Even More Worked Examples

1. Let $f(x) = x^2 - \cos x$.

a. Show that $f(x)$ has exactly two zeros.

Note that $f(x)$ is an even function so we need to show there is exactly one positive root. Now $f(0)=1$ and $f(x) > 0$ for $x \ge 1$. So by the intermediate value theorem there is at least one root $x_0 \in (0,1)$. But $f'(x) = 2x + \sin x > 0$ for $x \in (0,1)$, hence $f(x)$ is strictly increasing and there is exactly one positive root.

b. Use the Taylor expansion of $f(x)$ about $x=0$ to calculate the approximation r of the positive root. Estimate the error $|x_0 - r|$ you make.

$$
f(x) = x2 - (1 - \frac{x^{2}}{2} + R_{3}) = -1 + \frac{3}{2}x^{2} - R_{3} \text{ where } 0 < R_{3} < \frac{x^{4}}{4!}.
$$

So $x_0 = \sqrt{\frac{2}{3}}$ 3 $\sqrt{1 + R_3(x_0)}$. Therefore the approximate positive root r satisfies $r=\sqrt{\frac{2}{3}}$ $rac{2}{3}$ and

$$
\sqrt{\frac{2}{3}} < x_0 < \sqrt{\frac{2}{3}} \sqrt{1+R_3} < \sqrt{\frac{2}{3}} \left(1 + \frac{1}{2}R_3\right) < \sqrt{\frac{2}{3}} \left(1 + \frac{1}{48}\right)
$$

Hence $0 < x_0 - r < \frac{1}{48} \sqrt{\frac{2}{3}} = 0.017$.

2. Estimate $\int_0^{\frac{1}{\sqrt{2}}} \sin x^2 dx$ For $0 \leq x \leq \frac{1}{2}$ $\frac{1}{2}$, $\sin x = x - \frac{x^3}{3!} + R_4$ where $|R_4| \leq \frac{(\frac{1}{2})^5}{5!}$. So, $\int \frac{1}{\sqrt{2}}$ $\int_0^{\frac{1}{\sqrt{2}}} \sin x^2 dx = \int_0^{\frac{1}{\sqrt{2}}}$ $\int_{0}^{\frac{1}{\sqrt{2}}} (x^2 - \frac{x^6}{6})$ $\frac{6}{6} + R_4$) dx = $\left(\frac{1}{\sqrt{2}}\right)$ $\frac{1}{2})^3$ 3 − $\left(\frac{1}{\sqrt{2}}\right)$ $\frac{1}{2})^7$ 42 $+ E =$ $rac{55}{336\sqrt{2}}$ $+ E$ where $|E| \leq \frac{1}{\sqrt{2}}$ 2 $\frac{(\frac{1}{2})^5}{5!} = \frac{1}{\sqrt{25}}$ 2 $\frac{1}{3840} = 1.84 \cdot 10^{-4}.$

3. The sequence $\{a_n\}$ is defined recursively by

$$
a_1 = 4, a_{n+1} = 4 - \frac{3}{a_n}.
$$

a. Show by induction that $a_n \geq 3$. $a_1 = 4 > 3$. Assume $a_n \geq 3$. Then since $\frac{3}{a_n} \leq 1$, $a_{n+1} \geq 4 - 1 = 3$ completing the induction.

b. Show that $a_{n+1} \leq a_n$.

$$
a_{n+1} - a_n = 4 - \frac{3}{a_n} - a_n = -\frac{1}{a_n}((a_n)^2 - 4a_n + 3) = -\frac{1}{a_n}(a_n - 3)(a_n - 1) < 0.
$$

c. Explain why $\lim_{n\to\infty} a_n$ exists and find the limit.

Then sequence ${a_n}$ is decreasing and bounded below and so $a = \lim_{n \to \infty} a_n$ exists. let n tend to infinity in the recursion $a_{n+1} = 4 - \frac{3}{6}$ $\frac{3}{a_n}$ to obtain $a = 4 - \frac{3}{a}$ (which has roots a=3 and a=1). Since $a \geq 3$, a=3 is the unique limit.

4. Determine if the following series converge or diverge. Explain the reason in each case. $(n!)^2$

a. $\sum_{n=1}^{\infty}$ 2^{n^2} Use the ratio test:

$$
\frac{a_{n+1}}{a_n} = \frac{\frac{((n+1)!)^2}{2^{(n+1)^2}}}{\frac{(n!)^2}{2^{n^2}}} = (\frac{n+1}{2^{n+1}})^2 \to 0.
$$

(Here we have used that $e^x > Ax^p$ for any $A, p > 0$ for x large enough.) Since the limit is less than 1, the series converges.

b. $\sum_{n=1}^{\infty}(-1)^n\frac{\sqrt{n}}{n+10}$ n+100

Here we use the Leibnitz theorem for conditional convergence for alternating series: $\sum_{n=1}^{\infty} (-1)^n a_n$ converges if the a_n are nonnegative and decrease to zero. Here $a_n =$ $rac{\sqrt{n}}{n+100}$ is clearly nonnegative and is decreasing for $n \ge 100$ (this is good enough) since $f(x) =$ $\frac{\sqrt{x}}{x+100}$ satisfies $f'(x) \leq 0$ for $x \geq 100$. c. $\sum_{n=1}^{\infty} \frac{1}{(\log n)}$ $(\log n)^3$

Since $n > (\log n)^3$ for n large $(e^x > x^3$ for x large so put $x = \log n$)

$$
\sum_{n=1}^{\infty} \frac{1}{(\log n)^3} > \sum_{n=N} \frac{1}{n} = \infty ,
$$

so the series diverges.