
1 Completeness of R.

Recall that the completeness axiom for the real numbers R says that if S ⊂ R
is a nonempty set which is bounded above ( i.e there is a positive real number
M > 0 so that x ≤ M for all x ∈ S), then l.u.b. S exists. Note that we need
not state the corresponding axiom for nonempty sets S which are bounded
below, that g.l.b S exists. For we can apply the completeness axiom to the
set −S = {−x : x ∈ S}.

A simple application of the completeness axiom gives the so called
Archimedean property of R:

Theorem 1.1. N is unbounded.

Proof. If N is bounded, then by the completeness axiom, b=l.u.b N exists.
Since b − 1 < b there is an integer n ∈ N so that n > b − 1 (otherwise
b-1 would be an upper bound which is impossible). But then n + 1 > b, a
contradiction.

Corollary 1.2. For any x ∈ R there is a positive integer n so that n > x.

Proof. If not, x would be an upper bound for N contradicting Theorem
1.1.

Corollary 1.3. If x > 0 and y ∈ R there is a positive integer n so that
nx > y.

Proof. Apply Corollary 1.2 with x replaced by y
x
.

Theorem 1.4. Let a < b be real numbers. Then there is a rational number
r, a < r < b.

Proof. By Corollary 1.3, choose n so that 1
n

< b−a. Consider the multiples
m
n
, m = 1, 2, . . .. There is a first integer m so that r = m

n
> a.

We claim r < b. If not, then since m−1
n

< a and m
n
≥ b, we would have

b− a > 1
n
, a contradiction.

Definition 1.5. Let {xn} be a sequence of real numbers. We say limn→∞ xn =
l if given ε > 0 there exists an integer N > 1so that |xn − l| < ε if n ≥ N .
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We next show that the rational numbers are dense, that is, each real
number is the limit of a sequence of rational numbers.

Corollary 1.6. The rationals Q are dense in R.

Proof. Let x be an arbitrary real number and let a = x − 1
n
, b = x + 1

n
.

Then by Theorem 1.4 there is a rational rn in (a, b). Clearly, limn→∞ rn = x.

Although the rationals Q are dense, they are countable, i.e. they can be
enumerated {r1, r2, . . .}. In other words, they are in one to one correspon-
dence with N. Note that both the even positive integers and the odd positive
integers are in one to one correspondence with N (write down this correspon-
dence yourself). We will give an enumeration of the positive rationals and
leave it as an exercise to write down an enumeration of all of Q. Identify
the fraction p

q
, p, q ∈ N with the pair (p, q) in the first quadrant. Starting

with (1,1) move right to (2,1) and then diagonally up to (1,2). Then move
up to (1,3) and back down the diagonal to (2,2) and (3,1). Move right again
to (4,1) and up the diagonal to (3,2), (2,3), (1,4). Move up to (1,5) and
continue as above. Now make the enumeration except omit fractions already
in the list:

1, 2,
1

2
,
1

3
, 3, 4,

3

2
,
2

3
,
1

4
,
1

5
, 5, . . . ...

This means that Q although dense is rather sparse. Consider now the irra-
tional numbers. It is easy to see that they are dense for given any rational
number x, the sequence of irrational numbers xn = x +

√
2

n
(prove this is

irrational) converges to x. Now if x is irrational, the sequence of irrational
xn = x + 1

n
converges to x. The father of modern set theory Georg Can-

tor (1845-1918) proved using his famous diagonalization procedure that the
irrational numbers are not countable. It suffices to show R is uncountable
(since if the irrational were countable then R would be countable). We can
further simplify and show that the real numbers in (0,1) are not countable.
Suppose for contradiction that

x1 = 0.a1, a2, a3, . . .

x2 = 0.b1, b2, b3, . . .

x3 = 0.c1, c2, c3, . . .

·
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·

·

is an enumeration of the decimal expansions of the irrationals in (0,1). Con-
sider the real number x = (n1, n2, n3, . . . ...) where n1 is different from a1 and
n1 6= 9. Then x 6= x1. Now choose n2 6= b2 and n2 6= 9. Then x 6= x2. Con-
tinue in this fashion. Then x ∈ (0, 1) but x is not in the list, a contradiction!

2 Monotone sequences and nested intervals

A first important result about existence of limits concerns monotone se-
quences.

Theorem 2.1. Let {xn} be a monotone increasing (respectively decreasing)
sequence of real numbers which is bounded above (respectively below). Then
limn→∞ xn exists.

