let α1,α2, . . . be a finite or count-
ably infinite set of distinct points of U having no interior accu-
mulation point in U . For each j let there be given an expression

tj(z) =
N(j)∑

ℓ=−M (j)

aj
ℓ · (z − αj)

ℓ, (8.3.7.1)

with M(j), N(j) ≥ 0. Then there is a meromorphic function m
on U , holomorphic on U \{αj}, such that: if −M(j) ≤ ℓ ≤ N(j),
then the ℓth Laurent coefficient of m at αj is aℓj.

8.4 Normal Families

8.4.1 Normal Convergence

A sequence of functions fj on an open set U ⊆ C is said to converge normally
to a limit function f0 on U (see §§8.1.3) if {fj} converges to f0 uniformly
on compact subsets of U . That is, the convergence is normal if, for each
compact set K ⊆ U and each ϵ > 0, there is an N > 0 (depending on K and
ϵ) such that when j > N and z ∈ K, then |fj(z) − f0(z)| < ϵ (see §§8.1.3,
3.1.5).

The functions fj(z) = zj converge normally on the unit disc D to the
function f0(z) ≡ 0. The sequence does not converge uniformly on all of D to
f0, but does converge uniformly on each compact subset of D.

8.4.2 Normal Families

Let F be a family of (holomorphic) functions with common domain U . We
say that F is a normal family if every sequence in F has a subsequence that
converges uniformly on compact subsets of U , i.e., converges normally on U .

Let F be a family of functions on an open set U ⊆ C. We say that F is
bounded if there is a constant N > 0 such that |f(z)| ≤ N for all z ∈ U and
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all f ∈ F . We say that F is bounded on compact sets if for each compact set
K ⊆ U there is a constant M = MK such that for all f ∈ F and all z ∈ K
we have

|f(z)| ≤ M. (8.4.2.1)

8.4.3 Montel’s Theorem, First Version

Theorem (Montel’s Theorem, First Version): Let F =
{fα}α∈A be a bounded family of holomorphic functions on an
open set U ⊆ C. Then there is a sequence {fj} ⊆ F such that fj

converges normally on U to a limit (holomorphic) function f0.

Thus a bounded family of holomorphic functions is normal.

8.4.4 Montel’s Theorem, Second Version

Theorem (Montel’s Theorem, Second Version): Let U ⊆ C

be an open set and let F be a family of holomorphic functions
on U that is bounded on compact sets. Then there is a sequence
{fj} ⊆ F that converges normally on U to a limit (necessarily
holomorphic) function f0.

Thus a family of holomorphic functions that is bounded on compact sets is
normal. Montel’s theorem is proved with a judicious application of the Ascoli-
Arzela theorem. The hypotheses of equiboundededness and equicontinuity
are derived from the Cauchy estimates.

8.4.5 Examples of Normal Families

(8.4.5.1) Consider the family F = {zj}∞j=1 of holomorphic functions. If we
take U to be any subset of the unit disc, then F is bounded (by 1) so
Montel’s theorem (first version) guarantees that there is a subsequence
that converges uniformly on compact subsets. Of course in this case it
is plain by inspection that any subsequence will converge uniformly on
compact sets to the identically zero function.

The family F fails to be bounded on compact sets for any U that
contains points of modulus greater than one. Thus neither version of
Montel’s theorem would apply on such a U . And there is no convergent
sequence in F for such a U .
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(8.4.5.2) Let F = {z/j}∞j=1 on C. Then there is no bound M such that
|z/j| ≤ M for all j and all z ∈ C. But for each fixed compact subset
K ⊆ C there is a constant MK such that |z/j| < MK for all j and all z ∈
K. (For instance, MK = max{|z| : z ∈ K} would do.) Therefore the
second version of Montel’s theorem applies. And indeed the sequence
{z/j}∞j=1 converges normally to 0 on C.

(8.4.5.3) Let S be the Schicht functions on the unit disc. These are the
holomorphic functions that are univalent, take 0 to 0, and have deriva-
tive 1 at the origin. Then S is a normal family.





