Relations between Points and Sets

Assume given a fixed metric space or topological space X and any subset $E \subset X$. We list the possible relationships between a typical point $p \in X$ and E in terms of neighborhoods. Every neighborhood N of p contains p (so is non-empty).
First Level At this level, we make no distinction between p and other points of N. This provides enough information for most of our work. There are exactly three possibilities, with no overlap:

Case 1. p has a neighborhood N that is contained in E. We call p an interior point of E. Such points form the interior $\operatorname{Int} E$ of E. Since $p \in N$, we have $\operatorname{Int} E \subset E$.

Case 2. p has a neighborhood N that is contained in the complement $E^{c}=X-E$ of E. We call p an exterior point of E. Since $p \in N$, these points never lie in E. They form the set $\operatorname{Int}(X-E)$.

Case 3. Otherwise, every neighborhood N of p contains both a point of E and a point of $X-E$. We call p a boundary point or frontier point of E. Such points form the boundary or frontier $\operatorname{Bd} E$ of E. These points may or may not lie in E. By symmetry, $\operatorname{Bd}(X-E)=\operatorname{Bd} E$.

To summarize, every point $p \in X$ lies in exactly one of the three sets $\operatorname{Int} E$, $\operatorname{Int}(X-E)$, and $\operatorname{Bd} E$. The ambiguity in Case 3 motivates the main definition.

Definition 1 We call E closed (in X) if it contains all of its boundary points. We call E open (in X) if it contains none of its boundary points.

It is obvious from the symmetry that E is open if and only if $X-E$ is closed.
Lemma 2 For any subset $E \subset X$:
(a) The interior $\operatorname{Int} E$ is open;
(b)If $V \subset E$ is open in X, then $V \subset \operatorname{Int} E$.

Thus $\operatorname{Bd} E=X-(\operatorname{Int} E \cup \operatorname{Int}(X-E))$ is closed.
The closure $\mathrm{Cl} E=\bar{E}$ of E may be defined as $\operatorname{Int} E \cup \operatorname{Bd} E$ or as $E \cup \operatorname{Bd} E$. Since $\bar{E}=X-\operatorname{Int}(X-E)$, it is closed, and if F is any closed set that contains E, i. e. $F \supset E$, we must have $\bar{E} \subset F$.
Second Level This is more subtle. At this level, we do distinguish between p and other points of N. The limit points and isolated points of E can now be defined. There are now eight possibilities, summarized in the table:

Case	Description	in $E ?$	int?	limit point?
1.	p has a neighborhood N with	$p \in E$	int	isolated
	$N-p$ empty.	$p \notin E$	ext	exterior
2.	p has a neighborhood N with	$p \in E$	int	limit
	non-empty $N-p \subset E$.	$p \notin E$	bd	limit
3.	p has a neighborhood N with			
non-empty $N-p \subset X-E$.	$p \in E$	bd	isolated	
	$p \notin E$	ext	exterior	
4.	None of the above: every $N-p$ contains points of E and of $X-E$.	$p \in E$	bd	bd
limit				

