
Even More Worked Examples

1. Let f(x) = x2 − cos x.
a. Show that f(x) has exactly two zeros.
Note that f(x) is an even function so we need to show there is exactly one pos-
itive root. Now f(0)=-1 and f(x) > 0 for x ≥ 1. So by the intermediate value
theorem there is at least one root x0 ∈ (0, 1). But f ′(x) = 2x + sin x > 0 for
x ∈ (0, 1), hence f(x) is strictly increasing and there is exactly one positive
root.
b. Use the Taylor expansion of f(x) about x=0 to calculate the approxima-
tion r of the positive root . Estimate the error |x0 − r| you make.
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2. Estimate
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3. The sequence {an} is defined recursively by

a1 = 4, an+1 = 4− 3

an

.

a. Show by induction that an ≥ 3.
a1 = 4 > 3. Assume an ≥ 3. Then since 3

an
≤ 1, an+1 ≥ 4−1 = 3 completing
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the induction.
b. Show that an+1 ≤ an.
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(an−3)(an−1) < 0 .

c. Explain why limn→∞ an exists and find the limit.
Then sequence {an} is decreasing and bounded below and so a = limn→∞ an

exists. let n tend to infinity in the recursion an+1 = 4− 3
an

to obtain a = 4− 3
a

(which has roots a=3 and a=1). Since a ≥ 3, a=3 is the unique limit.

4. Determine if the following series converge or diverge. Explain the reason
in each case.
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Use the ratio test:
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(Here we have used that ex > Axp for anyA, p > 0 for x large enough.) Since
the limit is less than 1, the series converges.
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Here we use the Leibnitz theorem for conditional convergence for alternating
series:
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Here an =
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is clearly nonnegative and is decreasing for n ≥ 100 (this is

good enough) since f(x) =
√
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satisfies f ′(x) ≤ 0 for x ≥ 100.
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Since n > (log n)3 for n large (ex > x3 for x large so put x = log n)
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so the series diverges.
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