Chapter 9

Analytic Continuation

9.1 Definition of an Analytic Function Ele-
ment

9.1.1 Continuation of Holomorphic Functions

Suppose that V is a connected, open subset of C and that f1 : V → C and
f2 : V → C are holomorphic functions. If there is an open, non-empty subset
U of V such that f1 ≡ f2 on U , then f1 ≡ f2 on all of V (see §§3.2.3). Put
another way, if we are given an f holomorphic on U , then there is at most
one way to extend f to V so that the extended function is holomorphic. [Of
course there might not even be one such extension: if V is the unit disc
and U the disc D(3/4, 1/4), then the function f(z) = 1/z does not extend.
Or if U is the plane with the non-positive real axis removed, V = C, and
f(reiθ) = r1/2eiθ/2, −π < θ < π, then again no extension from U to V is
feasible.]

This chapter deals with the question of when this extension process can
be carried out, and in particular what precise meaning can be given to ex-
tending f from U to as large a set V as possible. Since there are potentially
many different ways to carry out this analytic continuation process, there are
questions of ambiguity and redundancy. These all will be addressed here.

147
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9.1.2 Examples of Analytic Continuation

We introduce the basic issues of “analytic continuation” by way of three ex-
amples:

EXAMPLE 9.1.2.1 Define

f(z) =
∞∑

j=0

zj. (9.1.2.1.1)

This series converges normally on the disc D = {z ∈ C : |z| < 1}. It diverges
for |z| > 1. Is it safe to say that D is the natural domain of definition for f
(refer to §§8.3.2, §§8.3.4 for this terminology)? Or can we “continue” f to a
larger open set?

We cannot discern easily the answer to this question simply by examining
the power series. Instead, we should sum the series and observe that

f(z) =
1

1 − z
. (9.1.2.1.2)

This formula for f agrees with the original definition of f as a series; however,
the formula (9.1.2.1.2) makes sense for all z ∈ C\{1}. In our new terminology,
to be made more precise later, f has an analytic continuation to C \ {1}.

Thus we see that the natural domain of definition for f is the rather large
set C \ {1}. However, the original definition, by way of a series, gave little
hint of this fact.

EXAMPLE 9.1.2.2 Consider the function

Γ(z) =

∫ ∞

0

tz−1e−t dt. (9.1.2.2.1)

This function is known as the gamma function of Euler. Let us make the
following quick observations:

(9.1.2.2.2) The term tz−1 has size |tz−1| = tRe z−1. Thus the singularity at
the origin will be integrable when Re z > 0.

(9.1.2.2.3) Because of the presence of the exponential factor, the integrand
will certainly be integrable at infinity.
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(9.1.2.2.4) The function Γ is holomorphic on the domain U0 ≡ {z : Re z >
0}: the functions ∫ 1/a

a
tz−1e−t dt, (9.1.2.2.5)

with a > 0, are holomorphic by differentiation under the integral sign
(or use Morera’s theorem—§§2.3.2), and Γ(z) is the normal limit of
these integrals as a → 0+.

The given definition (9.1.2.2.1) of Γ(z) makes no sense when Re z ≤ 0
because the improper integral diverges at 0. Can we conclude from this
observation that the natural domain of definition of Γ is U0?

Let us examine this question by integrating by parts:

Γ(z) =

∫ ∞

0

tz−1e−t dt =
1

z
tze−t

∣∣∣∣
∞

0

+
1

z

∫ ∞

0

tze−t dt. (9.1.2.2.6)

An elementary analysis shows that, as long as Re z ̸= 0, the boundary terms
vanish (in the limit). Thus we see that

Γ(z) =
1

z

∫ ∞

0

tze−t dt. (9.1.2.2.7)

Now, whereas the original definition (9.1.2.2.1) of the gamma function made
sense on U0, this new formula (which agrees with the old one on U0) ac-
tually makes sense on U1 ≡ {z : Re z > −1} \ {0}. No difficulty about
the convergence of the integral as the lower limit tends to 0+ occurs if
z ∈ {z : Re z > −1}.

We can integrate by parts once again, and find that

Γ(z) =
1

z(z + 1)

∫ ∞

0

tz+1e−t dt. (9.1.2.2.8)

This last formula makes sense on U2 = {z : Re z > −2} \ {0,−1}.
Continuing this process, we may verify that the gamma function, origi-

nally defined only on U0, can be “analytically continued” to U = {z ∈ C :
z ̸= 0,−1,−2, . . . }.

In the first two examples, the functions are given by a formula that only
makes sense on a certain open set; yet there is in each case a device for
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Figure 9.1: Analytic continuation to a second disc.

extending the function to a larger open set. Recall that, by our uniqueness
results for analytic functions, there can be at most one way to effect this
“analytic continuation” process to a fixed, larger (connected) open set. In
the next example, we learn about possible ambiguities in the process when
one attempts continuation along two different paths.

