Integration on Manifolds and Lie Groups

This note fills in some details for §5 in Chapter I of Bröcker-tom Dieck.

First, we review some basic material on integration on manifolds.

Integration on a smooth manifold Let M be an *oriented* smooth *n*-manifold, and denote by $C_c^n(M)$ the vector space of continuous *n*-forms on M with compact support. Our object here is to define the integral $\int_M : C_c^n(M) \to \mathbb{R}$.

Take a smooth atlas on M consisting of *orientation-preserving* diffeomorphisms $h_{\lambda}: U_{\lambda} \cong U'_{\lambda} \subset \mathbb{R}^n$, where the open sets U_{λ} (for $\lambda \in \Lambda$) cover M. Take a partition of unity, consisting of continuous functions $\phi_{\lambda}: M \to \mathbb{R}$ with support $\operatorname{supp}(\phi_{\lambda}) \subset U_{\lambda}$, so that $\sum_{\lambda} \phi_{\lambda} = 1$. (We do not need ϕ_{λ} to be smooth for current purposes.)

Given $\omega \in C_c^n(M)$, we decompose it as the sum $\omega = \sum_{\lambda} \phi_{\lambda} \omega$; since every point of M has a neighborhood on which only finitely many of the ϕ_{λ} are nonzero and $\operatorname{supp}(\omega)$ is covered by finitely many such neighborhoods, this sum is effectively finite: all except finitely many terms are identically zero. We handle each term separately.

We pull back the *n*-form $\phi_{\lambda}\omega$ by h_{λ}^{-1} to the open set U'_{λ} in \mathbb{R}^n . The canonical orientation of \mathbb{R}^n orients the standard basis (e_1, e_2, \ldots, e_n) positively. We write the coordinates on \mathbb{R}^n as $x = (x_1, x_2, \ldots, x_n)$ (and recall that the coordinate x_i is really a function, the projection $\mathbb{R}^n \to \mathbb{R}$ to the *i*-th factor, so that dx_i is a 1-form). The result is

$$(h_{\lambda}^{-1})^*(\phi_{\lambda}\omega) = a_{\lambda} \, dx_1 \wedge dx_2 \wedge \ldots \wedge dx_n,$$

where the function a_{λ} is given explicitly as

 $a_{\lambda}(x) = (a_{\lambda} dx_1 \wedge \ldots \wedge dx_n)_x (e_1, \ldots, e_n) = \phi_{\lambda}(p) \,\omega_p(T(h_{\lambda}^{-1})e_1, \ldots, T(h_{\lambda}^{-1})e_n) \quad (1)$ and $p = h_{\lambda}^{-1}(x)$.

DEFINITION 2 We define the integral in terms of multiple integrals on \mathbb{R}^n , as

$$\int_{M} \omega = \sum_{\lambda} \int \cdots \int_{U_{\lambda}'} a_{\lambda}(x) \, dx_1 \, dx_2 \dots dx_n.$$

Remark If $\omega_p(v_1, v_2, \ldots, v_n) \geq 0$ for one (and hence any) positively oriented basis of the tangent space $T_p(M)$, equation (1) shows that $a_{\lambda}(h_{\lambda}(p)) \geq 0$. If the condition holds for all $p \in M$, we deduce that $\int_M \omega > 0$ unless ω is everywhere zero.

Remark If we reverse the orientation of M, the local chart h_{λ} no longer preserves orientation. We may replace it by $r \circ h_{\lambda}$, where r is the reflection of \mathbb{R}^n that reverses the first coordinate x_1 only. Since $r^*dx_1 = dr^*x_1 = -dx_1$, we find

 $(h_{\lambda}^{-1} \circ r)^*(\phi_{\lambda}\omega) = r^*(a_{\lambda} \, dx_1 \wedge dx_2 \wedge \ldots \wedge dx_n) = -(r^*a_{\lambda}) \, dx_1 \wedge dx_2 \wedge \ldots \wedge dx_n.$

However,

$$\int \cdots \int a_{\lambda}(r(x)) \, dx_1 \, dx_2 \dots dx_n = \int \cdots \int a_{\lambda}(x) \, dx_1 \, dx_2 \dots dx_n.$$

The net effect is to change the sign of $\int_M \omega$.

