Linear System Example: Distinct Real Roots

We solve Example 1 of $\S 56$ in [Simmons, Second edition], on p. 429,

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x+y \\
\frac{d y}{d t}=4 x-2 y
\end{array}\right.
$$

by an alternate method. We apply the Laplace transform with the generic initial conditions $x(0)=k_{1}$ and $y(0)=k_{2}$ to get

$$
\left\{\begin{array} { r l }
{ p X - k _ { 1 } } & { = X + Y } \\
{ p Y - k _ { 2 } } & { = 4 X - 2 Y }
\end{array} \quad \text { or } \quad \left\{\begin{array}{rl}
(1-p) X+Y & =-k_{1} \\
4 X+(-2-p) Y & =-k_{2}
\end{array}\right.\right.
$$

The resemblance to (9) is not accidental. We solve these simultaneous linear equations for X and Y by elimination,

$$
\left\{\begin{array}{l}
{[(-2-p)(1-p)-1 \cdot 4] X=-(-2-p) k_{1}+k_{2}=p k_{1}+2 k_{1}+k_{2}} \\
{[(1-p)(-2-p)-4 \cdot 1] Y=-(1-p) k_{2}+4 k_{1}=p k_{2}+4 k_{1}-k_{2}}
\end{array}\right.
$$

The expressions in [] are both

$$
(-2-p)(1-p)-4=p^{2}+p-6=(p+3)(p-2)
$$

We therefore divide out by this and use (easy) partial fractions,

$$
\left\{\begin{aligned}
X & =\frac{p k_{1}+2 k_{1}+k_{2}}{(p+3)(p-2)}=\frac{4 k_{1}+k_{2}}{5(p-2)}+\frac{k_{1}-k_{2}}{5(p+3)} \\
Y & =\frac{p k_{2}+4 k_{1}-k_{2}}{(p+3)(p-2)}=\frac{4 k_{1}+k_{2}}{5(p-2)}+\frac{-4 k_{1}+4 k_{2}}{5(p+3)}
\end{aligned}\right.
$$

Finally, we apply the inverse Laplace transform and find

$$
\left\{\begin{array}{l}
x=\frac{4 k_{1}+k_{2}}{5} e^{2 t}+\frac{k_{1}-k_{2}}{5} e^{-3 t} \\
y=\frac{4 k_{1}+k_{2}}{5} e^{2 t}-\frac{4\left(k_{1}-k_{2}\right)}{5} e^{-3 t}
\end{array}\right.
$$

This agrees with (12) in the book, if we take $c_{1}=\frac{k_{1}-k_{2}}{5}$ and $c_{2}=\frac{4 k_{1}+k_{2}}{5}$.
Compare this treatment with the traditional one in the book to decide which is shorter or easier or more efficient. Draw your own conclusions.

