
Spanning and Linear Independence

References are to Anton–Rorres, 7th edition

Coordinates Let V be a given vector space. We wish to equip V with a coordinate
system, much as we did geometrically for the plane and space. We have the origin 0.
However, because V is only a vector space, the concepts of length and orthogonality
do not apply.

Take any set S = {v1,v2, . . . ,vr} of vectors in V . There is an associated linear
transformation L: Rr → V (well hidden in Anton–Rorres), given by

L(k1, k2, . . . kr) = k1v1 + k2v2 + . . . krvr (1)

So L(ei) = vi for each i. It is easy to check that L is linear. The idea is to choose S
to make L an isomorphism of vector spaces, which will allow us to transfer everything
from the general vector space V to the familiar vector space Rr.

Definition 2 The set S = {v1,v2, . . . ,vr} of vectors in V is a basis [plural: bases ]
of V if the above linear transformation (1) satisfies the two conditions:

(i) The range R(L) of L is the whole of V ;

(ii) The kernel Ker(L) of L is {0}.

Then by Theorem 8.3.1, L is 1–1 and we can restate the definition explicitly.

Theorem 3 (=Thm. 5.4.1) If S = {v1,v2, . . . ,vr} is a basis of V , then any vector
v ∈ V can be uniquely expressed as a linear combination

v = k1v1 + k2v2 + . . . krvr = L(k1, k2, . . . , kr) (4)

We then have the inverse linear transformation L−1: V → Rr and L−1(vi) = ei.

Definition 5 If S is a basis of V , we define the coordinate vector relative to S of
any vector v ∈ V to be L−1(v), and write it (v)S. This is a vector in Rr.

Explicitly, if v is the linear combination (4), then (v)S = (k1, k2, . . . , kr).

Example We have the standard basis S = {e1, e2, . . . , er} of Rr. In this case, L is
the identity linear transformation and (v)S = v.

We break up Definition 2 and discuss the two conditions separately.

Spanning In any case, the range R(L) of L is always a subspace of V .

Definition 6 For any set S in V , we define the span of S to be the range R(L) of
the linear transformation L in equation (1), and write span(S) = R(L).

Explicitly, span(S) is the set of all linear combinations (4). Many different sets of
vectors S can span the same subspace. Clearly, we can omit the zero vector 0 if it is
present in S. More generally, as a direct application of Theorem 5.2.4, we have the
following reduction, known as the Minus Theorem.

Lemma 7 (=Thm. 5.4.4(b)) Suppose vi ∈ S is a linear combination of the other
vectors in S. Let S ′ denote the set S with vi removed. Then span(S ′) = span(S).
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2 Spanning and Linear Independence

Linear independence

Definition 8 The set S = {v1,v2, . . . ,vr} is linearly independent if the kernel
Ker(L) of the linear transformation L in equation (1) is {0}, i. e. L is 1–1 (see
Thm. 8.3.1). Otherwise, S is linearly dependent. [As linear independence is clearly
the desirable condition, we shall eschew the term “linearly dependent”.]

Explicitly, S is linearly independent if there is no linear relation

k1v1 + k2v2 + . . . + krvr = 0 (9)

between the v’s, other than the obvious trivial relation

0v1 + 0v2 + . . . + 0vr = 0

The following property is clear enough, but note the direction of the implication.

Lemma 10 Let T : V → W be a linear transformation and S = {v1,v2, . . . ,vr} a
set of vectors in V . If the image set T (S) = {T (v1), T (v2), . . . , T (vr)} is linearly
independent in W , then S is linearly independent in V .

Proof Suppose the vectors in S satisfy the linear relation

k1v1 + k2v2 + . . . + krvr = 0

We apply T to this to see that T (S) satisfies the corresponding linear relation

k1T (v1) + k2T (v2) + . . . + krT (vr) = 0

We need to recast the definition of linear independence in a more useful form.
Roughly stated, S is linearly independent if each vector in S is new in the sense that
it cannot be expressed in terms of the previous members of S.

Lemma 11 (=Thm. 5.3.1(b), but sharper) The set S = {v1,v2, . . . ,vr} of vectors is
linearly independent if and only if v1 6= 0 and no vector vi ∈ S is a linear combination
of the preceding vectors in S, i. e. for 2 ≤ i ≤ r, vi /∈ span{v1,v2, . . . ,vi−1}.

Proof Assume there is a nontrivial linear relation (9), with km as the last nonzero
coefficient. Then we can divide by km and rearrange equation (9) as

vm = l1v1 + l2v2 + . . . + lm−1vm−1 (12)

where each li = −ki/km. This expresses vm as a linear combination of the preceding
vectors. (If m = 1, equation (12) degenerates to v1 = 0.) Conversely, if equation (12)
holds for some m, we can rearrange it as the linear relation

l1v1 + l2v2 + . . . + lm−1vm−1 − vm = 0

Corollary 13 (=Thm. 5.4.4(a), the Plus Theorem) Suppose the set S =
{v1,v2, . . . ,vr} of vectors in V is linearly independent but does not span V . Take any
vector vr+1 /∈ span(S). Then the enlarged set {v1,v2, . . . ,vr,vr+1} remains linearly
independent.

Proof The condition of Lemma 11 holds for vi if i ≤ r because S is linearly inde-
pendent. It holds for vr+1 by hypothesis.

Occasionally, a variant of Lemma 11 is useful.

110.201 Linear Algebra JMB File: spanli, Revision B; 27 Aug 2001; Page 2



Spanning and Linear Independence 3

Corollary 14 The set S = {v1,v2, . . . ,vr} of vectors in V is linearly independent
if and only if vr 6= 0 and for 1 ≤ i < r, vi is not a linear combination of the later
vectors in S.