EXAMPLE 9.1.2.3 Consider the function f(z), initially defined on the
disc D((1+i0), 1/2) by f(reiθ) = r1/2eiθ/2. Here it is understood that −π/4 <
θ < π/4. This function is well-defined and holomorphic; in fact it is the
function usually called the principal branch of

√
z. Note that [f(z)]2 = z.

Imagine analytically continuing f to a second disc, as shown in Figure
9.1. This is easily done, using the same definition f(reiθ) = r1/2eiθ/2. If
we continue to a third disc (Figure 9.2), and so on, we end up defining the
square root function at z = −1. See Figure 9.3. Indeed, we find that f(−1)
has the value i.

However, we might have begun our analytic continuation process as shown
in Figure 9.4. We begin at 1, and iterate the continuation process in a
clockwise direction so that process ends at z = −1. Doing so, we would have
found that f(−1) = −i.

Thus we see that the process of analytic continuation can be ambiguous.
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Figure 9.2: Continuation to a third disc.

Figure 9.3: Analytic continuation of the square root function.
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Figure 9.4: Analytic continuation in the other direction.

In the present example, the ambiguity is connected to the fact that a holo-
morphic square root function cannot be defined in any neighborhood of the
origin; yet our two paths of analytic continuation encircle the origin.

It is because of the phenomena illustrated in these three examples—and
many others like them—that we must take a detailed and technical approach
to the process of analytic continuation. Even making the questions them-
selves precise takes some thought.

9.1.3 Function Elements

A function element is an ordered pair (f, U), where U is a disc D(P, r) and f
is a holomorphic function defined on U . If W is an open set, then a function
element in W is a pair (f, U) such that U ⊆ W .

9.1.4 Direct Analytic Continuation

Let (f, U) and (g, V ) be function elements. We say that (g, V ) is a direct
analytic continuation of (f, U) if U ∩ V ̸= ∅ and f and g are equal on U ∩ V
(Figure 9.5). Obviously (g, V ) is a direct analytic continuation of (f, U) if
and only if (f, U) is a direct analytic continuation of (g, V ).
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Figure 9.5: Direct analytic continuation.

9.1.5 Analytic Continuation of a Function

If (f1, U1), . . . , (fk, Uk) are function elements and if each (fj, Uj) is a direct
analytic continuation of (fj−1, Uj−1), j = 2, . . . , k, then we say that (fk, Uk)
is an analytic continuation of (f1, U1) (Figure 9.6).

Clearly (fk, Uk) is an analytic continuation of (f1, U1) if and only if (f1, U1)
is an analytic continuation of (fk, Uk). Also if (fk, Uk) is an analytic contin-
uation of (f1, U1) via a chain (f1, U1), . . . , (fk, Uk) and if (fk+ℓ, Uk+ℓ) is an
analytic continuation of (fk, Uk) via a chain (fk, Uk), (fk+1, Uk+1), . . .
(fk+ℓ, Uk+ℓ), then stringing the two chains together into (f1, U1), . . . , (fk+ℓ,
Uk+ℓ) exhibits (fk+ℓ, Uk+ℓ) as an analytic continuation of (f1, U1). Obviously
any function element (f, U) is an analytic continuation of itself.

9.1.6 Global Analytic Functions

Thus we have an equivalence relation (see [KRA3, p. 52] for this terminology)
by way of analytic continuation on the set of function elements: namely, two
function elements are equivalent if one is the analytic continuation of the
other. The equivalence classes ([KRA3, p. 53]) induced by this relation are
called (global) analytic functions. However, a caution is in order: global
analytic functions are not yet functions in the usual sense, and they are
not analytic in any sense that we have defined as yet. Justification for the
terminology will appear in due course.

Note that the initial element (f, U) = (f1, U1) uniquely determines the
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Figure 9.6: Analytic continuation of a function element.

global analytic function, or equivalence class, that contains it. But a global
analytic function may include more than one function element of the form
(f, U) for a fixed disc U (see Example 9.1.2.3). Indeed, a global analytic
function f may have in effect more than one value at a point: two function
elements (f1, U) and (f2, U) can be equivalent even though f1(P ) ̸= f2(P ),
where P is the center of the disc U . If f denotes the global analytic function
corresponding to (f, U), then we call (f, U) a branch of f.

