Linear System Example: Repeated Real Root

We solve Example 2 of $\S 56$ in [Simmons, Second edition], on p. 431-2,

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=3 x-4 y \\
\frac{d y}{d t}=x-y
\end{array}\right.
$$

by an alternate method. We apply the Laplace transform with the generic initial conditions $x(0)=k_{1}$ and $y(0)=k_{2}$ to get

$$
\left\{\begin{array} { r l }
{ p X - k _ { 1 } } & { = 3 X - 4 Y } \\
{ p Y - k _ { 2 } } & { = X - Y }
\end{array} \quad \text { or } \quad \left\{\begin{array}{rl}
(3-p) X-4 Y & =-k_{1} \\
X-(1+p) Y & =-k_{2}
\end{array}\right.\right.
$$

We solve these simultaneous linear equations for X and Y by elimination,

$$
\left\{\begin{array}{rl}
{[4 \cdot 1-(1+p)(3-p)] X} & =-4 k_{2}+(1+p) k_{1}
\end{array}=(p+1) k_{1}-4 k_{2}, ~=-(3-p) k_{2}+k_{1}=k_{1}+(p-3) k_{2} .\right.
$$

The expressions in [] are both

$$
4-(1+p)(3-p)=4-\left(3+2 p-p^{2}\right)=p^{2}-2 p+1=(p-1)^{2} .
$$

We therefore divide out by this and express everything in terms of $p-1$, with an eye towards using the shift formula for Laplace transforms,

$$
\left\{\begin{array}{l}
X=\frac{(p+1) k_{1}-4 k_{2}}{(p-1)^{2}}=\frac{(p-1) k_{1}+2 k_{1}-4 k_{2}}{(p-1)^{2}}=\frac{k_{1}}{p-1}+\frac{2 k_{1}-4 k_{2}}{(p-1)^{2}} \\
Y=\frac{k_{1}+(p-3) k_{2}}{(p-1)^{2}}=\frac{(p-1) k_{2}+k_{1}-2 k_{2}}{(p-1)^{2}}=\frac{k_{2}}{p-1}+\frac{k_{1}-2 k_{2}}{(p-1)^{2}}
\end{array}\right.
$$

Finally, we apply the inverse Laplace transform and find

$$
\left\{\begin{array}{l}
x=k_{1} e^{t}+\left(2 k_{1}-4 k_{2}\right) t e^{t}=\left[k_{1}+\left(2 k_{1}-4 k_{2}\right) t\right] e^{t} \\
y=k_{2} e^{t}+\left(k_{1}-2 k_{2}\right) t e^{t}=\left[k_{2}+\left(k_{1}-2 k_{2}\right) t\right] e^{t}
\end{array}\right.
$$

This yields the solution (23) in the book if we take $k_{1}=2$ and $k_{2}=1$, and the solution (25) if we take $k_{1}=1$ and $k_{2}=0$. The correct values of k_{1} and k_{2} to use are obvious from the initial conditions. Moreover, we recover (26) if we put $c_{1}=k_{2}$ and $c_{2}=k_{1}-2 k_{2}$.

Compare this treatment with the traditional one in the book to decide which is shorter or easier or more efficient. Draw your own conclusions.