THEOREM 3 Given an oriented smooth *n*-manifold M, Definition 2 yields a canonical \mathbb{R} -linear function

$$\int_M : C_c^n(M) \longrightarrow \mathbb{R}.$$

Proof \mathbb{R} -linearity is obvious. We have to show that the integral is independent of the choices of atlas and partition of unity.

Take another atlas, consisting of orientation-preserving diffeomorphisms $k_{\mu}: V_{\mu} \cong V'_{\mu} \subset \mathbb{R}^n$, with associated partition of unity consisting of functions ψ_{μ} . We decompose $\omega = \sum_{\lambda} \sum_{\mu} \phi_{\lambda} \psi_{\mu} \omega$, so that $\phi_{\lambda} \psi_{\mu} \omega$ has compact support in $U_{\lambda} \cap V_{\mu}$. We pull back each term,

$$(h_{\lambda}^{-1})^*(\phi_{\lambda}\psi_{\mu}\omega) = a_{\lambda,\mu}\,dx_1 \wedge dx_2 \wedge \ldots \wedge dx_n.$$

It is clear that $a_{\lambda} = \sum_{\mu} a_{\lambda,\mu}$. Similarly,

$$(k_{\mu}^{-1})^*(\phi_{\lambda}\psi_{\mu}\omega) = b_{\mu,\lambda} \, dy_1 \wedge dy_2 \wedge \ldots \wedge dy_n,$$

where we use coordinates (y_1, y_2, \ldots, y_n) on this copy of \mathbb{R}^n to avoid confusion. It will be sufficient to prove that

$$\int \cdots \int b_{\mu,\lambda}(y) \, dy_1 \, dy_2 \dots dy_n = \int \cdots \int a_{\lambda,\mu}(x) \, dx_1 \, dx_2 \dots dx_n.$$

We have the diffeomorphism $\theta = k_{\mu} \circ h_{\lambda}^{-1} : h_{\lambda}(U_{\lambda} \cap V_{\mu}) \cong k_{\mu}(U_{\lambda} \cap V_{\mu})$ between open sets in \mathbb{R}^{n} , hence

$$\theta^*(b_{\mu,\lambda}\,dy_1\wedge dy_2\wedge\ldots\wedge dy_n) = a_{\lambda,\mu}\,dx_1\wedge dx_2\wedge\ldots\wedge dx_n,\tag{4}$$

as both sides are pullbacks from $\phi_{\lambda}\psi_{\mu}\omega$ on $U_{\lambda}\cap V_{\mu}\subset M$. The left side is

$$(\theta^* b_{\mu,\lambda})(\theta^* dy_1) \wedge (\theta^* dy_2) \wedge \ldots \wedge (\theta^* dy_n).$$

Here, $(\theta^* b_{\mu,\lambda})(x) = b_{\mu,\lambda}(\theta(x))$. In coordinates, $\theta(x) = (\theta_1(x), \ldots, \theta_n(x)) \in \mathbb{R}^n$, where $\theta_j = y_j \circ \theta$. Then we can write

$$\theta^* dy_j = d\theta^* y_j = d(y_j \circ \theta) = d\theta_j = \sum_{i=1}^n \frac{\partial \theta_j}{\partial x_i} dx_i.$$

Properties of \wedge show that $(\theta^* dy_1) \wedge (\theta^* dy_2) \wedge \ldots \wedge (\theta^* dy_n)$ expands to

$$J dx_1 \wedge dx_2 \wedge \ldots \wedge dx_n$$

where J(x) denotes the Jacobian determinant of θ at x. Thus equation (4) reduces to $a_{\lambda,\mu}(x) = b_{\mu,\lambda}(\theta(x))J(x)$.

Meanwhile, the change of variables theorem in \mathbb{R}^n shows that

$$\int \cdots \int b_{\mu,\lambda}(y) \, dy_1 \, dy_2 \dots dy_n = \int \cdots \int b_{\mu,\lambda}(\theta(x)) J(x) \, dx_1 \, dx_2 \dots dx_n$$
$$= \int \cdots \int a_{\lambda,\mu}(x) \, dx_1 \, dx_2 \dots dx_n$$

as required; since θ preserves the orientation of \mathbb{R}^n , J > 0 and we do not need to write |J(x)| here. \Box

THEOREM 5 Suppose $\theta: P \cong M$ is an orientation-preserving diffeomorphism of oriented smooth *n*-manifolds, and that ω is a continuous *n*-form on *M*. Then $\int_P \theta^* \omega = \int_M \omega$.

