Inverse Function Theorem

The contraction mapping theorem is a convenient way to prove existence theorems such as the Inverse Function Theorem in multivariable calculus.

Recall that a map $f: U \rightarrow \mathbb{R}^{n}$ (where U is open in \mathbb{R}^{n}) is differentiable at a point $x \in U$ if we can write

$$
\begin{equation*}
f(x+h)=f(x)+A h+e(h), \tag{1}
\end{equation*}
$$

where $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation (equivalently, an $n \times n$ matrix) and $\|e(h)\| /\|h\| \rightarrow 0$ as $h \rightarrow 0$. The derivative of f at x is $f^{\prime}(x)=A$. If $f^{\prime}(x)$ is a continuous function of x, f is said to have class C^{1}. The norm $\|A\|$ of a linear transformation A is defined to satisfy $\|A x\| \leq\|A\|\|x\|$ for all x.

We need the following standard result.
Lemma 2 Suppose $\left\|f^{\prime}(x)\right\| \leq M$ on some disk D. Then for any points $x, x+h \in D$, $\|f(x+h)-f(x)\| \leq M\|h\|$.

Theorem 3 Let U be an open set in \mathbb{R}^{n}, and $f: U \rightarrow \mathbb{R}^{n}$ a differentiable function of class C^{1}. Suppose $x_{0} \in U$ is a point where $f^{\prime}\left(x_{0}\right)$ is invertible. Then there exist neighborhoods $U^{\prime} \subset U$ of x_{0} and V of $y_{0}=f\left(x_{0}\right)$ such that $f \mid U^{\prime}: U^{\prime} \rightarrow V$ is a bijection. Further, the inverse $g: V \rightarrow U^{\prime}$ is differentiable of class C^{1}, with derivative $g^{\prime}(y)=f^{\prime}(g(y))^{-1}$. (That is, f is a local diffeomorphism near x_{0}.)

Proof We first simplify. We may assume $x_{0}=y_{0}=0$. Further, we may assume $f^{\prime}(0)=I$; otherwise we replace f by $B^{-1} \circ f$, where $B=f^{\prime}(0)$ (in effect, a linear change of coordinates in one copy of \mathbb{R}^{n}).

We restrict attention to the disk $D=\left\{x \in \mathbb{R}^{n}:\|x\| \leq \delta\right\}$, where δ is chosen small enough to make $D \subset U$ and $\left\|f^{\prime}(x)-I\right\| \leq \frac{1}{2}$ for all $x \in D$ (possible because f has class C^{1}). Put $w(x)=f(x)-x$; then $w^{\prime}(x)=f^{\prime}(x)-I$, and by Lemma 2 , $\|w(x+h)-w(x)\| \leq \frac{1}{2}\|h\|$. In terms of f, this is

$$
\begin{equation*}
\|f(x+h)-f(x)-h\| \leq \frac{1}{2}\|h\| . \tag{4}
\end{equation*}
$$

We take V as the open disk $\left\{y \in \mathbb{R}^{n}:\|y\|<\frac{1}{2} \delta\right\}$. We assert that given any $y \in V$, there is a unique $x \in D$ such that $f(x)=y$; we then define $g(y)=x$.

We define u : $D \rightarrow D$ by $u(x)=x+(y-f(x))$; then $f(x)=y$ if and only if x is a fixed point of u, i. e. $u(x)=x$. (The motivation for the definition of u is that if x is an approximation to the desired value, with error $y-f(x), u(x)$ should be a better approximation, because f is in some sense close to the identity function.)

We must check that $u(x)$ does in fact lie in D. If we set $x=0$ in (4), we obtain $\|f(h)-h\| \leq \frac{1}{2}\|h\| \leq \frac{1}{2} \delta$ for any $h \in D$. Replacing h here by x and using the triangle inequality, we deduce that

$$
\|u(x)\| \leq\|y\|+\|f(x)-x\|<\frac{1}{2} \delta+\frac{1}{2} \delta=\delta .
$$

Next, we check that u is a contraction mapping (and hence automatically continuous). From the definition,

$$
u(x+h)-u(x)=-f(x+h)+f(x)+h
$$

Then by (4),

$$
\|u(x+h)-u(x)\|=\|f(x+h)-f(x)-h\| \leq \frac{1}{2}\|h\|,
$$

as required (with contracting factor $\frac{1}{2}$).
We took D closed in order to make it a complete metric space. Then the Contraction Mapping Theorem yields a unique fixed point x of u; in fact, we saw that $x=u(x)$ is an interior point of D. We take U^{\prime} as the open set $f^{-1}(V) \cap \operatorname{Int} D$.

To see that g is continuous, take any two points $y, y+k \in V$ and put $x=g(y)$ and $x+h=g(y+k)$. Then (4) becomes $\|k-h\| \leq \frac{1}{2}\|h\|$. By the triangle inequality, $\|h\| \leq\|h-k\|+\|k\| \leq \frac{1}{2}\|h\|+\|k\|$. So $\frac{1}{2}\|h\| \leq\|k\|$ or, more conveniently,

$$
\begin{equation*}
\|h\| \leq 2\|k\| \tag{5}
\end{equation*}
$$

We can ensure $\|h\|<\epsilon$ simply by taking $\|k\|<\frac{1}{2} \epsilon$.
As for differentiability of g,(1) becomes

$$
\begin{equation*}
y+k=y+A[g(y+k)-g(y)]+e(h) . \tag{6}
\end{equation*}
$$

Now $\|A x-x\|=\|(A-I) x\| \leq \frac{1}{2}\|x\|$, from which it is clear that A has zero kernel and is therefore invertible. We apply A^{-1} to (6) and rearrange, to obtain

$$
g(y+k)=g(y)+A^{-1} k-A^{-1} e(h) .
$$

With the help of (5), we see that

$$
\frac{\left\|A^{-1} e(h)\right\|}{\|k\|} \leq\left\|A^{-1}\right\| \frac{\|e(h)\|}{\|h\|} \frac{\|h\|}{\|k\|} \leq 2\left\|A^{-1}\right\| \frac{\|e(h)\|}{\|h\|} \longrightarrow 0
$$

as $k \rightarrow 0$. Comparison with (1)) shows that g is differentiable at y with derivative $g^{\prime}(y)=A^{-1}$. Finally, the formula for $g^{\prime}(y)$ is visibly continuous in y.
Remark If we know that g is differentiable, the chain rule gives the derivative $g^{\prime}(y)$ easily. The point is to prove that g is differentiable.

Remark The above proof works in any Banach space, except that to see that A^{-1} exists, one writes it as the sum of the convergent series

$$
A^{-1}=I-T+T^{2}-T^{3}+\ldots,
$$

where $A=I+T$ with $\|T\| \leq \frac{1}{2}$.

