Real and Complex Representations

This note extends Schur’s Lemma to real representations
of a compact Lie group, expanding on some of the material
in §5 of Chapter II in Brocker—tom Dieck.

Throughout, let G be a compact Lie group. Our object is to compute the endo-
morphism ring Endg (W) of an irreducible real representation W by appealing to the
complex version of Schur’s Lemma.

Two constructions We need two constructions that relate real and complex rep-
resentations. Given a complex representation V of G, we may regard V as a real
vector space (of twice the dimension) and treat it as a real representation of G, the
realification vV of V. Trivially, rV = rV.

In the other direction, given a real representation W of G, we have the com-
plexification ¢cW = C @r W, equipped with the obvious actions of C and G. Then
t @ W:cW = c¢W, where t:C — C denotes the conjugation in C. (The identity
morphism does not work!)

In this note, V' will always denote a complex representation and W a real repre-
sentation. We recall that r¢cWW =W @ W and arV =V @ V.

The first half of Schur’s Lemma carries over without change (by the same proof).

LEMMmA 1 If Wy and W,y are real irreducible representations of G, any morphism
f: Wy — W, is either an isomorphism or zero. [

COROLLARY 2 For any irreducible real representation W of GG, the endomorphism
ring Endg(W) is a finite-dimensional skew field over R. [

Complex vector spaces with conjugation The above space cWW is more than
just a complex vector space.

DEFINITION 3 A complex vector space X has a real structure or conjugation if we
are given an involution x — Z that is additive and antilinear: zx = z 7 for z € C. Its
real part RX is the real vector subspace consisting of those x € X that satisfy 7 = .

If X is a complex representation of GG, we require the conjugation to preserve the
G-action, g = ¢7; then RX is a real representation of G.

In the case of cW above, the conjugation is inherited from C and does indeed
preserve the G-action; also, ReW =1 W = W.

LEMMA 4 If X is a complex vector space with conjugation, it is canonically isomor-
phic, as a complex vector space, to C ®g RX. Explicitly, it is the direct sum of the
real subspaces RX and iRX.

Proof For any x, x + T and iT — iz lie in RX, so x = (v + 7)/2 + i(iT — ix)/2 €

RX 4+ iRX. On the other hand, if z € (RX) N (iRX), we have z = iy with y € RX,
and ¥ = —iy = —x. Since ¥ = x, this implies z = 0. O
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2 Real and Complex Representations

LEMMA 5 Let W be any real representation of G. Then:

(a) The complexification ¢W is a complex representation with conjugation;

(b) The complex endomorphism ring Endc(cW) is a complex vector space with
conjugation;

(¢) We may identify the real part R Endc(cW) of Endc(cW') with the real endo-
morphism ring Endg (W) of W itself.

Proof In (a), given a complex endomorphism f of cWW, we define its conjugate f by
fo=Ju. (6)

It is easy to check that f is again C-linear and that this conjugation is antilinear.
In (b), suppose that f:cWW — ¢W is an endomorphism. We decompose ¢cW =
(1erW) @ (i®@gW) and consider the restriction f|1®@W. We may write f(1®w) =
1® friw+i® fow, where f; and fo are real endomorphisms of W. Then by C-linearity
of f, f(iow) = —1® fow + i® fiw, which shows that the real endomorphisms f; and

fo determine f and may be chosen arbitrarily. The conjugation simply changes the
sign of f5, so that Rf is essentially just f;. [

Remark It will be useful to rewrite the definition and identify the real endomor-
phisms of W with those complex endomorphisms of ¢WW that commute with the
conjugation on cW.

LEMMA 7 Given a real representation W of GG, suppose that V' is a self-conjugate
invariant complex subspace of cW. Then V' has the form C ®@g W1, where W is some
invariant real subspace of W.

Proof We define the invariant subspace W; by 1@ W; = VN (1@W); since 1@ W, C
V', we have C @g W7 C V. Conversely, given an element v = 1Qw; + iQwy € V, its
conjugate 1®w; — 1®@wsq also lies in V', from which it follows that 1 ® w, i ® w, and
1 ® wsy all liein V. Thus w; and w, lie in W; and v € C@r W;. O

We use Lemma 5 to compute the desired endomorphism rings directly. Let W
be an irreducible real representation. We decompose the complex representation ¢/
into irreducible complex representations; since rcW = W & W, cWW decomposes into
either one or two complex representations. There are three cases.

Case 1: V = cW is irreducible. By Schur’s Lemma, Endc(V) = C consists of
the endomorphisms fv = Av, for A € C. Then fv = Av = v, so that f corresponds
to A. As a trivial example, we have the trivial representation R of any group G.