Proof Take a smooth atlas $\{h_{\lambda}: U_{\lambda} \cong U'_{\lambda} \subset \mathbb{R}^n : \lambda \in \Lambda\}$ with partition of unity $\{\phi_{\lambda} : \lambda \in \Lambda\}$ as above. There is an obvious atlas on P, consisting of open sets $W_{\lambda} = \theta^{-1}(U_{\lambda})$ with local charts

$$W_{\lambda} \xrightarrow{\theta} U_{\lambda} \xrightarrow{h_{\lambda}} U'_{\lambda} \subset \mathbb{R}^n,$$

and the functions $\phi_{\lambda} \circ \theta = \theta^* \phi_{\lambda}$ form a partition of unity on P. The pullback of $(\theta^* \phi_{\lambda})(\theta^* \omega)$ on W_{λ} to U'_{λ} is

$$((h_{\lambda} \circ \theta)^{-1})^*((\theta^* \phi_{\lambda})(\theta^* \omega)) = (h_{\lambda}^{-1})^*(\theta^{-1})^*\theta^*(\phi_{\lambda}\omega) = (h_{\lambda}^{-1})^*(\phi_{\lambda}\omega).$$

Our choices make $\int_P \theta^* \omega$ and $\int_M \omega$ identical, term by term. \Box

Integration on a Lie group From now on, we assume that G is a *compact* Lie group of dimension n. We wish to integrate a continuous real-valued function f over G. We write the integral as $\int_G f(g) dg$, where g denotes the variable of integration and dg should be considered a *measure* (instead of any kind of differential form) on G, known as *Haar measure*. (However, we avoid doing any measure theory.)

Denote by C(G) the vector space of continuous real-valued functions on G. The integral is required to have the following four properties:

- (i) It is an \mathbb{R} -linear function $C(G) \to \mathbb{R}$;
- (ii) It is monotone: if $f(g) \ge 0$ for all g, then $\int_C f(g) dg \ge 0$;
- (iii) It is *left-invariant*: for any $h \in G$, $\int_G f(hg) dg = \int_G f(g) dg$;
- (iv) It is normalized: $\int_G 1 \, dg = 1$.

THEOREM 7 Given a compact Lie group G, there exists a unique integral $C(G) \to \mathbb{R}$ that satisfies the axioms (6).

To prove existence, we treat G as an *n*-manifold and apply the preceding theory of integration of *n*-forms. (Uniqueness will be included in Corollary 13.)

First, we need to orient G, which is easy. We choose an orientation o_e of the tangent space $T_e(G)$. We use the left translations l_h to propagate this to an orientation on the whole of G: given any basis $\{v_1, v_2, \ldots, v_n\}$ of $T_h(G)$, for any $h \in G$, we define

$$o_h(v_1, v_2, \dots, v_n) = o_e(T(l_{h^{-1}})v_1, T(l_{h^{-1}})v_2, \dots, T(l_{h^{-1}})v_n).$$

This orientation is left-invariant: for any basis $\{v_1, v_2, \ldots, v_n\}$ of $T_g(G)$, we have

$$o_{hg}(T(l_h)v_1, T(l_h)v_2, \dots, T(l_h)v_n) = o_g(v_1, v_2, \dots, v_n),$$

and it is the only left-invariant orientation that extends o_e .

Next, we need an *n*-form on *G*. We choose a positively oriented alternating *n*-form ω_e on the vector space $T_e(G)$, and similarly propagate it around *G* by taking $\omega_h = l_{h^{-1}}^* \omega_e$ for all $h \in G$, so that ω is left-invariant, $l_h^* \omega = \omega$ for all $h \in G$.

DEFINITION 8 We define $\int_G f(g) dg = \int_G f m\omega$, where the number *m* is independent of *f* and is chosen to make (6)(iv) hold.

