
Real and Complex Representations

This note extends Schur’s Lemma to real representations
of a compact Lie group, expanding on some of the material

in §5 of Chapter II in Bröcker–tom Dieck.

Throughout, let G be a compact Lie group. Our object is to compute the endo-
morphism ring EndR(W ) of an irreducible real representation W by appealing to the
complex version of Schur’s Lemma.

Two constructions We need two constructions that relate real and complex rep-
resentations. Given a complex representation V of G, we may regard V as a real
vector space (of twice the dimension) and treat it as a real representation of G, the
realification rV of V . Trivially, rV = rV .

In the other direction, given a real representation W of G, we have the com-
plexification cW = C ⊗R W , equipped with the obvious actions of C and G. Then
t ⊗ W : cW ∼= cW , where t: C → C denotes the conjugation in C. (The identity
morphism does not work!)

In this note, V will always denote a complex representation and W a real repre-
sentation. We recall that rcW ∼= W ⊕W and crV ∼= V ⊕ V .

The first half of Schur’s Lemma carries over without change (by the same proof).

Lemma 1 If W1 and W2 are real irreducible representations of G, any morphism
f : W1 → W2 is either an isomorphism or zero.

Corollary 2 For any irreducible real representation W of G, the endomorphism
ring EndR(W ) is a finite-dimensional skew field over R.

Complex vector spaces with conjugation The above space cW is more than
just a complex vector space.

Definition 3 A complex vector space X has a real structure or conjugation if we
are given an involution x 7→ x that is additive and antilinear: zx = z x for z ∈ C. Its
real part <X is the real vector subspace consisting of those x ∈ X that satisfy x = x.

If X is a complex representation of G, we require the conjugation to preserve the
G-action, gx = gx; then <X is a real representation of G.

In the case of cW above, the conjugation is inherited from C and does indeed
preserve the G-action; also, <cW = 1⊗W ∼= W .

Lemma 4 If X is a complex vector space with conjugation, it is canonically isomor-
phic, as a complex vector space, to C ⊗R <X. Explicitly, it is the direct sum of the
real subspaces <X and i<X.

Proof For any x, x + x and ix − ix lie in <X, so x = (x + x)/2 + i(ix − ix)/2 ∈
<X + i<X. On the other hand, if x ∈ (<X) ∩ (i<X), we have x = iy with y ∈ <X,
and x = −iy = −x. Since x = x, this implies x = 0.
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2 Real and Complex Representations

Lemma 5 Let W be any real representation of G. Then:

(a) The complexification cW is a complex representation with conjugation;

(b) The complex endomorphism ring EndC(cW ) is a complex vector space with
conjugation;

(c) We may identify the real part <EndC(cW ) of EndC(cW ) with the real endo-
morphism ring EndR(W ) of W itself.

Proof In (a), given a complex endomorphism f of cW , we define its conjugate f by

fv = fv. (6)

It is easy to check that f is again C-linear and that this conjugation is antilinear.
In (b), suppose that f : cW → cW is an endomorphism. We decompose cW =

(1⊗RW ) ⊕ (i⊗RW ) and consider the restriction f |1⊗W . We may write f(1⊗w) =
1⊗f1w + i⊗f2w, where f1 and f2 are real endomorphisms of W . Then by C-linearity
of f , f(i⊗w) = −1⊗f2w + i⊗f1w, which shows that the real endomorphisms f1 and
f2 determine f and may be chosen arbitrarily. The conjugation simply changes the
sign of f2, so that <f is essentially just f1.

Remark It will be useful to rewrite the definition and identify the real endomor-
phisms of W with those complex endomorphisms of cW that commute with the
conjugation on cW .

Lemma 7 Given a real representation W of G, suppose that V is a self-conjugate
invariant complex subspace of cW . Then V has the form C⊗R W1, where W1 is some
invariant real subspace of W .

Proof We define the invariant subspace W1 by 1⊗W1 = V ∩(1⊗W ); since 1⊗W1 ⊂
V , we have C⊗R W1 ⊂ V . Conversely, given an element v = 1⊗w1 + i⊗w2 ∈ V , its
conjugate 1⊗w1 − i⊗w2 also lies in V , from which it follows that 1⊗w1, i⊗w2 and
1⊗ w2 all lie in V . Thus w1 and w2 lie in W1 and v ∈ C⊗R W1.

We use Lemma 5 to compute the desired endomorphism rings directly. Let W
be an irreducible real representation. We decompose the complex representation cW
into irreducible complex representations; since rcW ∼= W ⊕W , cW decomposes into
either one or two complex representations. There are three cases.

Case 1: V = cW is irreducible. By Schur’s Lemma, EndC(V ) ∼= C consists of
the endomorphisms fv = λv, for λ ∈ C. Then fv = λv = λv, so that f corresponds
to λ. As a trivial example, we have the trivial representation R of any group G.

Theorem 8 Let W be an irreducible real representation of G. If cW is irreducible
as a complex representation, the endomorphism ring EndR(W ) ∼= R consists of the
endomorphisms fw = λw with λ real.

