Differentiability and the Tangent Plane

References are to Salas & Hille, Calculus, 7th Edition

Assume that f(x, y) is defined in some neighborhood of the point (x_0, y_0) and let the surface S be the graph z = f(x, y) of f. Alternatively, we can view S as the level surface g = 0 of the function g(x, y, z) = z - f(x, y). Let $P_0(x_0, y_0, z_0)$ be the point of S above (x_0, y_0) , where $z_0 = f(x_0, y_0)$. We interpret the differentiability of f analytically and geometrically.

Analytically Let $\mathbf{h} = (h_1, h_2)$ be a vector in \mathbf{R}^2 , small enough for $f(x_0+h_1, y_0+h_2)$ to be defined.

DEFINITION 1 (cf. Defn. 15.1.1) The function f is differentiable at (x_0, y_0) if it has a good linear approximation near (x_0, y_0) , in the sense that

$$f(x_0 + h_1, y_0 + h_2) = z_0 + Ah_1 + Bh_2 + o(\mathbf{h})$$
 as $\mathbf{h} \to \mathbf{0}$. (2)

Let P be the nearby point on S

 $(x, y, z) = (x_0 + h_1, y_0 + h_2, f(x_0 + h_1, y_0 + h_2)),$

so that $h_1 = x - x_0$ and $h_2 = y - y_0$. The linear approximation to f has the graph

$$z = z_0 + A(x - x_0) + B(y - y_0),$$
(3)

which is the equation of the plane T through P_0 that is normal to the vector

$$\mathbf{n} = -A\,\mathbf{i} - B\,\mathbf{j} + \mathbf{k}.\tag{4}$$

We observe that this vector is just $\nabla g(P_0)$.

There is only one candidate for the coefficients A and B in equation (2).

LEMMA 5 If f is differentiable at (x_0, y_0) , we must have $A = \frac{\partial f}{\partial x}(x_0, y_0)$ and $B = \frac{\partial f}{\partial y}(x_0, y_0)$, and these partial derivatives do exist.

Proof We do A only. In equation (2) we take $h_1 = t$ and $h_2 = 0$; then

$$f(x_0 + t, y_0) = f(x_0, y_0) + At + o(t)$$
 as $t \to 0$.

This shows that the limit $\frac{\partial f}{\partial x}(x_0, y_0)$ exists and has the value A. \Box

Geometrically We show that T is the *tangent plane* at P_0 to the surface S.

THEOREM 6 If f is differentiable at (x_0, y_0) , the angle between the vector $\overrightarrow{P_0P}$ and the plane T tends to 0 as $\mathbf{h} \to \mathbf{0}$.

Proof We show instead that the angle θ between $\overrightarrow{P_0P}$ and **n** tends to $\pi/2$. It is given by

$$\cos\theta = \frac{\overrightarrow{P_0P} \cdot \mathbf{n}}{\|\overrightarrow{P_0P}\|\|\mathbf{n}\|}.$$
(7)

110.202 Calculus III JMB File: tgtplane, Revision A; 31 Aug 2001; Page 1

We have

$$\overline{P_0P} = h_1 \mathbf{i} + h_2 \mathbf{j} + (z - z_0) \mathbf{k}$$

From equation (4), we compute and observe from equation (2) that

$$\overline{P_0P} \cdot \mathbf{n} = -Ah_1 - Bh_2 + z - z_0 = o(\mathbf{h}).$$
(8)

All we need to know about $\|\overrightarrow{P_0P}\|$ is that $\|\mathbf{h}\| \leq \|\overrightarrow{P_0P}\|$. Substituting into equation (7), we find

$$\cos \theta \leq \frac{o(\mathbf{h})}{\|\mathbf{h}\|} \frac{1}{\|\mathbf{n}\|} \to 0 \quad \text{as } \mathbf{h} \to \mathbf{0}.$$

We apply the continuous function $\cos^{-1}(-)$ to get $\theta \to \cos^{-1}(0) = \pi/2$. \Box

*(Optional) The converse is also true, but somewhat trickier.

THEOREM 9 If there exists a plane T through P_0 such that the angle between the vector $\overrightarrow{P_0P}$ and the plane T tends to 0 as $\mathbf{h} \to \mathbf{0}$, then f is differentiable at (x_0, y_0) and T is the tangent plane to S at P_0 .

Proof From the triangle inequality, we have

$$\|\overline{P_0P}\| \le \|\mathbf{h}\| + |z - z_0|. \tag{10}$$

It is first necessary to show that $z - z_0$ does not get too large compared to **h**. This can be seen geometrically. Alternatively, it follows from equation (7) and the hypothesis that $\cos \theta \to 0$, that for small enough **h**,

$$|z - z_0 - Ah_1 - Bh_2| \le \frac{1}{2}(||\mathbf{h}|| + |z - z_0|).$$

We rearrange to get

$$\frac{1}{2}|z - z_0| \le |Ah_1 + Bh_2| + \frac{1}{2} \|\mathbf{h}\|$$

and hence $|z - z_0| \leq M \|\mathbf{h}\|$, where we can take M = 2|A| + 2|B| + 1. Then from equation (10), $\|\overrightarrow{P_0P}\| \leq (1+M)\|\mathbf{h}\|$.

Now we can deduce with the help of equation (8) that

$$\frac{|z - z_0 - Ah_1 - Bh_2|}{\|\mathbf{h}\|} \le (1 + M) \frac{|z - z_0 - Ah_1 - Bh_2|}{\|\overline{P_0P}\|} = \|\mathbf{n}\|\cos\theta \to 0,$$

as required for Definition 1. \Box

Remark The surface S is not as special as might appear. If the function g(x, y, z) is continuously differentiable in some neighborhood of P_0 and $\nabla g(P_0) \neq \mathbf{0}$, we can permute the coordinates to arrange $\frac{\partial g}{\partial z}(P_0) \neq 0$. A major theorem shows that near P_0 , the level surface g(x, y, z) = c (where $c = g(P_0)$) is the graph $z = f(x_0, y_0)$ of a certain continuously differentiable function f.