THEOREM 8 Let W be an irreducible real representation of G. If ¢cW is irreducible
as a complex representation, the endomorphism ring Endg (W) = R consists of the
endomorphisms fw = Aw with A real. [

Otherwise, we have the decomposition cWW = V; @ V5, into exactly two irreducible
invariant complex subspaces. By Lemma 7, the only self-conjugate invariant complex
subspaces of ¢W are 0 and ¢W. In particular, we deduce that V; NV, = 0 and
Vi 4+ Vi =W, so that ¢W =1V, @ V. This case in turn divides into two.
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Case 2: cWW =V @V, where V is irreducible and not isomorphic to V. By
Schur’s Lemma, End¢(c¢WW) =2 C @ C; the endomorphism corresponding to the pair
(A, 1) € Ca Cis simply fy ,(v1,D2) = (Avy, uv2). The conjugation in c¢W is obvious,
(v1,02) = (v2,71), and (6) yields

Fan(v1,02) = fru(ve,01) = (Mg, pu1) = (fivy, Avp) = fax(vi,2).
Thus f), is real if and only if y = X, and then \ € C determines Fap

THEOREM 9 Let W be an irreducible real representation of G. If ¢tW =V @ V,
where V' is not isomorphic to V, then Endg(W) = C. O

As a simple example, we have the standard representation of SO(2) on R.

Case 3: ¢clW =V @V, where V is irreducible and V= V. SocW 2V @V, and
by Schur’s Lemma, End¢(cW) = My(C). The 2x2 complex matrix A with entries
a;r acts on V @ V in the usual way,

A(vy,v2) = (a1,101 + a1,209, A2 101 + A220).

We need to be specific. We choose some isomorphism ¢:V = V', and use it to
form the isomorphism ® =id® ¢:V @V =V @ V. In order to work entirely in V,
it will be convenient to write ¢v = fv, where : V — V is an antilinear bijection, so
that ®(vy,vs) = (v1, Ov).

Now 6006 is C-linear, and therefore has the form 60v = A\v for some A € C by
Schur’s Lemma, where A # 0. Moreover, by writing 606-6 two different ways, 600v =
(00)0v = Mv and 000v = 0(00v) = O(\v) = Mv, we see that A must be real. Further,
if we replace ¢ by k¢, where k is real, A changes to k?\, which allows us to arrange
A = #£1 by a suitable choice of ¢.

The conjugation in V @ V corresponds by @ to the conjugation (vi,vy) =
(Bvy, 0~'vy) in V@ V. By Lemma 5, the matrix A lies in the real part of Endc(V @ V)
if and only if it commutes with conjugation. If we conjugate first and then apply A,
we find

(a1.10vs + a1 20 vy, az10vy + a2,29_1vl).

If we apply A first and then conjugate, we find, using the antilinearity of # and 671,
(527101)1 + 62’20/U27 61’10_11}1 + C_LLQQ_IUQ).

Comparison of the coefficients of #~'v; in the second entries yields azs = ay1. To
continue, we rewrite @, 60v; as 6271)\6*101, to obtain a; 2 = MA@z ;. The terms with v,
give nothing new. Thus R Endc(V@V') consists of those 2x2 complex matrices of

the form B
a b
A= (2 ),

However, we observe that det(A) = |a|?> — A\|b|?, which vanishes if A = 1 and a = b;
in view of Corollary 2, we conclude that we must have A = —1. We have recovered a
standard construction of the quaternions H.

As an obvious example, the group S® of unit quaternions acts on H by left multi-
plication; the endomorphism corresponding to ¢ € H is right multiplication by g.
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THEOREM 10 Let W be an irreducible real representation of G. If cW =V @ V,
where V' 22 V| the endomorphism ring Endg(W) is isomorphic to H. O

Note that we have constructed the skew field H of quaternions out of thin air.

Characters One can define the character function xy, (g) of a real representation
W just as for complex representations; it is of course real-valued. Further, distinct
irreducible real representations W, and W, yield orthogonal characters xy, and xyy,,
just as in the complex case. However, they need not be unit vectors in the L?-norm
|—=1l5- In fact, the norm gives an easy way to distinguish the three classes of real
representations.

First, we need to record the behavior of the operations r and ¢ on characters.

ProposITION 11 If W is a real representation, X., = Xw. If V is a complex
representation, x,,, = 2Rx, .

Proof The action of g € G on W is described by a real matrix A(g). The action of
g on cW is described by the same matrix A(g), reinterpreted as a complex matrix;
the trace is unchanged.

Suppose V' has the C-basis (ey,eq,...,¢,), with the action of g given by the
complex matrix B(g). Then V has the real basis (eq, ey, €g,1€3, ..., ie,). The effect
on B(g) is to replace each complex entry z = a + ib by the 2x2 matrix (¢ °). In

b a
computing the trace, each z on the diagonal is replaced by two copies of a. [

THEOREM 12 Let W be an irreducible real representation.
(a) If Endr(W) = R, then ||xy [, = 1.
(b) If Endg(W) = C, then ||xy |, = V2.
(c) If Endg(W) = H, then ||xyy, = 2.
Proof In (a), or Case 1, V = cW is irreducible and xy, = Xy 1s a unit vector.
In (b), or Case 2, cW =V &V, so that xy, = Xy + X3 Where Xy and x5 are

orthogonal unit vectors. B
In (c), or Case 3, W =VaV=VaeV, and x,, =2x,. O
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