Otherwise, we have the decomposition cW = V1 ⊕ V2 into exactly two irreducible
invariant complex subspaces. By Lemma 7, the only self-conjugate invariant complex
subspaces of cW are 0 and cW . In particular, we deduce that V1 ∩ V 1 = 0 and
V1 + V 1 = cW , so that cW = V1 ⊕ V 1. This case in turn divides into two.
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Case 2: cW = V ⊕ V , where V is irreducible and not isomorphic to V . By
Schur’s Lemma, EndC(cW ) ∼= C ⊕ C; the endomorphism corresponding to the pair
(λ, µ) ∈ C⊕ C is simply fλ,µ(v1, v2) = (λv1, µv2). The conjugation in cW is obvious,

(v1, v2) = (v2, v1), and (6) yields

fλ,µ(v1, v2) = fλ,µ(v2, v1) = (λv2, µv1) = (µv1, λv2) = fµ,λ(v1, v2).

Thus fλ,µ is real if and only if µ = λ, and then λ ∈ C determines fλ,µ.

Theorem 9 Let W be an irreducible real representation of G. If cW = V ⊕ V ,
where V is not isomorphic to V , then EndR(W ) ∼= C.

As a simple example, we have the standard representation of SO(2) on R2.

Case 3: cW = V ⊕V , where V is irreducible and V ∼= V . So cW ∼= V ⊕V , and
by Schur’s Lemma, EndC(cW ) ∼= M2(C). The 2×2 complex matrix A with entries
aj,k acts on V ⊕ V in the usual way,

A(v1, v2) = (a1,1v1 + a1,2v2, a2,1v1 + a2,2v2).

We need to be specific. We choose some isomorphism φ: V ∼= V , and use it to
form the isomorphism Φ = id ⊕ φ: V ⊕ V ∼= V ⊕ V . In order to work entirely in V ,
it will be convenient to write φv = θv, where θ: V → V is an antilinear bijection, so
that Φ(v1, v2) = (v1, θv2).

Now θ ◦θ is C-linear, and therefore has the form θθv = λv for some λ ∈ C by
Schur’s Lemma, where λ 6= 0. Moreover, by writing θ ◦θ ◦θ two different ways, θθθv =
(θθ)θv = λθv and θθθv = θ(θθv) = θ(λv) = λθv, we see that λ must be real. Further,
if we replace φ by kφ, where k is real, λ changes to k2λ, which allows us to arrange
λ = ±1 by a suitable choice of φ.

The conjugation in V ⊕ V corresponds by Φ to the conjugation (v1, v2) =
(θv2, θ

−1v1) in V ⊕V . By Lemma 5, the matrix A lies in the real part of EndC(V ⊕V )
if and only if it commutes with conjugation. If we conjugate first and then apply A,
we find

(a1,1θv2 + a1,2θ
−1v1, a2,1θv2 + a2,2θ

−1v1).

If we apply A first and then conjugate, we find, using the antilinearity of θ and θ−1,

(a2,1θv1 + a2,2θv2, a1,1θ
−1v1 + a1,2θ

−1v2).

Comparison of the coefficients of θ−1v1 in the second entries yields a2,2 = a1,1. To
continue, we rewrite a2,1θv1 as a2,1λθ−1v1, to obtain a1,2 = λa2,1. The terms with v2

give nothing new. Thus <EndC(V ⊕V ) consists of those 2×2 complex matrices of
the form

A =

(
a λb
b a

)
.

However, we observe that det(A) = |a|2 − λ|b|2, which vanishes if λ = 1 and a = b;
in view of Corollary 2, we conclude that we must have λ = −1. We have recovered a
standard construction of the quaternions H.

As an obvious example, the group S3 of unit quaternions acts on H by left multi-
plication; the endomorphism corresponding to q ∈ H is right multiplication by q.
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Theorem 10 Let W be an irreducible real representation of G. If cW = V ⊕ V ,
where V ∼= V , the endomorphism ring EndR(W ) is isomorphic to H.

Note that we have constructed the skew field H of quaternions out of thin air.

Characters One can define the character function χW (g) of a real representation
W just as for complex representations; it is of course real-valued. Further, distinct
irreducible real representations W1 and W2 yield orthogonal characters χW1

and χW2
,

just as in the complex case. However, they need not be unit vectors in the L2-norm
‖−‖2. In fact, the norm gives an easy way to distinguish the three classes of real
representations.

First, we need to record the behavior of the operations r and c on characters.

Proposition 11 If W is a real representation, χcW = χW . If V is a complex
representation, χrV = 2<χV .

Proof The action of g ∈ G on W is described by a real matrix A(g). The action of
g on cW is described by the same matrix A(g), reinterpreted as a complex matrix;
the trace is unchanged.

Suppose V has the C-basis (e1, e2, . . . , en), with the action of g given by the
complex matrix B(g). Then V has the real basis (e1, ie1, e2, ie2, . . . , ien). The effect
on B(g) is to replace each complex entry z = a + ib by the 2×2 matrix (a

b
−b
a

). In
computing the trace, each z on the diagonal is replaced by two copies of a.

Theorem 12 Let W be an irreducible real representation.

(a) If EndR(W ) ∼= R, then ‖χW‖2 = 1.

(b) If EndR(W ) ∼= C, then ‖χW‖2 =
√

2.

(c) If EndR(W ) ∼= H, then ‖χW‖2 = 2.

Proof In (a), or Case 1, V = cW is irreducible and χW = χV is a unit vector.
In (b), or Case 2, cW = V ⊕ V , so that χW = χV + χ

V
, where χV and χ

V
are

orthogonal unit vectors.
In (c), or Case 3, cW = V ⊕ V ∼= V ⊕ V , and χW = 2χV .
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