Differentiability and the Tangent Plane

References are to Salas \& Hille, Calculus, 7th Edition
Assume that $f(x, y)$ is defined in some neighborhood of the point $\left(x_{0}, y_{0}\right)$ and let the surface S be the graph $z=f(x, y)$ of f. Alternatively, we can view S as the level surface $g=0$ of the function $g(x, y, z)=z-f(x, y)$. Let $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ be the point of S above $\left(x_{0}, y_{0}\right)$, where $z_{0}=f\left(x_{0}, y_{0}\right)$. We interpret the differentiability of f analytically and geometrically.
Analytically Let $\mathbf{h}=\left(h_{1}, h_{2}\right)$ be a vector in \mathbf{R}^{2}, small enough for $f\left(x_{0}+h_{1}, y_{0}+h_{2}\right)$ to be defined.

Definition 1 (cf. Defn. 15.1.1) The function f is differentiable at $\left(x_{0}, y_{0}\right)$ if it has a good linear approximation near $\left(x_{0}, y_{0}\right)$, in the sense that

$$
\begin{equation*}
f\left(x_{0}+h_{1}, y_{0}+h_{2}\right)=z_{0}+A h_{1}+B h_{2}+o(\mathbf{h}) \quad \text { as } \mathbf{h} \rightarrow \mathbf{0} . \tag{2}
\end{equation*}
$$

Let P be the nearby point on S

$$
(x, y, z)=\left(x_{0}+h_{1}, y_{0}+h_{2}, f\left(x_{0}+h_{1}, y_{0}+h_{2}\right)\right)
$$

so that $h_{1}=x-x_{0}$ and $h_{2}=y-y_{0}$. The linear approximation to f has the graph

$$
\begin{equation*}
z=z_{0}+A\left(x-x_{0}\right)+B\left(y-y_{0}\right), \tag{3}
\end{equation*}
$$

which is the equation of the plane T through P_{0} that is normal to the vector

$$
\begin{equation*}
\mathbf{n}=-A \mathbf{i}-B \mathbf{j}+\mathbf{k} \tag{4}
\end{equation*}
$$

We observe that this vector is just $\nabla g\left(P_{0}\right)$.
There is only one candidate for the coefficients A and B in equation (2).
Lemma 5 If f is differentiable at $\left(x_{0}, y_{0}\right)$, we must have $A=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$ and $B=$ $\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)$, and these partial derivatives do exist.

Proof We do A only. In equation (2) we take $h_{1}=t$ and $h_{2}=0$; then

$$
f\left(x_{0}+t, y_{0}\right)=f\left(x_{0}, y_{0}\right)+A t+o(t) \quad \text { as } t \rightarrow 0
$$

This shows that the limit $\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$ exists and has the value A.
Geometrically We show that T is the tangent plane at P_{0} to the surface S.
THEOREM 6 If f is differentiable at $\left(x_{0}, y_{0}\right)$, the angle between the vector $\overrightarrow{P_{0} P}$ and the plane T tends to 0 as $\mathbf{h} \rightarrow \mathbf{0}$.

Proof We show instead that the angle θ between $\overrightarrow{P_{0} P}$ and \mathbf{n} tends to $\pi / 2$. It is given by

$$
\begin{equation*}
\cos \theta=\frac{\stackrel{\rightharpoonup}{P_{0} P} \cdot \mathbf{n}}{\left\|\overrightarrow{P_{0} P}\right\|\|\mathbf{n}\|} \tag{7}
\end{equation*}
$$

We have

$$
\overrightarrow{P_{0} P}=h_{1} \mathbf{i}+h_{2} \mathbf{j}+\left(z-z_{0}\right) \mathbf{k} .
$$

From equation (4), we compute and observe from equation (2) that

$$
\begin{equation*}
\overrightarrow{P_{0} P} \cdot \mathbf{n}=-A h_{1}-B h_{2}+z-z_{0}=o(\mathbf{h}) . \tag{8}
\end{equation*}
$$

All we need to know about $\left\|\overrightarrow{P_{0} P}\right\|$ is that $\|\mathbf{h}\| \leq\left\|\overrightarrow{P_{0} P}\right\|$. Substituting into equation (7), we find

$$
\cos \theta \leq \frac{o(\mathbf{h})}{\|\mathbf{h}\|} \frac{1}{\|\mathbf{n}\|} \rightarrow 0 \quad \text { as } \mathbf{h} \rightarrow \mathbf{0} .
$$

We apply the continuous function $\cos ^{-1}(-)$ to get $\theta \rightarrow \cos ^{-1}(0)=\pi / 2$.
*(Optional) The converse is also true, but somewhat trickier.
Theorem 9 If there exists a plane T through P_{0} such that the angle between the vector $\overrightarrow{P_{0} P}$ and the plane T tends to 0 as $\mathbf{h} \rightarrow \mathbf{0}$, then f is differentiable at (x_{0}, y_{0}) and T is the tangent plane to S at P_{0}.

Proof From the triangle inequality, we have

$$
\begin{equation*}
\left\|\overrightarrow{P_{0} P}\right\| \leq\|\mathbf{h}\|+\left|z-z_{0}\right| . \tag{10}
\end{equation*}
$$

It is first necessary to show that $z-z_{0}$ does not get too large compared to \mathbf{h}. This can be seen geometrically. Alternatively, it follows from equation (7) and the hypothesis that $\cos \theta \rightarrow 0$, that for small enough \mathbf{h},

$$
\left|z-z_{0}-A h_{1}-B h_{2}\right| \leq \frac{1}{2}\left(\|\mathbf{h}\|+\left|z-z_{0}\right|\right) .
$$

We rearrange to get

$$
\frac{1}{2}\left|z-z_{0}\right| \leq\left|A h_{1}+B h_{2}\right|+\frac{1}{2}\|\mathbf{h}\|
$$

and hence $\left|z-z_{0}\right| \leq M| | \mathbf{h} \|$, where we can take $M=2|A|+2|B|+1$. Then from equation (10), $\left\|\overrightarrow{P_{0} P}\right\| \leq(1+M)\|\mathbf{h}\|$.

Now we can deduce with the help of equation (8) that

$$
\frac{\left|z-z_{0}-A h_{1}-B h_{2}\right|}{\|\mathbf{h}\|} \leq(1+M) \frac{\left|z-z_{0}-A h_{1}-B h_{2}\right|}{\left\|\overline{P_{0} P}\right\|}=\|\mathbf{n}\| \cos \theta \rightarrow 0
$$

as required for Definition 1.
Remark The surface S is not as special as might appear. If the function $g(x, y, z)$ is continuously differentiable in some neighborhood of P_{0} and $\nabla g\left(P_{0}\right) \neq 0$, we can permute the coordinates to arrange $\frac{\partial g}{\partial z}\left(P_{0}\right) \neq 0$. A major theorem shows that near P_{0}, the level surface $g(x, y, z)=c$ (where $\left.c=g\left(P_{0}\right)\right)$ is the graph $z=f\left(x_{0}, y_{0}\right)$ of a certain continuously differentiable function f.

