The Riemann Integral in Two Dimensions
See also Step Functions in Two Dimensions, in this series.
References are to Salas-Hille’s Calculus, 7th Edition.

Two separate tasks: we wish to define and compute the definite integral

/] £z dy

of a function f over the rectangle R given by a < x < b, ¢ < y < d. The Riemann
integral is based on two simple non-negotiable axioms:

(i) If f <gon R, then [[ f(x,y)dzdy < [[rg(z,y)dx dy;

(ii) Some functions we already know how to integrate, namely step func- (1)
tions.
If s and t are step functions on R such that
s(z,y) < flz,y) < t(x,y)  forall (z,y) € R, (2)

axiom (i) requires

|| s@ydedy < [[ fay)dzdy < [[ ta,y)dzdy, )

and axiom (ii) specifies the two outer integrals. Moreover, we know that because
s < t, we have [[ps(z,y)drdy < [[pt(z,y)dxdy. The idea is that for favorable f,
the inequality (3) is sufficient to determine the integral of f completely.

The Riemann integral

DEFINITION 4 (cf. Defn. 16.2.3) Given a function f on R, we call f Riemann-
integrable on R if there exists a unique number I such that

/LS(x,y)dxdy <I< //Rt(l‘,y)d:vdy (5)

whenever s and t are step functions that satisfy (2). If this is the case, we define
[fr f(x,y)dxdy = I and call it the Riemann integral of f over R.

Note that f must be bounded or the definition breaks down; unless f is bounded
below, s does not exist, and unless f is bounded above, ¢ does not exist.
We have a squeeze principle: f is (Riemann-) integrable if and only if the difference

m n

//R t(z,y)dx dy — //R s(z,y)dedy =33 (t; — s;;) area(R;;) (6)

i=1j=1

can be made arbitrarily small for suitable choices of s and . Here we find it convenient
to use (as we may) the same partition P for both s and ¢. Moreover, it is not necessary
to check all step functions.

LEMMA 7 Suppose given a function f on R and a number I. Suppose there are
step functions s and t that satisfy equations (2) and (5) and make the difference (6)
arbitrarily small. Then f is integrable and [[g f(z,y)dxdy = I.
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2 The Riemann Integral in Two Dimensions

Elementary properties (cf. p. 1046) These all follow directly from the correspond-
ing statements for step functions, with the help of Lemma 7.

THEOREM 8 Let f and g be functions on the rectangle R.
(a) If f is integrable on R and k is constant, then kf is integrable on R and

//R kf(x,y)de dy = k://R (@, y)dz dy. 9)

(b) If f and g are integrable on R, so is f + g, and

//Rf(x,y)—i-g(x,y) dxdy://Rf(x,y)dxdy—l—//Rg(x,y)dxdy; (10)

(c) If f and g are integrable on R and f(x,y) < g(z,y) for all (x,y) € R, then
axiom (1)(i) holds,

//Rf(w,y)dxdyS//Rg(x,y)dxdy (11)

(d) If we slice the rectangle R into two rectangles R' and R" by the line x = e or
= e, then f is integrable on R if and only if it is integrable on both R’ and R, and

we have
J] fadzdy = [| f@yazdy+ [| fay)dzdy. (12)
Evaluation Let us fix y and consider the integral with respect to x,
b
Fly) = [ Sy (13)

THEOREM 14 (cf. (16.4.1)) Suppose f is integrable on R and that the integral (13)
exists for all y (i.e. ¢ <y < d). Then F is integrable on [c,d], and

/CdF(y)dy—//Rf(:v,y)dwdy- (15)

Proof Choose step functions s and t such that s < f <t, and define

S = [[ sy, T = [[ ta.y)d

Then S(y) < F(y) < T(y) for all y. But S and T are again step functions, and

/Cds(y)dyszRss//Rfs//RtZ/CdT(y)dy,

in abbreviated notation. But the difference

/cd T(y)dy — /Cd S(y)dy = //R(t(g;,y) — s(z,y)) dv dy

is arbitrarily small, and the squeeze principle (in one dimension) applies, to show that
F ' is integrable and that equation (15) holds. W
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