The Riemann Zeta Function

The Riemann zeta function is defined by the p-series

$$
\begin{equation*}
\zeta(p)=\sum_{n=1}^{\infty} \frac{1}{n^{p}}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\ldots, \quad \text { valid for } p>1, \tag{1}
\end{equation*}
$$

which converges for $p>1$ by the Integral Test (and diverges for $p \leq 1$). One interesting special value [though hard to prove] is

$$
\begin{equation*}
\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{6} . \tag{2}
\end{equation*}
$$

Convergence Suppose we try to use equation (2) to compute $\pi^{2} / 6$ with an error of less than 10^{-6}. Question: How many terms do we need? Explicitly, how large must k be to bring $\sum_{n=1}^{k} 1 / n^{2}$ within 10^{-6} of $\pi^{2} / 6$?

We note first that $1 / n^{2}<10^{-6}$ whenever $n>1000$. This suggests taking $k=1000$. But consider the next thousand terms, each of which is at least $1 / 2000^{2}$; their sum is therefore greater than $1000 \times 1 / 2000^{2}=0.000250$, which is far larger than 10^{-6}. [The error is actually 0.0009995 , according to maple. In fact, maple knows about the series equation (1), and the remainder after k terms is a built-in function.]

The correct answer is (exactly) $1,000,000$, with error 9.999995×10^{-7}. Thus equation (1) is highly impractical for computation.
An alternating series We introduce the variant

$$
\begin{equation*}
f(p)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{p}}=1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\ldots, \quad \text { valid for } p>0 \tag{3}
\end{equation*}
$$

which converges for $p>0$ by the Alternating Series Test.
Rearrangement The function $f(p)$ is easily expressed in terms of $\zeta(p)$, when $p>1$. Consider the odd and even terms separately, by defining

$$
g(p)=1+\frac{1}{3^{p}}+\frac{1}{5^{p}}+\frac{1}{7^{p}}+\ldots, \quad \text { valid for } p>1
$$

and

$$
h(p)=\frac{1}{2^{p}}+\frac{1}{4^{p}}+\frac{1}{6^{p}}+\ldots, \quad \text { valid for } p>1
$$

Clearly, $g(p)+h(p)=\zeta(p)$. This rearrangement is valid for $p>1$. Also, multiplication of each term of $h(p)$ by 2^{p} gives $2^{p} h(p)=\zeta(p)$.

We have enough information to deduce that

$$
\begin{equation*}
h(p)=\frac{1}{2^{p}} \zeta(p), \quad g(p)=\frac{2^{p}-1}{2^{p}} \zeta(p) . \tag{4}
\end{equation*}
$$

Then $f(p)=g(p)-h(p)$ gives

$$
\begin{equation*}
f(p)=\left(\frac{2^{p}-1}{2^{p}}-\frac{1}{2^{p}}\right) \zeta(p)=\frac{2^{p}-2}{2^{p}} \zeta(p) . \tag{5}
\end{equation*}
$$

More examples For $p=2$, equation (4) gives two more well-known series,

$$
\begin{equation*}
g(2)=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots=\frac{3}{4} \zeta(2)=\frac{\pi^{2}}{8} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
f(2)=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{12} \tag{7}
\end{equation*}
$$

By Theorem 8, we only need 1000 terms of the series equation (7) to guarantee that the error is less than 10^{-6}. [The actual error is only 4.997×10^{-7}.] This is a big improvement over equation (2), but still hardly practical.
Extension Nevertheless, equation (3) is useful for more than just computation. We can turn equation (5) around to the form

$$
\begin{equation*}
\zeta(p)=\frac{2^{p}}{2^{p}-2} f(p) \quad \text { for } p>1 \tag{8}
\end{equation*}
$$

However, the right side of this equation is defined for all $p>0$ (provided we exclude the case $p=1$, so as not to divide by 0). This suggests that it is reasonable to extend the definition of $\zeta(p)$ to all $p>0(p \neq 1)$ by means of this equation. [This is in fact true, but requires more justification than this.]