Proof. We give the proof in the monotone increasing case; do the other case
yourself. Let

S = {x1, x2, . . . , xn, xn+1, . . .}

which is bounded above by assumption. Then by the completeness axiom,
l=lub S exists. Then xn ≤ l for all n ≥ 1 and given ε > 0 there is a positive
integer N > 1 so that xN > l − ε (otherwise l − ε would be a smaller upper
bound for the sequence). But then xn > l − ε for all n ≥ N (since the
sequence is monotone increasing). Hence l − ε < xn ≤ l for all n ≥ N . In
particular

|xn − l| < ε if n > N i.e. lim
n→∞

xn = l .

A very useful application of this result is the so called Nested Interval
theorem which we state after the next definition.he

Definition 2.2. We say {In}∞n=1 is a sequence of closed nested intervals
if I1 ⊃ I2 . . . In ⊃ In+1 ⊃ . . . and their lengths |In| tend to zero (i.e.
limn→∞ |In| = 0. )

Theorem 2.3. Let {In}∞n=1 be a sequence of closed nested intervals. Then
there is a unique point c common to all the In, i.e. ∩∞n=1In = {c}.
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Proof. Let In = [an, bn], n = 1, 2, . . . Then an ≤ αn+1 ≤ b1 and a1 ≤ bn+1 ≤
bn , n = 1, 2, . . .. By Theorem 2.1, the limits limn→∞ an = a , limn→∞ bn = b
exist. However,

lim
n→∞

|In| = lim
n→∞

(bn − an) = 0

so a=b=c.

It is useful (for later reference) to have a convergence criteria for non-
monotone sequences.

Definition 2.4. A sequence {xn} is said to be a Cauchy sequence if given
ε > 0, there is a positive integer N = N(ε) so that |xj − xk| < ε if j, k > N .

The importance of Cauchy sequences is due to the

Theorem 2.5. A sequence {xn} converges if and only if it is a Cauchy
sequence.

Proof. Suppose limn→∞ = l. Then given ε > 0 choose N so that |xn− l| < ε
2

if n > N . Then by the triangle inequality, if j, k > N ,

|xj − xk| = |(xj − l) + (l − xk| ≤ |xj − l|+ |xk − l| < ε

2
+

ε

2
= ε .

Conversely (this is the hard part of the proof) assume that the sequence
{xn} is Cauchy. We first show the sequence is bounded. Take ε = 1; then
there is a positive integer N so that |xn − xN+1| < 1 for n > N . Hence
|xn| < |xN+1| + 1 for n > N . Therefore for all j, |xj| < M where M =
max|x1|, |x2|, . . . , |xN |, |xN+1|+ 1. Now define

S = {x ∈ R : x < xn for all but finitely many n }

Note that −M is in S so S 6= ∅ and that S is bounded above by M. Hence
l=l.u.b.S exists by the completeness axiom.
Claim: l = limn→∞ xn.
To see this, given ε > 0 choose N (nothing to do with the N in the proof of
boundedness) so that |xj − xk| < ε

2
if j, k > N . In particular,

aN+1 −
ε

2
< an < aN+1 +

ε

2
for n > N .

So aN+1 − ε
2
∈ S and aN+1 + ε

2
/∈ S and hence

aN+1 −
ε

2
≤ l ≤ aN+1 +

ε

2
.
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Finally for n > N ,

|xn − l| ≤ |xn − xN+1|+ |xN+1 − l| < ε

2
+

ε

2
= ε

which completes the proof.

3 Convergence of series

Definition 3.1. A series
∑∞

k=0 ak is said to converge to S (its sum) if the
sequence of partial sums {Sn}, Sn =

∑n
k=1 ak converges to S.

Example 3.2. (geometric series)
∑∞

n=0 rn , |r| < 1. Then

Sn = 1 + r + . . . + rn−1 =
1− rn

1− r

converges to 1
1−r

.

More sophisticated examples concern the (transcendental) number e.

Example 3.3. Define e =
∑∞

k=0
1
k!

We must actually show the series is
convergent to justify the definition. But this is easy since

Sn+1 = 1+1+
1

1 · 2
+

1

1 · 2 · 3
+ . . .+

1

1 · 2 · · ·n
< 1+1+

1

2
+

1

22
+ . . .+

1

2n−1

By the previous example, Sn+1 < 3 so by Theorem 2.1, the series converges.

Using similar reasoning we can show

Theorem 3.4. e is irrational

Proof. For n > m,

Sn+1 = Sm+1 +
1

(m + 1)!
+

1

(m + 2)!
+ . . . +

1

n!

= Sm+1 +
1

(m + 1)!
(1 +

1

m + 1
+

1

(m + 2)(m + 3)
+ . . .

