First Order Linear Differential Equations

The general first-order linear ordinary differential operator may be written formally as

$$
L=a(x) D+b(x),
$$

where D denotes $d / d x$. It acts on any differentiable function y of x to give

$$
L(y)=a(x) \frac{d y}{d x}+b(x) y .
$$

The homogeneous case The general homogeneous first-order linear ordinary differential equation may be written

$$
\begin{equation*}
L(y) \equiv a(x) \frac{d y}{d x}+b(x) y=0 \tag{1}
\end{equation*}
$$

It is separable, and so easily solved, and the solution always has the form $y=A u$, where A is an arbitrary constant.
Example Solve the differential equation

$$
\begin{equation*}
L(y) \equiv x^{3} \frac{d y}{d x}+4 x^{2} y=0 \tag{2}
\end{equation*}
$$

We separate the variables to get the equation of differentials

$$
\frac{d y}{y}=-4 \frac{d x}{x}
$$

which integrates to give (with a little cleaning up)

$$
\log y=-4 \log x+C=\log \left(x^{-4}\right)+C
$$

We exponentiate this to give the solution in the desired form

$$
\begin{equation*}
y=e^{\log \left(x^{-4}\right)} e^{C}=A x^{-4} \tag{3}
\end{equation*}
$$

where we write the arbitrary constant as $A=e^{C}$.
By linearity, it is enough to find one nontrivial solution u of equation (2) and multiply it by the arbitrary constant A.
(continued on other side)

The nonhomogeneous case The general nonhomogeneous first-order linear ordinary differential equation may be written

$$
\begin{equation*}
L(y) \equiv a(x) \frac{d y}{d x}+b(x) y=Q(x) \tag{4}
\end{equation*}
$$

We use the method of variation of parameter(s). The idea is to put $y(x)=A(x) u(x)$, where u is a solution of the corresponding homogeneous equation equation (1), except that the parameter A is now allowed to vary. By the product rule, $L(y)$ has some terms with $A(x)$ as a factor, and some terms with $A^{\prime}(x)$ as a factor. The point is that the terms with A must cancel, because $L(A u)=0$ if we choose A to be constant, by our choice of u. (This provides a useful check on our calculations.) Then equation (4) reduces to an equation for $A^{\prime}(x)$, which is to be integrated to give $A(x)$ and hence the general solution y.
Example Solve the differential equation

$$
\begin{equation*}
L(y) \equiv x^{3} \frac{d y}{d x}+4 x^{2} y=x-1 \tag{5}
\end{equation*}
$$

In view of equation (3), we put $y(x)=A(x) x^{-4}$. Then

$$
L(y)=x^{3} A^{\prime}(x) x^{-4}-4 x^{3} A(x) x^{-5}+4 x^{2} A(x) x^{-4}=A^{\prime}(x) x^{-1} .
$$

Observe that the terms with $A(x)$ cancel. Thus equation (5) reduces to $A^{\prime}(x)=$ $x(x-1)$, which integrates to give $A(x)=x^{3} / 3-x^{2} / 2+C$. The general solution of equation (5) is therefore

$$
\begin{equation*}
y=\frac{A(x)}{x^{4}}=\frac{1}{3 x}-\frac{1}{2 x^{2}}+\frac{C}{x^{4}}, \tag{6}
\end{equation*}
$$

where C is the arbitrary constant.

