Real and Complex Representations

This note extends Schur's Lemma to real representations of a compact Lie group, expanding on some of the material in §5 of Chapter II in Bröcker-tom Dieck.

Throughout, let G be a compact Lie group. Our object is to compute the endomorphism ring $\operatorname{End}_{\mathbb{R}}(W)$ of an irreducible real representation W by appealing to the complex version of Schur's Lemma.

Two constructions We need two constructions that relate real and complex representations. Given a complex representation V of G, we may regard V as a real vector space (of twice the dimension) and treat it as a real representation of G, the *realification* rV of V. Trivially, $r\overline{V} = rV$.

In the other direction, given a real representation W of G, we have the *complexification* $cW = \mathbb{C} \otimes_{\mathbb{R}} W$, equipped with the obvious actions of \mathbb{C} and G. Then $t \otimes W: \overline{cW} \cong cW$, where $t: \mathbb{C} \to \mathbb{C}$ denotes the conjugation in \mathbb{C} . (The identity morphism does not work!)

In this note, V will always denote a complex representation and W a real representation. We recall that $rcW \cong W \oplus W$ and $crV \cong V \oplus \overline{V}$.

The first half of Schur's Lemma carries over without change (by the same proof).

LEMMA 1 If W_1 and W_2 are real irreducible representations of G, any morphism $f: W_1 \to W_2$ is either an isomorphism or zero. \Box

COROLLARY 2 For any irreducible real representation W of G, the endomorphism ring $\operatorname{End}_{\mathbb{R}}(W)$ is a finite-dimensional skew field over \mathbb{R} . \Box

Complex vector spaces with conjugation The above space cW is more than just a complex vector space.

DEFINITION 3 A complex vector space X has a *real structure* or *conjugation* if we are given an involution $x \mapsto \overline{x}$ that is additive and antilinear: $\overline{zx} = \overline{z} \, \overline{x}$ for $z \in \mathbb{C}$. Its *real part* $\Re X$ is the real vector subspace consisting of those $x \in X$ that satisfy $\overline{x} = x$.

If X is a complex representation of G, we require the conjugation to preserve the G-action, $\overline{gx} = g\overline{x}$; then $\Re X$ is a real representation of G.

In the case of cW above, the conjugation is inherited from \mathbb{C} and does indeed preserve the *G*-action; also, $\Re cW = 1 \otimes W \cong W$.

LEMMA 4 If X is a complex vector space with conjugation, it is canonically isomorphic, as a complex vector space, to $\mathbb{C} \otimes_{\mathbb{R}} \Re X$. Explicitly, it is the direct sum of the real subspaces $\Re X$ and $i\Re X$.

Proof For any $x, x + \overline{x}$ and $i\overline{x} - ix$ lie in $\Re X$, so $x = (x + \overline{x})/2 + i(i\overline{x} - ix)/2 \in \Re X + i\Re X$. On the other hand, if $x \in (\Re X) \cap (i\Re X)$, we have x = iy with $y \in \Re X$, and $\overline{x} = -iy = -x$. Since $\overline{x} = x$, this implies x = 0. \Box

110.620 Lie Grps and Lie Algs JMB File: rschur, Revision A; 18 Apr 2007; Page 1

LEMMA 5 Let W be any real representation of G. Then:

(a) The complexification cW is a complex representation with conjugation;

(b) The complex endomorphism ring $\operatorname{End}_{\mathbb{C}}(cW)$ is a complex vector space with conjugation;

(c) We may identify the real part $\Re \operatorname{End}_{\mathbb{C}}(cW)$ of $\operatorname{End}_{\mathbb{C}}(cW)$ with the real endomorphism ring $\operatorname{End}_{\mathbb{R}}(W)$ of W itself.

Proof In (a), given a complex endomorphism f of cW, we define its conjugate \overline{f} by

$$\overline{f}v = \overline{f}\overline{v}.$$
(6)

It is easy to check that \overline{f} is again \mathbb{C} -linear and that this conjugation is antilinear.

In (b), suppose that $f: cW \to cW$ is an endomorphism. We decompose $cW = (1 \otimes_{\mathbb{R}} W) \oplus (i \otimes_{\mathbb{R}} W)$ and consider the restriction $f|1 \otimes W$. We may write $f(1 \otimes w) = 1 \otimes f_1 w + i \otimes f_2 w$, where f_1 and f_2 are real endomorphisms of W. Then by \mathbb{C} -linearity of $f, f(i \otimes w) = -1 \otimes f_2 w + i \otimes f_1 w$, which shows that the real endomorphisms f_1 and f_2 determine f and may be chosen arbitrarily. The conjugation simply changes the sign of f_2 , so that $\Re f$ is essentially just f_1 . \Box

Remark It will be useful to rewrite the definition and identify the real endomorphisms of W with those complex endomorphisms of cW that commute with the conjugation on cW.

LEMMA 7 Given a real representation W of G, suppose that V is a self-conjugate invariant complex subspace of cW. Then V has the form $\mathbb{C} \otimes_{\mathbb{R}} W_1$, where W_1 is some invariant real subspace of W.

