
Math113 Exam 2 Practice Solutions

1. let f(x) =
√

x2 + 1. Use the definition of the derivative to compute
f’(x).

f ′(x) = lim
h→0

√
(x + h)2 + 1)−

√
x2 + 1

h
= lim

h→0

((x + h)2 + 1)− (x2 + 1)

h(
√

(x + h)2 + 1) +
√

x2 + 1

= lim
h→0

2xh + h2

h(
√

(x + h)2 + 1) +
√

x2 + 1)
= lim

h→0

2x + h√
(x + h)2 + 1) +

√
x2 + 1

=
x√

x2 + 1
.

2. Compute the area of the region between the graphs of f(x) = x and
g(x) = x3

4
on the interval [-1,2].

The graphs intersect at x=0 and x = ±2 with the graph of f(x) = x above
the graph of g(x) = x3

4
on (0,2) and below on (-2,0). Hence,

A =
∫ 0

−1
(
x3

4
− x) dx +

∫ 2

0
(x− x3

4
) dx = (

x4

16
− x2

2
)|0−1 + (

x2

2
− x4

16
)|20 =

23

16
.

3. Find the rectangle of largest area that can be inscribed in the unit
circle.
Let the vertices of the rectangle be (a,b),(a,-b),(-a,b),(-a,-b) with a > 0 , b > 0
Then we want to maximize 4ab subject to the constraint a2 + b2 = 1 (which
says that the rectangle is inscribed in the unit circle). Since b =

√
1− a2 we

want to maximize
f(a) = 4a

√
1− a2 on (0, 1) .

Note that f(0)=f(1)=0 and f is differentiable with

f ′(a) = 4(
√

1− a2 − a2

√
1− a2

) =
4(1− 2a2)√

1− a2
.

Hence f(a) has a unique critical point at a = 1√
2

= b (which is therefore the

global maximum). So the inscribed rectangle of maximum area is a square
of side

√
2.
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4. Calculate d
dx

√
sin
√

x for x > 0.
Use the chain rule several times:

d

dx

√
sin
√

x =
1

2
√

sin
√

x
· cos

√
x · 1

2
√

x
.

5. Let f(x) = x√
x2+1

a. Show that f−1 exists and find the domain and range of f−1.

f ′(x) =
1√

x2 + 1
− x2

(x2 + 1)
3
2

= (x2 + 1)−
3
2 ,

so f is strictly increasing and hence f−1 exists. Write y = x√
x2+1

so y2 = x2

x2+1

and we can solve x2 = y2

1−y2 . Since y has the same sign as x, x = y√
1−y2

which

has domain (-1,1) and range all values of x.

b. Evaluate
∫ 2
0 f(x) dx.

From question 1 we see f(x) = g′(x) for g(x) =
√

x2 + 1. Hence by the
fundamental theorem,∫ 2

0
f(x) dx = g(2)− g(0) =

√
5− 1 .

6. Suppose that f(x) is a continuous function defined for all x with the
property that |f(x1)− f(x2)| ≤ |x1 − x2|2
a. Write down a partition of the interval [a,b] into N subintervals of equal
length(this is the regular partition).
The partition points are xi = a + i b−a

N
, 0 ≤ i ≤ N .

b. Express f(b)− f(a) as a telescoping sum using the partition.

f(b)− f(a) =
N∑

i=1

(f(xi)− f(xi−1) .

c. Show that f(x) is constant using part b and the stated property of f.

|f(b)−f(a)| ≤
N∑

i=1

|(f(xi)−f(xi−1)| ≤
N∑

i=1

(xi−xi−1)
2 = N ·(b− a

N
)2 =

(b− a)2

N
.

Now let N →∞ to conclude |f(b)− f(a)| ≤ 0, i.e f(b)=f(a). Since a and b
are arbitrary, f is constant.
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7. Let F (x) =
∫ x2

2 (3t2 + 1)3 dt. Find F (
√

2), F ′(
√

2), F ′′(
√

2).
F (
√

2) = 0 by properties of the integral. By the fundamental theorem and
the chain rule,

F ′(x) = (3(x2)2 + 1)3 · (2x) = 2x(3x4 + 1)3 ,

F ′′(x) = 2(3x4 + 1)3 + (2x) · 3(3x4 + 1)2 · (12x3)

Therefore F ′(
√

2) = 2
√

2(13)3 , F ′′(
√

2) = 2(13)3 + (6
√

2)(13)2(24
√

2).

8. Consider the integral
∫ 1
0 (1 − x) dx and let P be the regular partition

of [0,1] into N equal subintervals.
a. Write down L(f,P) and U(f,P) (f(x) = 1−x) and explicitly evaluate them.
let xi = i

N
, 0 ≤ i ≤ N . Then since f is decreasing,

L(f, P ) =
N∑

i=1

f(xi)
1

N
=

1

N

N∑
i=1

(1− i

N
)

U(f, P ) =
N∑

i=1

f(xi−1)
1

N
=

1

N

N∑
i=1

(1− i− 1

N
)

b. Use part a to evaluate the integral.

L(f, P ) = 1− 1

N2

N(N + 1)

2
=

1

2
− 1

2N

U(f, P ) = 1− 1

N2

(N − 1)N

2
=

1

2
+

1

2N

Hence 1
2
− 1

2N
< 1

2
< 1

2
+ 1

2N
for all N so the integral is 1

2
.
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