The Riemann Integral in Two Dimensions

See also Step Functions in Two Dimensions, in this series.
References are to Salas-Hille's Calculus, 7th Edition.
Two separate tasks: we wish to define and compute the definite integral

$$
\iint_{R} f(x, y) d x d y
$$

of a function f over the rectangle R given by $a \leq x \leq b, c \leq y \leq d$. The Riemann integral is based on two simple non-negotiable axioms:
(i) If $f \leq g$ on R, then $\iint_{R} f(x, y) d x d y \leq \iint_{R} g(x, y) d x d y$;
(ii) Some functions we already know how to integrate, namely step functions.
If s and t are step functions on R such that

$$
\begin{equation*}
s(x, y) \leq f(x, y) \leq t(x, y) \quad \text { for all }(x, y) \in R \tag{2}
\end{equation*}
$$

axiom (i) requires

$$
\begin{equation*}
\iint_{R} s(x, y) d x d y \leq \iint_{R} f(x, y) d x d y \leq \iint_{R} t(x, y) d x d y \tag{3}
\end{equation*}
$$

and axiom (ii) specifies the two outer integrals. Moreover, we know that because $s \leq t$, we have $\iint_{R} s(x, y) d x d y \leq \iint_{R} t(x, y) d x d y$. The idea is that for favorable f, the inequality (3) is sufficient to determine the integral of f completely.

The Riemann integral

Definition 4 (cf. Defn. 16.2.3) Given a function f on R, we call f Riemannintegrable on R if there exists a unique number I such that

$$
\begin{equation*}
\iint_{R} s(x, y) d x d y \leq I \leq \iint_{R} t(x, y) d x d y \tag{5}
\end{equation*}
$$

whenever s and t are step functions that satisfy (2). If this is the case, we define $\iint_{R} f(x, y) d x d y=I$ and call it the Riemann integral of f over R.

Note that f must be bounded or the definition breaks down; unless f is bounded below, s does not exist, and unless f is bounded above, t does not exist.

We have a squeeze principle: f is (Riemann-) integrable if and only if the difference

$$
\begin{equation*}
\iint_{R} t(x, y) d x d y-\iint_{R} s(x, y) d x d y=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(t_{i j}-s_{i j}\right) \operatorname{area}\left(R_{i j}\right) \tag{6}
\end{equation*}
$$

can be made arbitrarily small for suitable choices of s and t. Here we find it convenient to use (as we may) the same partition P for both s and t. Moreover, it is not necessary to check all step functions.

Lemma 7 Suppose given a function f on R and a number I. Suppose there are step functions s and t that satisfy equations (2) and (5) and make the difference (6) arbitrarily small. Then f is integrable and $\iint_{R} f(x, y) d x d y=I$.

Elementary properties (cf. p. 1046) These all follow directly from the corresponding statements for step functions, with the help of Lemma 7.

Theorem 8 Let f and g be functions on the rectangle R.
(a) If f is integrable on R and k is constant, then $k f$ is integrable on R and

$$
\begin{equation*}
\iint_{R} k f(x, y) d x d y=k \iint_{R} f(x, y) d x d y . \tag{9}
\end{equation*}
$$

(b) If f and g are integrable on R, so is $f+g$, and

$$
\begin{equation*}
\iint_{R} f(x, y)+g(x, y) d x d y=\iint_{R} f(x, y) d x d y+\iint_{R} g(x, y) d x d y \tag{10}
\end{equation*}
$$

(c) If f and g are integrable on R and $f(x, y) \leq g(x, y)$ for all $(x, y) \in R$, then axiom (1)(i) holds,

$$
\begin{equation*}
\iint_{R} f(x, y) d x d y \leq \iint_{R} g(x, y) d x d y . \tag{11}
\end{equation*}
$$

(d) If we slice the rectangle R into two rectangles R^{\prime} and $R^{\prime \prime}$ by the line $x=e$ or $y=e$, then f is integrable on R if and only if it is integrable on both R^{\prime} and $R^{\prime \prime}$, and we have

$$
\begin{equation*}
\iint_{R} f(x, y) d x d y=\iint_{R^{\prime}} f(x, y) d x d y+\iint_{R^{\prime \prime}} f(x, y) d x d y . \tag{12}
\end{equation*}
$$

Evaluation Let us fix y and consider the integral with respect to x,

$$
\begin{equation*}
F(y)=\int_{a}^{b} f(x, y) d x \tag{13}
\end{equation*}
$$

Theorem 14 (cf. (16.4.1)) Suppose f is integrable on R and that the integral (13) exists for all y (i.e. $c \leq y \leq d$). Then F is integrable on $[c, d]$, and

$$
\begin{equation*}
\int_{c}^{d} F(y) d y=\iint_{R} f(x, y) d x d y \tag{15}
\end{equation*}
$$

Proof Choose step functions s and t such that $s \leq f \leq t$, and define

$$
S(y)=\iint_{R} s(x, y) d x, \quad T(y)=\iint_{R} t(x, y) d x .
$$

Then $S(y) \leq F(y) \leq T(y)$ for all y. But S and T are again step functions, and

$$
\int_{c}^{d} S(y) d y=\iint_{R} s \leq \iint_{R} f \leq \iint_{R} t=\int_{c}^{d} T(y) d y
$$

in abbreviated notation. But the difference

$$
\int_{c}^{d} T(y) d y-\int_{c}^{d} S(y) d y=\iint_{R}(t(x, y)-s(x, y)) d x d y
$$

is arbitrarily small, and the squeeze principle (in one dimension) applies, to show that F is integrable and that equation (15) holds.