Proof We simply write the set S in reverse order and apply Lemma 11.

Vectors in Rn All the main results depend ultimately on the following fact, which
is intuitively obvious but not trivial to prove. However, the real work has already
been done. Roughly, the consequence is that in a given vector space, a spanning set
of vectors cannot be too small, and a linearly independent set cannot be too large.

Lemma 15 (=Thm. 5.3.3) A linearly independent set S of vectors in Rn has at most
n members.

Proof Suppose S has r members, and consider the linear transformation L: Rr →
Rn in equation (1). We are given Ker(L) = {0}. Let A be the matrix of L, so that
L(x) = Ax. We know Ax = 0 has no nontrivial solutions. Since A is an n×r matrix,
Theorem 1.2.1 shows that we must have r ≤ n.

From this we deduce the result we really want.

Theorem 16 Suppose the vector space V is spanned by a set containing n vectors.
Then any linearly independent set of vectors in V contains at most n members.

Proof From the given spanning set, we construct as in equation (1) a linear trans-
formation L: Rn → V such that R(L) = V . Let S = {v1,v2, . . . ,vr} be any linearly
independent set of vectors in V . Since R(L) = V , we can choose for each i a vector
ui ∈ Rn such that L(ui) = vi. Then by Lemma 10, the set {u1,u2, . . . ,ur} is linearly
independent in Rn. Lemma 15 now shows that r ≤ n.

Corollary 17 (=Thm. 5.4.3) Any two bases of V contain the same number of
vectors.

Definition 18 A vector space V is finite-dimensional if it has a basis that contains
n vectors for some finite n. The number n is the dimension of V and is written
dim(V ). (By Corollary 17, it is well defined. For completeness, the zero vector space
is considered to have dimension 0, and the empty set (not {0}) as a basis; this works.)

We say that V is infinite-dimensional if it does not have a finite basis.

We are primarily interested in finite-dimensional vector spaces.

Theorem 19 Every finite-dimensional vector space is isomorphic to the standard
vector space Rn for a unique integer n.

We collect in one place all the information about subsets of V .

Theorem 20 (=Thms. 5.4.2 and 5.4.5) Let S = {v1,v2, . . . ,vr} be any set of r
vectors in the n-dimensional vector space V . Then:

(a) If r < n, S does not span V . (It may or may not be linearly independent.)

(b) If r = n, S spans V if and only if it is linearly independent. Thus S is a basis
of V if either of these conditions holds.

(c) If r > n, S is not linearly independent. (S may or may not span V .)
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Proof Parts (a) and (c) both follow immediately from Theorem 16.
For (b), suppose first that S spans V . If S is not linearly independent, Lemma 11

shows that some vi ∈ S is a linear combination of the other members. We remove
vi from S to get a set S ′ of n−1 vectors. By Lemma 7, S ′ still spans V ; but this
contradicts (a).

Conversely, suppose that S is linearly independent. If S does not span V , we
could use Corollary 13 to add another vector to S to form a linearly independent set
of n+1 vectors in V , which would contradict (c).

It is not immediately obvious that any subspace of a finite-dimensional vector
space is finite-dimensional.

Theorem 21 (=Thm. 5.4.7) If W is a subspace of the finite-dimensional vector
space V , then W is again finite-dimensional and dim(W ) ≤ dim(V ), with equality
only if W = V .

Proof Choose a linearly independent set S = {v1,v2, . . . ,vr} of vectors in W with
r as large as possible; such a set exists because these vectors also lie in V , so that by
Theorem 20(c), r ≤ n where n = dim(V ). Then span(S) = W , otherwise Corollary 13
(applied in W ) would allow us to extend S by one more vector and increase r by 1.
So S must be a basis of W and dim(W ) = r.

If W 6= V , choose any vector vr+1 ∈ V that is not in W ; by Corollary 13,
{v1,v2, . . . ,vr,vr+1} is still linearly independent. By Theorem 20(c), r+1 ≤ n.

Constructing bases Obviously, if a subset S of V spans V , so does any subset S ′

of V that contains S. Any subset of a linearly independent set S remains linearly
independent. Beyond these restrictions, we can construct bases of V as follows.

Theorem 22 (=Thm. 5.4.6(a)) Suppose the set S = {v1,v2, . . . ,vr} spans the
vector space V . Then we can thin out S to find a subset S ′ ⊂ S that is a basis of
V . In particular, V is finite-dimensional. (Explicitly, one possibility is to take S ′ as
the set of all the nonzero vi ∈ S that are not linear combinations of the preceding
members of S, but there are other choices.)

Proof If vi ∈ S is a linear combination of the other members of S, we can delete
vi from S without affecting span(S), by Lemma 7. We repeat this, deleting elements
of S one at a time, until we can go no further. By Lemma 11, the end result S ′ is
linearly independent and therefore a basis of V . (We leave the suggested candidate
for S ′ as an exercise.)

Theorem 23 (=Thm. 5.4.6(b)) Suppose given any linearly independent set S =
{v1,v2, . . . ,vr} of vectors in a finite-dimensional vector space V that does not span
V . Then we can extend S to a basis S ′ = {v1,v2, . . . ,vr, . . . ,vn} of V .

Proof By Corollary 13, we extend S by one more vector to get a larger subset
that is still linearly independent. We repeat as long as possible, until we find a
linearly independent set S ′ that does span V and is therefore a basis. The process
must terminate, because by Theorem 20(c), the set S ′ can never have more than n
members, where n = dim(V ). (In fact, it has exactly n, by Corollary 17.)
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