110.620 Lie Grps and Lie Algs JMB File: intlie, Rev. A; 21 Mar 2007; Page 3

(6)

The axioms (6) are readily verified. Axiom (i) is clear. By the Remark following Definition 2, since ω is positively oriented everywhere, $\int \omega > 0$ and m > 0 can indeed be chosen to make axiom (iv) hold; further, axiom (ii) holds because $\int f m\omega \ge 0$ if $f \ge 0$ everywhere. For axiom (iii), we use $l_h^*\omega = \omega$ and Theorem 5 to express the left invariance as

$$\int f \circ l_h m\omega = \int l_h^* f m\omega = \int l_h^* f m l_h^* \omega = \int l_h^* (f m\omega) = \int f m\omega.$$

Remark If we reverse the orientation of G, we change ω to $-\omega$, but m stays the same. By the second Remark after Definition 2, the integral $\int f(g) dg$ does not change.

It is easy to construct a *right-invariant* integral, by introducing an inverse. It apparently requires a different measure, denoted by δg instead of dg.

DEFINITION 9 We define the right-invariant integral

$$\int_{G} f(g) \,\delta g = \int_{G} f(g^{-1}) \,dg.$$
(10)

This clearly is right-invariant,

$$\int f(gh) \,\delta g = \int f(h^{-1}g^{-1}) \,dg = \int f(g^{-1}) \,dg = \int f(g) \,\delta g.$$

The other three axioms are obvious.

We shall see later, in Corollary 13, that the two integrals in fact coincide, so that $\delta g = dg$.

To prove this, we need a Fubini-type result, which has nothing to do with Lie groups, or even manifolds. Let X and Y be compact metric spaces. Suppose we are given "integrals" $I_X: C(X) \to \mathbb{R}$ and $I_Y: C(Y) \to \mathbb{R}$ that satisfy axioms (i) and (ii) of (6). We define a partial integration over Y, $\widehat{I}_Y: C(X \times Y) \to C(X)$: given $F: X \times Y \to \mathbb{R}$, we define $\widehat{I}_Y F \in C(X)$ by $(\widehat{I}_Y F)(x) = I_Y F_x$, where $F_x \in C(Y)$ is given by $F_x(y) = F(x, y)$. We similarly define $\widehat{I}_X: C(X \times Y) \to C(Y)$.

LEMMA 11 For any $F \in C(X \times Y)$, $I_X \widehat{I}_Y F = I_Y \widehat{I}_X F$.

Proof We observe that if we equip the spaces C(X) etc. with the sup norm, the hypotheses imply that I_X and \widehat{I}_X become bounded linear operators with norm vol(X), and I_Y and \widehat{I}_Y have norm vol(Y), where we introduce the volumes $vol(X) = I_X 1$ and $vol(Y) = I_Y 1$.

By compactness, F is uniformly continuous. Given $\epsilon > 0$, choose $\delta > 0$ such that $d(x_1, x_2) < \delta$ and $d(y_1, y_2) < \delta$ imply that $|F(x_2, y_2) - F(x_1, y_1)| < \epsilon$. If $d(x_1, x_2) < \delta$, $||F_{x_2} - F_{x_1}|| < \epsilon$ and $|(\widehat{I}_Y F)(x_2) - (\widehat{I}_Y F)(x_1)| < \epsilon \operatorname{vol}(X)$, which shows that $\widehat{I}_Y F$ does indeed lie in C(X).

The result is obvious for a function of the form $F(x, y) = \phi(x)\psi(y)$; both sides reduce by \mathbb{R} -linearity to $(I_X\phi)(I_Y\psi)$. For a general F, we approximate by sums of such functions. We cover X by finitely many open sets U_{λ} of diameter less than δ , take a partition of unity consisting of functions ϕ_{λ} with support in U_{λ} , and choose

points $x_{\lambda} \in U_{\lambda}$; similarly, we cover Y by open sets V_{μ} with functions ψ_{μ} and points y_{μ} . We may then write

$$F(x,y) = \sum_{\lambda} \sum_{\mu} \phi_{\lambda}(x) \psi_{\mu}(y) F(x,y).$$

We approximate F by the function

$$E(x,y) = \sum_{\lambda} \sum_{\mu} \phi_{\lambda}(x)\psi_{\mu}(y)F(x_{\lambda},y_{\mu});$$

then

$$|F(x,y) - E(x,y)| \le \sum_{\lambda} \sum_{\mu} \phi_{\lambda}(x)\psi_{\mu}(y) |F(x,y) - F(x_{\lambda},y_{\mu})|.$$

