More Worked Examples
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Show that f(x) satisfies the conditions of the mean value theorem on [0,2]
and determine all the points x provided by the theorem.

f(x) is continuous everywhere (you need to check x = 1) and clearly

differentiable except possibly at x=1 where the one sided derivatives exist:
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The point is that f/ (1) = f1(1) = —1 so the derivative exists everywhere.
Moreover, the MVT says there is at least one value of x in [0,2] where
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f2)=f0) =5 - 5=-1=2f(2),
i.e where f'(z) = —3. From the definition of f’(x) we see that 2 = 3 or

v = 3.
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2. Let ¢/(x) be defined by ¢'(x) = { * Y ir>s

Assume g(0)=12. Find g(5), g(10).
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To determine ¢, we want
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(1—0 — 2% + ¢)|y5 = <_E +12)|[x =5=g(5) = —

(since g is continuous) which gives ¢ = 17. Then ¢(10) = 7.

3. For any a > 0 show that the tangent line to the graph of f(x) = 23

at (a, f(a)) intersects the graph at a unique point (b,f(b)), b # a and
J'(0) = 4f'(a).

The equation of the tangent line is (since f'(a) = 3a?)
y—a®=3a*(x —a) .
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This line meets the graph (at (b,b%)) precisely when
b — a® = 3a*(b — a)

Since we are assuming b # a this is equivalent to (dividing both sides by
b-a):
b2 +ba+a®=3a* or b* +ba—2a*>=0.
Factoring gives (b — a)(b+ 2a) = 0 or b=-2a. Hence f’(b) = 3b* = 12a® =
4f'(a).
4. Suppose f(x) is everywhere differentiable. Show directly from the
definition that
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Let g(z) = f?(x). Then
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