Inverse Function Theorem

The contraction mapping theorem is a convenient way to prove existence theorems such as the Inverse Function Theorem in multivariable calculus.

Recall that a map $f: U \to \mathbb{R}^n$ (where U is open in \mathbb{R}^n) is differentiable at a point $x \in U$ if we can write

$$f(x+h) = f(x) + Ah + e(h),$$
 (1)

where $A: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation (equivalently, an $n \times n$ matrix) and $\|e(h)\|/\|h\| \to 0$ as $h \to 0$. The *derivative* of f at x is f'(x) = A. If f'(x) is a continuous function of x, f is said to have class C^1 . The norm $\|A\|$ of a linear transformation A is defined to satisfy $\|Ax\| \leq \|A\| \|x\|$ for all x.

We need the following standard result.

LEMMA 2 Suppose $||f'(x)|| \leq M$ on some disk D. Then for any points $x, x+h \in D$, $||f(x+h) - f(x)|| \leq M ||h||$. \Box

THEOREM 3 Let U be an open set in \mathbb{R}^n , and $f: U \to \mathbb{R}^n$ a differentiable function of class C^1 . Suppose $x_0 \in U$ is a point where $f'(x_0)$ is invertible. Then there exist neighborhoods $U' \subset U$ of x_0 and V of $y_0 = f(x_0)$ such that $f|U': U' \to V$ is a bijection. Further, the inverse $g: V \to U'$ is differentiable of class C^1 , with derivative $g'(y) = f'(g(y))^{-1}$. (That is, f is a local diffeomorphism near x_0 .)

Proof We first simplify. We may assume $x_0 = y_0 = 0$. Further, we may assume f'(0) = I; otherwise we replace f by $B^{-1} \circ f$, where B = f'(0) (in effect, a linear change of coordinates in one copy of \mathbb{R}^n).

We restrict attention to the disk $D = \{x \in \mathbb{R}^n : ||x|| \leq \delta\}$, where δ is chosen small enough to make $D \subset U$ and $||f'(x) - I|| \leq \frac{1}{2}$ for all $x \in D$ (possible because f has class C^1). Put w(x) = f(x) - x; then w'(x) = f'(x) - I, and by Lemma 2, $||w(x+h) - w(x)|| \leq \frac{1}{2}||h||$. In terms of f, this is

$$||f(x+h) - f(x) - h|| \le \frac{1}{2} ||h||.$$
(4)

We take V as the open disk $\{y \in \mathbb{R}^n : \|y\| < \frac{1}{2}\delta\}$. We assert that given any $y \in V$, there is a unique $x \in D$ such that f(x) = y; we then define g(y) = x.

We define $u: D \to D$ by u(x) = x + (y - f(x)); then f(x) = y if and only if x is a fixed point of u, i.e. u(x) = x. (The motivation for the definition of u is that if x is an approximation to the desired value, with error y - f(x), u(x) should be a better approximation, because f is in some sense close to the identity function.)

We must check that u(x) does in fact lie in D. If we set x = 0 in (4), we obtain $||f(h) - h|| \le \frac{1}{2}||h|| \le \frac{1}{2}\delta$ for any $h \in D$. Replacing h here by x and using the triangle inequality, we deduce that

$$||u(x)|| \le ||y|| + ||f(x) - x|| < \frac{1}{2}\delta + \frac{1}{2}\delta = \delta.$$

Next, we check that u is a contraction mapping (and hence automatically continuous). From the definition,

$$u(x+h) - u(x) = -f(x+h) + f(x) + h.$$

110.413 Intro to Topology

JMB File: invfnthm, Rev. A; 2 May 2003; Page 1

Then by (4),

$$||u(x+h) - u(x)|| = ||f(x+h) - f(x) - h|| \le \frac{1}{2}||h||,$$

as required (with contracting factor $\frac{1}{2}$).

We took D closed in order to make it a complete metric space. Then the Contraction Mapping Theorem yields a unique fixed point x of u; in fact, we saw that x = u(x) is an *interior* point of D. We take U' as the open set $f^{-1}(V) \cap \text{Int } D$.

To see that g is continuous, take any two points $y, y + k \in V$ and put x = g(y)and x + h = g(y + k). Then (4) becomes $||k - h|| \le \frac{1}{2}||h||$. By the triangle inequality, $||h|| \le ||h - k|| + ||k|| \le \frac{1}{2}||h|| + ||k||$. So $\frac{1}{2}||h|| \le ||k||$ or, more conveniently,

$$\|h\| \le 2\|k\|.$$
(5)

We can ensure $||h|| < \epsilon$ simply by taking $||k|| < \frac{1}{2}\epsilon$.

As for differentiability of g, (1) becomes

$$y + k = y + A[g(y+k) - g(y)] + e(h).$$
(6)

Now $||Ax - x|| = ||(A - I)x|| \le \frac{1}{2}||x||$, from which it is clear that A has zero kernel and is therefore invertible. We apply A^{-1} to (6) and rearrange, to obtain

$$g(y+k) = g(y) + A^{-1}k - A^{-1}e(h).$$

With the help of (5), we see that

$$\frac{\|A^{-1}e(h)\|}{\|k\|} \le \|A^{-1}\| \frac{\|e(h)\|}{\|h\|} \frac{\|h\|}{\|k\|} \le 2\|A^{-1}\| \frac{\|e(h)\|}{\|h\|} \longrightarrow 0$$

as $k \to 0$. Comparison with (1)) shows that g is differentiable at y with derivative $g'(y) = A^{-1}$. Finally, the formula for g'(y) is visibly continuous in y. \Box

Remark If we know that g is differentiable, the chain rule gives the derivative g'(y) easily. The point is to prove that g is differentiable.

Remark The above proof works in any Banach space, except that to see that A^{-1} exists, one writes it as the sum of the convergent series

$$A^{-1} = I - T + T^2 - T^3 + \dots,$$

where A = I + T with $||T|| \le \frac{1}{2}$.