Relations between Points and Sets

Assume given a fixed metric space or topological space X and any subset $E \subset X$. We list the possible relationships between a typical point $p \in X$ and E in terms of neighborhoods. Every neighborhood N of p contains p (so is non-empty).

First Level At this level, we make no distinction between p and other points of N. This provides enough information for most of our work. There are exactly three possibilities, with no overlap:

Case 1. p has a neighborhood N that is contained in E. We call p an interior point of E. Such points form the interior Int E of E. Since $p \in N$, we have Int $E \subset E$.

Case 2. p has a neighborhood N that is contained in the complement $E^c = X - E$ of E. We call p an exterior point of E. Since $p \in N$, these points never lie in E. They form the set Int(X - E).

Case 3. Otherwise, every neighborhood N of p contains both a point of E and a point of X - E. We call p a boundary point or frontier point of E. Such points form the boundary or frontier Bd E of E. These points may or may not lie in E. By symmetry, Bd(X - E) = Bd E.

To summarize, every point $p \in X$ lies in exactly one of the three sets Int E, Int(X - E), and Bd E. The ambiguity in Case 3 motivates the main definition.

DEFINITION 1 We call E closed (in X) if it contains all of its boundary points. We call E open (in X) if it contains none of its boundary points.

It is obvious from the symmetry that E is open if and only if X - E is closed.

LEMMA 2 For any subset $E \subset X$:

(a) The interior Int E is open;

(b) If $V \subset E$ is open in X, then $V \subset \text{Int } E$. \Box

Thus $\operatorname{Bd} E = X - (\operatorname{Int} E \cup \operatorname{Int}(X - E))$ is closed.

The closure $\operatorname{Cl} E = \overline{E}$ of E may be defined as $\operatorname{Int} E \cup \operatorname{Bd} E$ or as $E \cup \operatorname{Bd} E$. Since $\overline{E} = X - \operatorname{Int}(X - E)$, it is closed, and if F is any closed set that contains E, i.e. $F \supset E$, we must have $\overline{E} \subset F$.

Second Level This is more subtle. At this level, we do distinguish between p and other points of N. The *limit points* and *isolated points* of E can now be defined. There are now *eight* possibilities, summarized in the table:

Case	Description	in E ?	int?	limit point?
1.	p has a neighborhood N with	$p \in E$	int	isolated
	N-p empty.	$p \notin E$	ext	exterior
2.	p has a neighborhood N with	$p \in E$	int	limit
	non-empty $N - p \subset E$.	$p \notin E$	bd	limit
3.	p has a neighborhood N with	$p \in E$	bd	isolated
	non-empty $N - p \subset X - E$.	$p \notin E$	ext	exterior
4.	None of the above: every $N - p$	$p \in E$	bd	limit
	contains points of E and of $X - E$.	$p \not\in E$	bd	limit