Relations between Points and Subsets

Assume given a metric or topological space X and any subset $A \subset X$. We discuss the possible relationships between a point $x \in X$ and A in terms of neighborhoods.
First Level We note that every neighborhood N of x contains x (so is non-empty). At this level, we make no distinction between x and other points of N. This provides enough information for most of our work.

There are exactly three possibilities, with no overlap:
Case 1. x has a neighborhood N that is contained in A. We call x an interior point of A. Such points form the interior set $\operatorname{Int} A$, or sometimes \AA, of A. Since $x \in N \subset A$, we have $\operatorname{Int} A \subset A$.

Case 2. x has a neighborhood N that is contained in the complement $X-A$ of A. We call x an exterior point of A. Since $x \in N$, these points never lie in A. They form the exterior set $\operatorname{Ext} A=\operatorname{Int}(X-A)$ of A.

Case 3. Otherwise, every neighborhood N of x contains both a point of A and a point of $X-A$. We call x a frontier point or boundary point of A. Such points form the frontier or boundary set, $\operatorname{Fr} A$ or $\operatorname{Bd} A$, of A. These points may or may not lie in A. By symmetry, $\operatorname{Fr}(X-A)=\operatorname{Fr} A$.

To summarize, every point $x \in X$ lies in exactly one of the three sets $\operatorname{Int} A, \operatorname{Ext} A$, and $\operatorname{Fr} A$. The ambiguity in Case 3 motivates the next definition.
Definition 1 We call A closed (in X) if it contains all of its boundary points. We call A open (in X) if it contains none of its boundary points.

It is obvious from the symmetry that A is open if and only if $X-A$ is closed.
Lemma 2 For any subset $A \subset X$:
(a) The interior $\operatorname{Int} A$ is open;
(b)If $V \subset A$ is open in X, then $V \subset \operatorname{Int} A$.

Thus $\operatorname{Fr} A=X-(\operatorname{Int} A \cup \operatorname{Ext} A)=X-(\operatorname{Int} A \cup \operatorname{Int}(X-A))$ is closed.
The closure $\mathrm{Cl} A=\bar{A}$ of A may be defined as $\operatorname{Int} A \cup \operatorname{Fr} A$ or as $A \cup \operatorname{Fr} A$. Since $\mathrm{Cl} A=X-\operatorname{Ext} A$, it is closed, and if F is any closed set that contains A, i. e. $F \supset A$, we must have $\mathrm{Cl} A \subset F$.

Second Level This is more subtle. At this level, we do distinguish between x and other points of N. The limit points and isolated points of A can now be defined. There are now eight possibilities, summarized in the table:

Case	Description	in $A ?$	int?	limit point?
1.	x has a neighborhood N with	$x \in A$	Int	isolated
	$N-x$ empty.	$x \notin A$	Ext	exterior
2.	x has a neighborhood N with	$x \in A$	Int	limit
	non-empty $N-x \subset A$.	$x \notin A$	Fr	limit
3.	x has a neighborhood N with			
non-empty $N-x \subset X-A$.	$x \in A$	Fr	isolated	
	$x \notin A$	Ext	exterior	
4.	None of the above: every $N-x$ contains points of A and of $X-A$.	$x \in A$	Fr	limit
	$x \notin A$	Fr	limit	