Proof We define the invariant subspace W_1 by $1 \otimes W_1 = V \cap (1 \otimes W)$; since $1 \otimes W_1 \subset V$, we have $\mathbb{C} \otimes_{\mathbb{R}} W_1 \subset V$. Conversely, given an element $v = 1 \otimes w_1 + i \otimes w_2 \in V$, its conjugate $1 \otimes w_1 - i \otimes w_2$ also lies in V, from which it follows that $1 \otimes w_1$, $i \otimes w_2$ and $1 \otimes w_2$ all lie in V. Thus w_1 and w_2 lie in W_1 and $v \in \mathbb{C} \otimes_{\mathbb{R}} W_1$. \Box

We use Lemma 5 to compute the desired endomorphism rings directly. Let W be an irreducible real representation. We decompose the complex representation cW into irreducible complex representations; since $rcW \cong W \oplus W$, cW decomposes into either one or two complex representations. There are three cases.

Case 1: V = cW is irreducible. By Schur's Lemma, $\operatorname{End}_{\mathbb{C}}(V) \cong \mathbb{C}$ consists of the endomorphisms $fv = \lambda v$, for $\lambda \in \mathbb{C}$. Then $\overline{f}v = \overline{\lambda v} = \overline{\lambda v}$, so that \overline{f} corresponds to $\overline{\lambda}$. As a trivial example, we have the trivial representation \mathbb{R} of any group G.

THEOREM 8 Let W be an irreducible real representation of G. If cW is irreducible as a complex representation, the endomorphism ring $\operatorname{End}_{\mathbb{R}}(W) \cong \mathbb{R}$ consists of the endomorphisms $fw = \lambda w$ with λ real. \Box

Otherwise, we have the decomposition $cW = V_1 \oplus V_2$ into exactly two irreducible invariant complex subspaces. By Lemma 7, the only self-conjugate invariant complex subspaces of cW are 0 and cW. In particular, we deduce that $V_1 \cap \overline{V}_1 = 0$ and $V_1 + \overline{V}_1 = cW$, so that $cW = V_1 \oplus \overline{V}_1$. This case in turn divides into two.

110.620 Lie Grps and Lie Algs JMB File: rschur, Revision A; 18 Apr 2007; Page 2

Case 2: $cW = V \oplus \overline{V}$, where V is irreducible and not isomorphic to \overline{V} . By Schur's Lemma, $\operatorname{End}_{\mathbb{C}}(cW) \cong \mathbb{C} \oplus \mathbb{C}$; the endomorphism corresponding to the pair $(\lambda, \mu) \in \mathbb{C} \oplus \mathbb{C}$ is simply $f_{\lambda,\mu}(v_1, \overline{v}_2) = (\lambda v_1, \mu \overline{v}_2)$. The conjugation in cW is obvious, $\overline{(v_1, \overline{v}_2)} = (v_2, \overline{v}_1)$, and (6) yields

$$\overline{f}_{\lambda,\mu}(v_1,\overline{v}_2) = \overline{f_{\lambda,\mu}(v_2,\overline{v}_1)} = \overline{(\lambda v_2,\mu\overline{v}_1)} = (\overline{\mu}v_1,\overline{\lambda}\overline{v}_2) = f_{\overline{\mu},\overline{\lambda}}(v_1,\overline{v}_2).$$

Thus $f_{\lambda,\mu}$ is real if and only if $\mu = \overline{\lambda}$, and then $\lambda \in \mathbb{C}$ determines $f_{\lambda,\mu}$.

THEOREM 9 Let W be an irreducible real representation of G. If $cW = V \oplus \overline{V}$, where V is not isomorphic to \overline{V} , then $\operatorname{End}_{\mathbb{R}}(W) \cong \mathbb{C}$. \Box

As a simple example, we have the standard representation of SO(2) on \mathbb{R}^2 .

Case 3: $cW = V \oplus \overline{V}$, where V is irreducible and $V \cong \overline{V}$. So $cW \cong V \oplus V$, and by Schur's Lemma, $\operatorname{End}_{\mathbb{C}}(cW) \cong M_2(\mathbb{C})$. The 2×2 complex matrix A with entries $a_{j,k}$ acts on $V \oplus V$ in the usual way,

$$A(v_1, v_2) = (a_{1,1}v_1 + a_{1,2}v_2, a_{2,1}v_1 + a_{2,2}v_2).$$

We need to be specific. We choose some isomorphism $\phi: V \cong \overline{V}$, and use it to form the isomorphism $\Phi = \mathrm{id} \oplus \phi: V \oplus V \cong V \oplus \overline{V}$. In order to work entirely in V, it will be convenient to write $\phi v = \overline{\theta v}$, where $\theta: V \to V$ is an *antilinear* bijection, so that $\Phi(v_1, v_2) = (v_1, \overline{\theta v_2})$.

