Relations between Points and Subsets

Assume given a metric or topological space X and any subset $A \subset X$. We discuss the possible relationships between a point $x \in X$ and A in terms of neighborhoods.

First Level We note that every neighborhood N of x contains x (so is non-empty). At this level, we make no distinction between x and other points of N. This provides enough information for most of our work.

There are exactly *three* possibilities, with no overlap:

Case 1. x has a neighborhood N that is contained in A. We call x an interior point of A. Such points form the interior set Int A, or sometimes \mathring{A} , of A. Since $x \in N \subset A$, we have Int $A \subset A$.

Case 2. x has a neighborhood N that is contained in the complement X-A of A. We call x an exterior point of A. Since $x \in N$, these points never lie in A. They form the exterior set $\operatorname{Ext} A = \operatorname{Int}(X-A)$ of A.

Case 3. Otherwise, every neighborhood N of x contains both a point of A and a point of X - A. We call x a frontier point or boundary point of A. Such points form the frontier or boundary set, $\operatorname{Fr} A$ or $\operatorname{Bd} A$, of A. These points may or may not lie in A. By symmetry, $\operatorname{Fr}(X - A) = \operatorname{Fr} A$.

To summarize, every point $x \in X$ lies in exactly one of the three sets Int A, Ext A, and Fr A. The ambiguity in Case 3 motivates the next definition.

DEFINITION 1 We call A closed (in X) if it contains all of its boundary points. We call A open (in X) if it contains none of its boundary points.

It is obvious from the symmetry that A is open if and only if X - A is closed.

LEMMA 2 For any subset $A \subset X$:

- (a) The interior $\operatorname{Int} A$ is open;
- (b) If $V \subset A$ is open in X, then $V \subset \operatorname{Int} A$. \square

Thus $\operatorname{Fr} A = X - (\operatorname{Int} A \cup \operatorname{Ext} A) = X - (\operatorname{Int} A \cup \operatorname{Int}(X - A))$ is closed.

The closure $\operatorname{Cl} A = \overline{A}$ of A may be defined as $\operatorname{Int} A \cup \operatorname{Fr} A$ or as $A \cup \operatorname{Fr} A$. Since $\operatorname{Cl} A = X - \operatorname{Ext} A$, it is closed, and if F is any closed set that contains A, i. e. $F \supset A$, we must have $\operatorname{Cl} A \subset F$.

Second Level This is more subtle. At this level, we do distinguish between x and other points of N. The *limit points* and *isolated points* of A can now be defined. There are now *eight* possibilities, summarized in the table:

Case	Description	in A ?	int?	limit point?
1.	x has a neighborhood N with	$x \in A$	Int	isolated
	N-x empty.	$x \not\in A$	Ext	exterior
2.	x has a neighborhood N with	$x \in A$	Int	limit
	non-empty $N - x \subset A$.	$x \not\in A$	Fr	limit
3.	x has a neighborhood N with	$x \in A$	Fr	isolated
	non-empty $N - x \subset X - A$.	/-	Ext	exterior
4.	None of the above: every $N-x$	$x \in A$	Fr	limit
	contains points of A and of $X - A$.	$x \not\in A$	Fr	limit

JMB File: toprel2, Revision A, 2 May 2003