< Sm+1 +
1

(m + 1)!
(1 +

1

m + 1
+

1

(m + 1)2
+ . . .
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= Sm+1 +
1

(m + 1)!

1

1− 1
m+1

= Sm+1 +
1

m

1

m!

So for n > m,

Sm+1 < Sn+1 < Sm+1 +
1

m

1

m!
.

Now suppose e is rational (recall 2 < e < 3). Write e = p
m

with m ≥ 2. Then
letting n tend to ∞ in the inequality above gives

Sm+1 <
p

m
< Sm+1 +

1

m

1

m!

Multiplying both sides by m! gives

m!Sm+1 < p(m− 1)! < m!Sm+1 +
1

m
< m!Sm+1 + 1 .

But m!Sm+1 = m!+m!+ m!
2

+ m!
3!

+ . . .+ m!
m!

is an integer since each individual
term is. This is a contradiction since the integer p(m−1)! lies strictly between
two consecutive integers.

We next show that the more elementary definition of e is also valid.

Theorem 3.5. e = limn→∞(1 + 1
n
)n.

Proof. Let Tn = (1 + 1
n
)n n = 1, 2, . . . Then by the binomial theorem,

Tn = 1 + n · 1

n
+

n(n− 1)

2!

1

n2
+ . . . +

n(n− 1) · · · 2 · 1
n!

1

nn

= 1+1+
1

2!
(1− 1

n
)+

1

3!
(1− 1

n
)(1− 2

n
)+ . . .+

1

n!
(1− 1

n
)(1− 2

n
) . . . (1− n− 1

n
)

So Tn < Sn+1 < 3 and Tn is increasing (convince yourself) so limn→∞ Tn

exists by Theorem 2.1. To see that the limit is e, observe that for m > n,

Tm > Tn > 1 + 1 +
1

2!
(1− 1

m
) + . . . +

1

n!
(1− 1

m
)(1− 2

m
) . . . (1− n− 1

m
)

Fix n and let m tend to ∞. Then T ≥ Sn+1 ≥ Tn so T = limn→∞ Sn = e.
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4 Continuous functions and the “hard theo-

rems”

We will use the Nested Intervals Theorem 2.3 to prove the Intermediate
value theorem, the boundedness of continuous functions on closed interval
from which the Extreme value theorem follows easily.

Theorem 4.1. Let f(x) be continuous on [a,b] and suppose f(a) 6= f(b).
Then for any value k intermediate to f(a) and f(b), there is at least one
point c ∈ [a, b] so that f(c) = k.

Proof. For definiteness, assume f(a) < k < f(b) (do the other case yourself)
and set g(x) = f(x)− k. Then g is continuous on [a,b] and g(a) < 0 < g(b).
We need to show there is a point c ∈ [a, b] with g(c) = 0. Suppose for
contradiction that g is never zero. We use the method of bisection. Let I1 =
[a, b] and bisect the interval by the midpoint P into two closed subintervals.
If g(P ) < 0 let I2 be the right subinterval while if g(P ) > 0, let I2 be the left
subinterval. In either case, g is negative on the left endpoint and positive
on the right endpoint. Continue this bisection process to obtain a sequence
of nested intervals {In} = [an, bn] of length |In| = b−a

2n−1 . By Theorem 2.3,
there is a limit point c = limn→∞ an = limn→∞ bn common to all the In. Now
by continuity of g, there is an interval J of the form (c − δ, c + δ) ( if c is
interior to [a,b]), [a, a + δ) (if c=a) or (b− δ, b] (if c=b) on which g is of one
sign. But for n large, In is contained in J which is a contradiction, since by
construction g is negative at the left endpoint of In and positive at the right
endpoint of In.

Theorem 4.2. Let f be continuous on [a,b]. Then f is bounded on [a,b].

Proof. Suppose for contradiction that the theorem is false, Again we use the
method of bisection. Let I1 = [a, b] and bisect the interval by the midpoint
P into two closed subintervals. Then f must be unbounded on at least one
of the two subintervals. If f is unbounded only one subinterval let I2 be that
subinterval, Otherwise choose I2 to be the left subinterval. Continue this
bisection process to obtain a sequence of nested intervals {In} = [an, bn] of
length |In| = b−a

2n−1 . By Theorem 2.3, there is a limit point c = limn→∞ an =
limn→∞ bn common to all the In. Now by continuity of g, there is an interval
J of the form (c − δ, c + δ) ( if c is interior to [a,b]), [a, a + δ) (if c=a) or
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(b− δ, b] (if c=b) on which f is bounded. But for n large, In is contained in J
which is a contradiction, since by construction f is unbounded on each In.

