Linear Transformations and Matrices

References are to Anton-Rorres, 7th Edition
See also "Coordinate Vectors", in this series
We wish to describe a general linear transformation $T: V \rightarrow W$ in terms of coordinate systems on V and W. Suppose we are given bases $B=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ of V and $C=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{m}\right\}$ of W. We use the resulting linear isomorphisms $L_{B}: \mathbf{R}^{n} \rightarrow V$ and $L_{C}: \mathbf{R}^{m} \rightarrow W$ to convert T to a linear transformation $\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, which we know how to handle. Diagramatically, we have

Definition 1 The matrix of $T: V \rightarrow W$ with respect to the bases B and C is the matrix A of the composite linear transformation $L_{C}^{-1} \circ T \circ L_{B}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. We write it $[T]_{C, B}$ (the order here may seem perverse; but see below). If $W=V$ and $C=B$, we write simply $[T]_{B}$.

Remark If $W=V$ but we choose different bases B and C of V, the matrix $[I]_{B, C}$ of the identity linear transformation $I: V \rightarrow V$ is the transition matrix P from C to B. This is Theorem 8.5.1. To see this, just compare the definitions (and watch the order of B and C !).

To make A explicit, we need to compute the effect of this linear transformation on \mathbf{e}_{i}. First, $L_{B}\left(\mathbf{e}_{i}\right)=\mathbf{b}_{i}$. Then we apply T, to get $T\left(\mathbf{b}_{i}\right)$. Finally, $L_{C}^{-1}\left(T\left(\mathbf{b}_{i}\right)\right)$ is by definition the coordinate vector $\left[T\left(\mathbf{b}_{i}\right)\right]_{C}$ of $T\left(\mathbf{b}_{i}\right)$ with respect to C. Thus the matrix A of T is

$$
\begin{equation*}
A=\left[\left[T\left(\mathbf{b}_{1}\right)\right]_{C}\left|\left[T\left(\mathbf{b}_{2}\right)\right]_{C}\right| \ldots \mid\left[T\left(\mathbf{b}_{n}\right)\right]_{C}\right] \tag{2}
\end{equation*}
$$

It does what we expect on coordinate vectors.
THEOREM 3 If A is the matrix of $T: V \rightarrow W$ with respect to bases B and C, then

$$
\begin{equation*}
A[\mathbf{v}]_{B}=[T(\mathbf{v})]_{C} \quad \text { for all } \mathbf{v} \in V \tag{4}
\end{equation*}
$$

Proof This is simply the translation of the statement

$$
\left(L_{C}^{-1} \circ T \circ L_{B}\right)\left(L_{B}^{-1}(\mathbf{v})\right)=L_{C}^{-1}(T(\mathbf{v}))
$$

Composition Matrices behave correctly under composition of linear transformations.

Theorem 5 (=Thm. 8.4.2) Let V, W, and X be vector spaces with bases B, C and D respectively. If A is the matrix of the linear transformation $T: V \rightarrow W$ with respect to B and C, and A^{\prime} is the matrix of the linear transformation $U: W \rightarrow X$, then the matrix of the composite linear transformation $U \circ T: V \rightarrow X$ is the product matrix $A^{\prime} A$. In symbols, $[U \circ T]_{D, B}=[U]_{D, C} \circ[T]_{C, B}$.

Proof This is the translation of the statement

$$
L_{D}^{-1} \circ(U \circ T) \circ L_{B}=\left(L_{D}^{-1} \circ U \circ L_{C}\right) \circ\left(L_{C}^{-1} \circ T \circ L_{B}\right) .
$$

The relevant diagram is

Similarity We need to know the effect of a change of basis on the matrix of a linear operator $T: V \rightarrow V$.

Theorem 6 (=Thm. 8.5.2) Let A be the matrix of the linear operator $T: V \rightarrow V$ with respect to the basis B of V. Let C be another basis of V, with P the transition matrix from C to B. Then the matrix of T with respect to C is $P^{-1} A P$. In symbols,

$$
\begin{equation*}
[T]_{C}=P^{-1}[T]_{B} P \tag{7}
\end{equation*}
$$

Proof This translates the obvious statement

$$
L_{C}^{-1} \circ T \circ L_{C}=\left(L_{C}^{-1} \circ L_{B}\right) \circ\left(L_{B}^{-1} \circ T \circ L_{B}\right) \circ\left(L_{B}^{-1} \circ L_{C}\right)
$$

Change of basis The general case is no harder.
Theorem 8 Let B and B^{\prime} be bases of V, and P the transition matrix from B^{\prime} to B. Let C and C^{\prime} be bases of W, and Q the transition matrix from C^{\prime} to C. If the matrix of $T: V \rightarrow W$ with respect to B and C is A, then the matrix of T with respect to B^{\prime} and C^{\prime} is $Q^{-1} A P$.

Proof This translates the statement

$$
L_{C^{\prime}}^{-1} \circ T \circ L_{B^{\prime}}=\left(L_{C^{\prime}}^{-1} \circ L_{C}\right) \circ\left(L_{C}^{-1} \circ T \circ L_{B}\right) \circ\left(L_{B}^{-1} \circ L_{B^{\prime}}\right) .
$$