9.1.7 An Example of Analytic Continuation

EXAMPLE 9.1.7.1 Let U = D(1+ i0, 1/2) and let f be the holomorphic
function log z. Here log z is understood to be defined to be log |z| + i arg z,
and −π/4 < arg z < π/4. As in Example 9.1.2.3, the function element (f, U)
can be analytically continued to the point −1 + i0 in (at least) two different
ways, depending on whether the continuation is along a curve proceeding
clockwise about the origin or counterclockwise about the origin.

In fact, all the “branches” of log z can be obtained by analytic continu-
ation of the log |z| + iarg z branch on D(1 + 0i, 1/2) (by continuing several
times around the origin, either clockwise or counterclockwise). Thus the idea
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Figure 9.7: Analytic continuation along a curve.

of “branches” of log z (§§4.5.6, §§9.1.2) is consistent with the general analytic
continuation terminology just introduced.

In some situations, it is convenient to think of a function element as a
convergent power series. Then the role of the open disc U is played by the
domain of convergence of the power series. This is a useful heuristic idea
for the reader to bear in mind. From this viewpoint, two function elements
(f1, U) and (f2, V ) at a point P (such that U and V are discs centered at the
same point P ) should be regarded as equal if f1 ≡ f2 on U ∩ V .

9.2 Analytic Continuation along a Curve

9.2.1 Continuation on a Curve

Let γ : [0, 1] → C be a curve and let (f, U) be a function element with γ(0)
the center of the disc U (Figure 9.7). An analytic continuation of (f, U) along
the curve γ is a collection of function elements (ft, Ut), t ∈ [0, 1], such that

(9.2.1.1) (f0, U0) = (f, U).

(9.2.1.2) For each t ∈ [0, 1], the center of the disc Ut is γ(t), 0 ≤ t ≤ 1.

(9.2.1.3) For each t ∈ [0, 1], there is an ϵ > 0 such that, for each t′ ∈ [0, 1]
with |t′ − t| < ϵ, it holds that
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Figure 9.8: Direct analytic continuation.

(a) γ(t′) ∈ Ut and hence Ut′ ∩ Ut ̸= ∅;

(b) ft ≡ ft′ on Ut′∩Ut (so that (ft, Ut) is a direct analytic continuation
of (ft′, Ut′)). Refer to Figure 9.8.

Let (f, U) be a function element with U a disc having center P . Let γ
be a curve such that γ(0) = P . Any two analytic continuations of (f, U)
along γ agree in the following sense: if (fm, Um) is the terminal element of
one analytic continuation (ft, Ut) and if (f̃ em, Ũem) is the terminal element of
another analytic continuation (f̃et, Ũet), then fm and f̃ em are equal on Um∩ Ũem.

9.2.2 Uniqueness of Continuation along a Curve

Thus we see that the analytic continuation of a given function element along
a given curve is essentially unique, if it exists. From here on, to avoid being
pedantic, we shall regard two analytic continuations (ft, Ut) and (f̃t, Ũt) as
“equal,” or equivalent, if ft = f̃t on Ut∩ Ũt for all t. With this terminological
convention (which will cause no trouble), the result of §9.2.1 says exactly that
analytic continuation of a given function element along a curve is unique.
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9.3 The Monodromy Theorem

The fundamental issue to be addressed in the present section is this:

9.3.1 Unambiguity of Analytic Continuation

Let P and Q be points in the complex plane. Let (f, U) be a
function element such that U is a disc centered at P . If γ1, γ2

are two curves that begin at P and terminate at Q then does the
terminal element of the analytic continuation of (f, U) along γ1

equal the terminal element of the analytic continuation of (f, U)
along γ2 (on their common domain of definition)?

We shall begin to answer this question in §§9.3.2. The culmination of our
discussion will be the monodromy theorem in §§9.3.5.

9.3.2 The Concept of Homotopy

Let W be a domain in C. Let γ0 : [0, 1] → W and γ1 : [0, 1] → W be curves.
Assume that γ0(0) = γ1(0) = P and that γ0(1) = γ1(1) = Q. We say that
γ0 and γ1 are homotopic in W (with fixed endpoints) if there is a continuous
function

H : [0, 1] × [0, 1] → W (9.3.2.1)

such that

(9.3.2.2) H(0, t) = γ0(t) for all t ∈ [0, 1];

(9.3.2.3) H(1, t) = γ1(t) for all t ∈ [0, 1];

(9.3.2.4) H(s, 0) = P for all s ∈ [0, 1];

(9.3.2.5) H(s, 1) = Q for all s ∈ [0, 1].