For $\phi_{\lambda}(x)$ and $\psi_{\mu}(y)$ to be both nonzero, we must have $x \in U_{\lambda}$ and $y \in V_{\mu}$, hence $|F(x_{\lambda}, y_{\mu}) - F(x, y)| < \epsilon$. This yields, for all x and y,

$$|F(x,y) - E(x,y)| \le \sum_{\lambda} \sum_{\mu} \phi_{\lambda}(x)\psi_{\mu}(y)\epsilon = \epsilon$$

Thus $||F - E|| \leq \epsilon$, which implies that $|I_X \widehat{I}_Y F - I_X \widehat{I}_Y E| \leq \epsilon \operatorname{vol}(X) \operatorname{vol}(Y)$ and $|I_Y \widehat{I}_X F - I_Y \widehat{I}_X E| \leq \epsilon \operatorname{vol}(X) \operatorname{vol}(Y)$. But E is an \mathbb{R} -linear combination of the functions $\phi_{\lambda}(x)\psi_{\mu}(y)$, for which we have $I_X \widehat{I}_Y E = I_Y \widehat{I}_X E$. Then $|I_X \widehat{I}_Y F - I_Y \widehat{I}_X F| \leq 2\epsilon \operatorname{vol}(X) \operatorname{vol}(Y)$. Since ϵ is arbitrary, we must have $I_X \widehat{I}_Y F = I_Y \widehat{I}_X F$. \Box

We apply this to the case X = Y = G.

THEOREM 12 Let I_Y be any integral on G that satisfies axioms (6), in particular, left invariance, and I_X be any right-invariant integral on G that satisfies the axioms (with (iii) modified). Then $I_Y = I_X$.

COROLLARY 13 There are exactly one left-invariant integral and one right-invariant integral on G, and they are equal. \Box

Remark Dealing directly with *n*-forms and orientations is more complicated and is best avoided. A left-invariant *n*-form ω on *G* is *not* right-invariant in general, unless *G* is connected; instead, the *n*-form $\nu^*\omega$, where $\nu: G \to G$ denotes inversion, is right-invariant, but satisfies $\nu^*\omega = \pm \omega$, where the sign can vary from component to component of *G*.

Orientations behave the same way.

Proof of Theorem Given $f \in C(G)$, we consider F(g,h) = f(gh). We note that $F_g(h) = f(gh) = (f \circ l_g)(h)$, or $F_g = f \circ l_g$. Integrating over h, we have

$$(I_YF)(g) = I_YF_g = I_Y(f \circ l_g) = I_Yf,$$

which is independent of g. Then $I_X \widehat{I}_Y F = I_X (I_Y f.1) = (I_Y f)(I_X 1) = I_Y f$. Similarly, $I_Y \widehat{I}_X F = I_X f$. \Box

THEOREM 14 Let G be a compact Lie group and $f \in C(G)$. Then for any $h \in G$ and any automorphism ϕ of G, we have

$$\int f(g) \, dg = \int f(hg) \, dg = \int f(gh) \, dg = \int f(g^{-1}) \, dg = \int f(\phi(g)) \, dg.$$

Proof The first two integrals are equal by left invariance. The fourth is our definition of the right-invariant integral, which we have just seen is equal to the first. So the left-invariant integral is also right-invariant, which gives the third integral.

For the fifth, a different strategy is needed. We define the integral $If = \int f(\phi(g)) dg$. It clearly satisfies axioms (i), (ii) and (iv). For (iii), we have

$$I(f \circ l_h) = \int f(h\phi(g)) \, dg = \int f(\phi(\phi^{-1}(h)g)) \, dg = \int (f \circ \phi)(\phi^{-1}(h)g) \, dg$$
$$= \int (f \circ \phi)(g) \, dg \quad \text{by left invariance, (6)(iii)}$$
$$= \int f(\phi(g)) \, dg = If.$$

By uniqueness, If must coincide with the first integral, $\int f(g) dg$. \Box