By Theorem 4.2, M = sup{f(x) : x ∈ [a, b]} and m = inf{f(x) : x ∈
[a, b]} exist. These are the so called extremes of f(x).

Theorem 4.3. Let f be continuous on [a,b]. Then there are points c1, c2 ∈
[a, b] so that f(c1) = M, f(c2) = m.

Proof. We prove the theorem for M (do the other case yourself). If the
theorem is false, then f(x) 6= M and therefore g(x) = 1

M−f(x)
is well-defined

, positive and continuous on [a,b]. By Theorem 4.2 g is bounded, say 0 <
g(x) ≤ A on [a,b]. But then M − f(x) > 1

A
on [a,b], that is, f(x) < M − 1

A

contradicting the definition of M.

5 Uniform continuity

In this section we discuss uniform continuity and prove the important result
that a continous function on a closed interval is uniformly continuous. This
last result is needed to show that the integral of a continuous function always
exists.

Example 5.1. Let f(x) = 5x + 3 Suppose that we want to make |f(x) −
f(a)| = 5|x − a| < ε if |x − a| < δ. Then we can take δ = ε

5
The function

δ(ε) is called a modulus of continuity for f at a.

In the case of a linear function, the modulus is independent of the point
x = a This is not the case in our next example.

Example 5.2. Let f(x) = x2. Then |f(x)−f(a)| = |x2−a2| = |x+a||x−a| <
(|x|+ |a|)|x− a| < (δ +2|a|)δ if |x− a| < δ. Thus to make |f(x)− f(a)| < ε,
the modulus δ must depend on ε and a. For example, we can take δ = ε

1+ε+2|a|
(check that this works). Thus if a is large δ is much smaller than if a is close
to 0.

Definition 5.3. We say that a function f is uniformly continuous if given
ε > 0 there is a δ = δ(ε) so that whenever |x− y| < δ, |f(x)− f(y)| < ε.
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In other words, f is uniformly continuous if it has a uniform modulus of
continuity. We will show in a minute that a continuous function on a closed
interval is uniformly continuous. First we need a

Definition 5.4. Let f be continuous on [a,b]. Then the span of f on [a,b]
(sometimes called oscillation) is sup[a,b] f − inf [a,b]. A partition P of [a,b] is
a subdivision a = t0 < t1 < t2 < . . . tn = b into subintervals (tk−1, tk) .

We look for a partition so that the span of f on each (tk−1, tk) is small.

Lemma 5.5. let f be continuous on [a, b] and let c ∈ [a, b] Then given ε > 0
there is an interval J containing c of the form (c− δ, c + δ) ( if c is interior
to [a,b]), [a, a+ δ) (if c=a) or (b− δ, b] (if c=b) on which the span of f is less
than ε.

Proof. By continuity we can choose J so that |f(x) − f(c)| < ε
2

if x ∈ J .
Then for x, y ∈ J , |f(x)− f(y)| = |((f(x)− f(c)) + (f(c)− f(y)|
< |f(x)− f(c)|+ |f(y)− f(c)| < ε

2
+ ε

2
= ε .

Theorem 5.6. Let f be continuous on [a,b]. Then given ε > 0 there is a
partition P of [a,b] so that the span of f on each (tk−1, tk) is smaller than ε.

Proof. Suppose the theorem is false, that is, there is some ε > 0 so that
no matter how we partition [a,b], the span of f on some subinterval of the
partition is at least ε. Let I1 = [a, b] and bisect the interval by the midpoint
P into two closed subintervals. Note that the theorem must be false on at
least one of the two closed subinterval (possibly both), otherwise it would be
true for I1. Let I2 be either the unique subinterval on which the theorem is
false or the left half. Continue this bisection process to obtain a sequence of
nested intervals {In} = [an, bn] of length |In| = b−a

2n−1 on which the theorem
fails for ε. By Theorem 2.3, there is a limit point c = limn→∞ an = limn→∞ bn

common to all the In. Now by Lemma 5.5, there is an interval J of the form
(c− δ, c + δ) ( if c is interior to [a,b]), [a, a + δ) (if c=a) or (b− δ, b] (if c=b)
on which the span of f is less than ε. . But for n large, In is contained in J
which is a contradiction, since by construction the span of f on In is at least
ε.

Corollary 5.7. (uniform continuity) Let f be continuous on [a,b]. Then f is
uniformly continuous on [a,b].
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Proof. Given ε > 0 there is by Theorem 5.6 a partition P so that the span
of f on each (tk−1, tk) is smaller than ε

2
. Let δ = min (tk − tk−1). Then if

|x − y| < δ, x and y must lie in two consecutive subintervals on which the
span of f is at most ε
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