Then H is called a homotopy (with fixed endpoints) of the curve γ0 to the
curve γ1. Refer to Figure 9.9 to view two curves that are homotopic and two
that are not.
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Figure 9.9: The concept of homotopy.

9.3.3 Fixed Endpoint Homotopy

Note: Since we are only interested in homotopies with fixed endpoints, we
shall omit the phrase “with fixed endpoints” in the remainder of our discus-
sion.

Intuitively, we think of a homotopy H as follows. Let Hs(t) = H(s, t).
Then condition (9.3.2.2) says that H0 is the curve γ0. Condition (9.3.2.3)
says that H1 is the curve γ1. Condition (9.3.2.4) says that all the curves
Hs begin at P . Condition (9.3.2.5) says that all the curves Hs terminate at
Q. The homotopy amounts to a continuous deformation of γ0 to γ1 with all
curves in the process restricted to lie in W .

We introduce one last piece of terminology:

9.3.4 Unrestricted Continuation

Let W be a domain and let (f, U) be a function element in W . We say (f, U)
admits unrestricted continuation in W if there is an analytic continuation
(ft, Ut) of (f, U) along every curve γ that begins at P and lies in W .
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Figure 9.10: The concept of monodromy.

9.3.5 The Monodromy Theorem

One situation, in practice the primary situation, in which the question raised
in §§9.3.1 always has an affirmative answer is given by the following theorem:

The Monodromy Theorem: Let W ⊆ C be a connected open
set. Let (f, U) be a function element with U ⊆ W . Let P denote
the center of the disc U . Assume that (f, U) admits unrestricted
continuation in W . If γ0, γ1 are each curves that begin at P ,
terminate at some point Q, and are homotopic in W , then the
analytic continuation of (f, U) to Q along γ0 equals the analytic
continuation of (f, U) to Q along γ1. Refer to Figure 9.10.

9.3.6 Monodromy and Globally Defined Analytic
Functions

Let W ⊆ C be a connected open set. Assume further that W is topologically
simply connected, in the sense that any two curves that begin at the same
point and end at the same point (possibly different from the initial point)
are homotopic—see the related discussion of simple connectivity in §§2.3.3.
Assume that (f, U) admits unrestricted continuation in W . Then there is a
globally defined holomorphic function F on W that equals f on U .

In view of the monodromy theorem, we now can understand specifically
how it can be that the function

√
z, and more generally the function log z,
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cannot be analytically continued in a well-defined fashion to all of C\{0}. The
difficulty is with the two curves specified in Example 9.1.2.3, or in Example
of 9.1.7.1: they are not homotopic in the region C \ {0} (which is the region
of definition of the analytic function being considered).

9.4 The Idea of a Riemann Surface

9.4.1 What is a Riemann Surface?

In this section we give an intuitive description of the concept of what is called
a Riemann surface.

The idea of a Riemann surface is that one can visualize geometrically
the behavior of function elements and their analytic continuations. At the
moment, a global analytic function is an analytic object. A global analytic
function is the set of all function elements obtained by analytic continuation
along curves (from a base point P ∈ C) of a function element (f, U) at
P . Such a set, which amounts to a collection of convergent power series at
different points of the plane C, does not seem very geometric in any sense.
But in fact it can be given the structure of a surface, in the intuitive sense
of that word, quite easily. (The precise definition and detailed definition of
what a “surface” is would take us too far afield: we shall be content here
with the informal idea that a surface is a two-dimensional object that locally
“looks like” an open set in the plane. A more precise definition would be
that a surface is a topological space that is locally homeomorphic to C. See
[LST], [ONE] for a more detailed discussion of surfaces.)

9.4.2 Examples of Riemann Surfaces

The idea that we need is most easily appreciated by first working with a few
examples. Consider the function element (f, U) defined on U = D(1+0i, 1/2)
by

z = reiθ +→ r1/2eiθ/2, (9.4.2.1)

where r > 0 and −π/4 < θ < π/4 makes the reiθ representation of z ∈ D(1, 1)
unique. This function element is the “principal branch of

√
z ” at z = 1 that

we have already discussed in Example 9.1.2.3. The functional element (f, U)
can be analytically continued along every curve γ emanating from 1 and lying
in C \ {0}. Let us denote by R (for “Riemann surface”) the totality of all
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function elements obtained by such analytic continuations. Of course, in set-
theoretic terms, R is just the global analytic function

√
z, just as we defined

this concept earlier in §§9.1.6. All we are trying to do now is to “visualize”
R in some sense.