Now $\theta \circ \theta$ is \mathbb{C} -linear, and therefore has the form $\theta \theta v = \lambda v$ for some $\lambda \in \mathbb{C}$ by Schur's Lemma, where $\lambda \neq 0$. Moreover, by writing $\theta \circ \theta \circ \theta$ two different ways, $\theta \theta \theta v =$ $(\theta \theta) \theta v = \lambda \theta v$ and $\theta \theta \theta v = \theta(\theta \theta v) = \theta(\lambda v) = \overline{\lambda} \theta v$, we see that λ must be real. Further, if we replace ϕ by $k\phi$, where k is real, λ changes to $k^2\lambda$, which allows us to arrange $\lambda = \pm 1$ by a suitable choice of ϕ .

The conjugation in $V \oplus \overline{V}$ corresponds by Φ to the conjugation $\overline{(v_1, v_2)} = (\theta v_2, \theta^{-1} v_1)$ in $V \oplus V$. By Lemma 5, the matrix A lies in the real part of $\operatorname{End}_{\mathbb{C}}(V \oplus V)$ if and only if it commutes with conjugation. If we conjugate first and then apply A, we find

$$(a_{1,1}\theta v_2 + a_{1,2}\theta^{-1}v_1, a_{2,1}\theta v_2 + a_{2,2}\theta^{-1}v_1)$$

If we apply A first and then conjugate, we find, using the antilinearity of θ and θ^{-1} ,

$$(\bar{a}_{2,1}\theta v_1 + \bar{a}_{2,2}\theta v_2, \bar{a}_{1,1}\theta^{-1}v_1 + \bar{a}_{1,2}\theta^{-1}v_2).$$

Comparison of the coefficients of $\theta^{-1}v_1$ in the second entries yields $a_{2,2} = \bar{a}_{1,1}$. To continue, we rewrite $\bar{a}_{2,1}\theta v_1$ as $\bar{a}_{2,1}\lambda\theta^{-1}v_1$, to obtain $a_{1,2} = \lambda\bar{a}_{2,1}$. The terms with v_2 give nothing new. Thus $\Re \operatorname{End}_{\mathbb{C}}(V \oplus V)$ consists of those 2×2 complex matrices of the form

$$A = \begin{pmatrix} a & \lambda b \\ b & \overline{a} \end{pmatrix}.$$

However, we observe that $det(A) = |a|^2 - \lambda |b|^2$, which vanishes if $\lambda = 1$ and a = b; in view of Corollary 2, we conclude that we must have $\lambda = -1$. We have recovered a standard construction of the quaternions \mathbb{H} .

As an obvious example, the group S^3 of unit quaternions acts on \mathbb{H} by left multiplication; the endomorphism corresponding to $q \in \mathbb{H}$ is right multiplication by \bar{q} .

110.620 Lie Grps and Lie Algs JMB File: rschur, Revision A; 18 Apr 2007; Page 3

THEOREM 10 Let W be an irreducible real representation of G. If $cW = V \oplus \overline{V}$, where $V \cong \overline{V}$, the endomorphism ring $\operatorname{End}_{\mathbb{R}}(W)$ is isomorphic to \mathbb{H} . \Box

Note that we have constructed the skew field \mathbb{H} of quaternions out of thin air.

Characters One can define the character function $\chi_W(g)$ of a real representation W just as for complex representations; it is of course real-valued. Further, distinct irreducible real representations W_1 and W_2 yield orthogonal characters χ_{W_1} and χ_{W_2} , just as in the complex case. However, they need not be unit vectors in the L^2 -norm $||-||_2$. In fact, the norm gives an easy way to distinguish the three classes of real representations.

First, we need to record the behavior of the operations r and c on characters.

PROPOSITION 11 If W is a real representation, $\chi_{cW} = \chi_W$. If V is a complex representation, $\chi_{rV} = 2\Re\chi_V$.

Proof The action of $g \in G$ on W is described by a real matrix A(g). The action of g on cW is described by the same matrix A(g), reinterpreted as a complex matrix; the trace is unchanged.

Suppose V has the \mathbb{C} -basis (e_1, e_2, \ldots, e_n) , with the action of g given by the complex matrix B(g). Then V has the real basis $(e_1, ie_1, e_2, ie_2, \ldots, ie_n)$. The effect on B(g) is to replace each complex entry z = a + ib by the 2×2 matrix $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. In computing the trace, each z on the diagonal is replaced by two copies of a. \Box

THEOREM 12 Let W be an irreducible real representation.

- (a) If $\operatorname{End}_{\mathbb{R}}(W) \cong \mathbb{R}$, then $\|\chi_W\|_2 = 1$.
- (b) If $\operatorname{End}_{\mathbb{R}}(W) \cong \mathbb{C}$, then $\|\chi_W\|_2 = \sqrt{2}$.
- (c) If $\operatorname{End}_{\mathbb{R}}(W) \cong \mathbb{H}$, then $\|\chi_W\|_2 = 2$.

Proof In (a), or Case 1, V = cW is irreducible and $\chi_W = \chi_V$ is a unit vector.

In (b), or Case 2, $cW = V \oplus \overline{V}$, so that $\chi_W = \chi_V + \chi_{\overline{V}}$, where χ_V and $\chi_{\overline{V}}$ are orthogonal unit vectors.

In (c), or Case 3, $cW = V \oplus \overline{V} \cong V \oplus V$, and $\chi_W = 2\chi_V$. \Box