Math113 Exam 2 Practice Solutions

1. let f(z) = Va2 + 1. Use the definition of the derivative to compute

f'(x).
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2. Compute the area of the region between the graphs of f(x) = x and
g(x) = % on the interval [-1,2].
The graphs intersect at x=0 and = = £2 with the graph of f(z) = = above
the graph of g(z) = £- on (0,2) and below on (-2,0). Hence,
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3. Find the rectangle of largest area that can be inscribed in the unit
circle.
Let the vertices of the rectangle be (a,b),(a,-b),(-a,b),(-a,-b) witha > 0,b > 0
Then we want to maximize 4ab subject to the constraint a* + b* = 1 (which
says that the rectangle is inscribed in the unit circle). Since b = /1 — a? we

want to maximize
f(a) =4av1—a?on (0,1) .
Note that f(0)=f(1)=0 and f is differentiable with

fla) = A(VI— a? ) 4(1 — 2a?)
a) =4(vV1—a?— = .
V1—a? V1—a?
Hence f(a) has a unique critical point at a = % = b (which is therefore the
global maximum). So the inscribed rectangle of maximum area is a square

of side v/2.



4. Calculate -, /sin \/z for z > 0.
Use the chain rule several times:
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a. Show that f~! exists and find the domain and range of f~.
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5. Let f(x) = =
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so f is strictly increasing and hence f~! exists. Write y = gﬂ soy? = xgj—il
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and we can solve z* = e , \/@ which

has domain (-1,1) and range all values of x.

b. Evaluate [ f(z) dz.
From question 1 we see f(x) = ¢'(z) for g(x) = V2?2 + 1. Hence by the
fundamental theorem,
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6. Suppose that f(x) is a continuous function defined for all x with the
property that [ f(z1) — f(z2)] < |21 — 2]
a. Write down a partition of the interval [a,b] into N subintervals of equal
length(this is the regular partition)
The partition points are x; = a + ZT 0<i:<N.
b. Express f(b) — f(a) as a telescoping sum using the partition.
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c. Show that f(x) is constant using part b and the stated property of f.
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Now let N — oo to conclude |f(b) — f(a)| <0, i.e f(b)=f(a
are arbitrary, f is constant.



7. Let F(z) = [¥ (3t2+ 1)® dt. Find F(v/2), F'(V/2), F"(v/2).
F(+/2) = 0 by properties of the integral. By the fundamental theorem and
the chain rule,

F'(z) = (3(x*)* + 1)* - (22) = 22(32* + 1)* |

F'(x) = 2(32* +1)3 + (2) - 3(32* + 1) - (122%)
Therefore F'(v/2) = 2v/2(13)% | F"(v/2) = 2(13)% 4 (6v/2)(13)2(24V/2).

8. Consider the integral fol(l — ) dz and let P be the regular partition
of [0,1] into N equal subintervals.
a. Write down L(f,P) and U(f,P) (f(z) = 1—x) and explicitly evaluate them.
let x; = ﬁ , 0 <i < N. Then since f is decreasing,
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b. Use part a to evaluate the integral.
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Hence % — ﬁ < % < % + ﬁ for all N so the integral is %