Note that every point of R “lies over” a unique point of C\{0}. A function
element (f, U) ∈ R is associated to the center of U , that is to say, (f, U) is
a function element at a point of C \ {0}. So we can define a “projection”
π : R → C \ {0} by

π((f, U)) = the center of the disc U. (9.4.2.2)

This is just new terminology for a situation that we have already discussed.
The projection π of R is two-to-one onto C \ {0}. In a neighborhood of a

given z ∈ C \ {0}, there are exactly two holomorphic branches of
√

z. [If one
of these is (f, U), then the other is (−f, U). But there is no way to decide
which of (f, U) and (−f, U) is the square root in any sense that can be made
to vary continuously over all of C \ {0}.] We can think of R as a “surface”
in the following manner:

Let us define neighborhoods of “points” (f, U) in R by declaring a neigh-
borhood of (f, U) to be

{
(fp, Up) : p ∈ U and (fp, Up) is a direct

analytic continuation of (f, U) to p
}

.
(9.4.2.3)

This new definition may seem formalistic and awkward. But it has the at-
tractive property that it makes π : R → C \ {0} locally one-to-one. Every
(f, U) has a neighborhood that maps, under π, one-to-one onto an open sub-
set of C \ {0}. This gives a way to think of R as being locally like an open
set in the plane.

Let us try to visualize R still further. Let W = C \ {z = x + i0 : x ≤ 0}.
Then π−1(W ) decomposes naturally into two components, each of which is
an open set in R. (Since we have defined neighborhoods of points in R, we
naturally have a concept of open set in R as well.) These two components
are “glued together” in R itself: R is connected, while π−1(W ) is not. Note
that, on each of the connected components of π−1(W ), the projection π is
one-to-one. All of this language is just a formalization of the fact that, on
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Figure 9.11: Forming a Riemann surface.

W , there are two holomorphic branches of
√

z—namely reiθ +→ r1/2eiθ/2 and
reiθ +→ −r1/2eiθ/2, −π < θ < π.

Each of the components of π−1(W ) can be thought of as a “copy” of
W , since π maps a given component one-to-one onto W . See Figure 9.11.
How are these “copies,” say Q1 and Q2, glued together to form R? We join
the second quadrant edge of Q1 to the third quadrant edge of Q2 and the
second quadrant edge of Q2 to the third quadrant edge of Q1. Of course
these joins cannot be simultaneously performed in three-dimensional space.
So our picture is idealized. See Figure 9.12. Tacitly, in our construction of
R, we have restored the negative real axis.

9.4.3 The Riemann Surface for the Square Root Func-
tion

We have now constructed a surface, known as the “Riemann surface for the
function

√
z.” This surface that we have obtained by gluing together the two

copies of W is in fact homeomorphic to the topological space that we made
from R (the set of function elements) when we defined neighborhoods in R.
So we can regard our geometric surface, built from gluing the two copies of
W together, and the function element space R, as being the same thing, that
is the same surface.
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Figure 9.12: Idealized picture of a Riemann surface.

9.4.4 Holomorphic Functions on a Riemann Surface

Since π : R → C \ {0} is locally one-to-one, we can even use this projection
to describe what it means for a function F : R → C to be holomorphic.
Namely, F is holomorphic if F ◦ π−1 : π(U) → C is holomorphic for each
open set U in R with π one-to-one on U . With this definition in mind,
f(z) =

√
z becomes a well-defined, “single-valued” holomorphic function on

R. To wit, if (f, U) is a function element in R, located at P ∈ C \ {0}, i.e.,
with π(f, U) = P , then we set

F ((f, U)) = f(P ). (9.4.4.1)

In this setup, F 2((f, U)) = π(f2, U) = P [since f2(z) = z]. Therefore F is
the square root function, in the sense described.

There are similar pictures for n
√

z—see Figure 9.13. Note that the Rie-
mann surface for n

√
z has n sheets, joined together in sequence.

9.4.5 The Riemann Surface for the Logarithm

It requires some time, and some practice, to become familiar with the con-
struction of a Riemann surface from a given function. To get accustomed
to it further, let us now discuss briefly the Riemann surface for “log z” (see
also Example 9.1.7.1). More precisely, we begin with the “principal branch”
reiθ +→ log r+ iθ defined on D(1+0i, 1/2) by requiring that −π/4 < θ < π/4
and we consider all its analytic continuations along curves emanating from
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Figure 9.13: The Riemann surface for n
√

z.

1. We can visualize the “branches” here by noting that, again with W =
C\({0}∪ the negative real axis), π−1(W ) has infinitely many components—
each a copy of W—on which π maps one-to-one onto W . Namely, these
components are the “branches” of log z on W :

reiθ +→ log r + iθ + 2πik, k ∈ Z, (9.4.5.1)

where −π < θ < π. Picture each of these (infinitely many) images stacked
one above the other (Figure 9.14). We join them in an infinite spiral, or
screw, with the upper edge of the kth surface being joined to the lower edge
of the (k − 1)st surface. Observe that going around the origin (counted
clockwise in C \ {0}) corresponds to going around and up one level on the
spiral surface. This is the geometric representation of the fact that, when
we analytically continue a branch of log r + iθ+ 2πik once around the origin
counterclockwise then k increases by 1. This time there is no joining of the
first and last “sheets.” The spiral goes on without limit in both direction.

9.4.6 Riemann Surfaces in General

The idea that we have been discussing, of building surfaces from function
elements, can be carried out in complete generality: Consider the set of all
analytic function elements that can be obtained by analytic continuation
(along some curve in C) of a given function element (f, U). This is what we
called earlier a global analytic function. Then this set of function elements
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Figure 9.14: The Riemann surface for logarithm.

can actually (and always) be regarded as a connected surface: There is a
projection onto an open set in C obtained by sending each function element to
the point of C at which it is located. This projection is a local identification
of the set of function elements with part of C, and so it in effect exhibits
the set of function elements as being two-dimensional, i.e., a surface; after
this observation, everything proceeds as in the examples. The reader is
invited to experiment with these new ideas—see particularly the discussion
and exercises in [GK].

9.5 Picard’s Theorems

9.5.1 Value Distribution for Entire Functions

The image, or set of values, of an entire function must be quite large. This
statement is true in a variety of technical senses, and Nevanlinna theory gives
a detailed development of the concept. Here we simply enunciate the theo-
rems of Picard which give some sense of the robustness of entire functions.

9.5.2 Picard’s Little Theorem

Theorem: If the range of a holomorphic function f : C → C

omits two points of C, then f is constant.
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The entire function f(z) = ez shows that an entire function can omit one
value (in this case, the value 0). But the theorem says that the only way
that it can omit two values is if the function in question is constant.

9.5.3 Picard’s Great Theorem

The following theorem, known as the great theorem of Picard, strengthens
the Little Theorem (see §§9.5.4 for the explication of this connection).

Theorem: Let U be a region in the plane, P ∈ U, and suppose
that f is holomorphic on U \{P} and has an essential singularity
at P . If ϵ > 0, then the restriction of f to U ∩ [D(P, ϵ) \ {P}]
assumes all complex values except possibly one.

9.5.4 The Little Theorem, the Great Theorem, and
the Casorati-Weierstrass Theorem

Compare Picard’s great theorem with the Casorati/Weierstrass theorem (§§4.1.6).
The Casorati/Weierstrass theorem says that, in a deleted neighborhood of an
essential singularity, a holomorphic function assumes a dense set of values.
Picard’s theorem refines this to “all values except possibly one.”

What is the connection between the great theorem and the little theorem?
And how do these two theorems relate to the results about entire functions
that we have already seen?

A non-constant entire function cannot be bounded near infinity, or else
it would be bounded on C and hence (by Liouville’s theorem—§§3.1.3) be
constant. So it has either a pole or an essential singularity at infinity. In
the first instance, the function is a polynomial (see §§4.6.6). But then the
Fundamental Theorem of Algebra (§§1.1.7) tells us that the function assumes
all complex values. In the second instance, the great theorem applies at the
point ∞ and implies the little theorem.

Nevanlinna theory is an analytic refinement of the ideas we have been
discussing here. There is a delicate interplay between the rate of growth (at
∞) of an entire function and the distribution of its zeros.
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