GG-sets, G-spaces and Covering Spaces
These notes amplify pages 68-72 of Hatcher’s “Algebraic Topology”.

Here, G will always be a discrete group (though the definitions make sense and
are useful for topological groups, also with spaces replaced by many other kinds of
mathematical object).

G-spaces

DEFINITION 1 A (left) G-space Y is a space Y equipped with an action map GxY —
Y, usually written (g,y) — gy, that satisfies the axioms

(i) ly =y for any y € Y; @)
(i) g(g'y) = (99')y forany y €Y, 9,4’ € G.
The orbit of y € Y is the subspace Gy = {gy € Y : g € G}. The stabilizer of y € Y
is the subgroup H, = {g € G : gy =y} of G.
If Z is another G-space, a map f:Y — Z is a G-map if f(gy) = g(f(y)) for all
y€Y and g € G.

In view of (ii), we may omit many parentheses. For each g € G, the map y —
gy is a homeomorphism of Y, usually written simply as ¢:Y — Y, with inverse
homeomorphism ¢~ %Y — Y.

The axioms imply that H, is indeed a subgroup of G' (proof omitted). We have
the useful identity

Hyy = gH,g™". (3)
To see this, note that gH,g~* C H,, because for any h € H,, (ghg™')gy = ghy = gy.
Similarly, we have g~'H,,g C H,, which implies Hy, C gH,g™".
If f:Y — Zis a G-map, it is clear that H, C Hy,) for any y € Y.

LEMMA 4 The orbits in a G-space Y form a partition of Y: y € Gy for any y € Y,
and for any y,z € Y, either Gy = Gz or Gy and Gz are disjoint.

Proof Clearly, y = 1y € Gy. Suppose w € Gy NGz, i.e. w = gy = hz for some
g,h € G. Then g7'w =g lgy = ly =y. Given any k € G, ky = kg 'w = kg~ 'hz €
Gz shows that Gy C Gz; similarly, Gz C Gy. 0O

DEFINITION 5 Given a G-space Y, the orbit space Y/G of Y is the set of all orbits
in Y, topologized as a quotient space of Y by means of the obvious quotient map
¢:Y — Y/G given by q(y) = Gy.

The G-space Y is free if for every y € Y, gy # y for all g # 1 in G. This implies
that as g varies, the points gy are all distinct. We consider a stronger condition:
Every point y € Y has a neighborhood U such that U N gU = () for (6)
all g #£ 1.
Then as g varies, the sets gU are all disjoint and open. It follows that ¢: Y — Y/G is
a covering map: since ¢~ ' (q(U)) = [1, gU, the set GU = q(U) is open in Y/G and is
evenly covered by the sets gU C Y.
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2 G-sets, G-spaces and Covering Spaces

G-sets A G-set is simply a discrete G-space. It is transitive if there is only one
orbit.

Example Any disjoint union of G-sets is a G-set.

Ezample Given a subgroup H C G, denote by G/H the set of all cosets gH = {gh :
h € H} of H in G. It is a transitive G-set with action ¢'(¢H) = (¢'g)H. (This does
not conflict with the notation of Definition 5: G/H is the orbit space of the action of
H on G given by right multiplication, (h, g) — gh™'.)

The stabilizer of the coset H = 1H € G/H is just Hy = H. Observe that the
number of elements of G/H is the index of H in G, if finite.

G-sets are easily classified. We note that each orbit is itself a G-set.

THEOREM 7 Let G be a discrete group.
(a) Any G-set Y is the disjoint union of its orbits;
(b) For any y € Y, the orbit Gy is isomorphic to the G-set G/H,;

(¢) The G-sets G/H and G/K are isomorphic if and only if the subgroups H and
K of G are conjugate.

Proof Lemma 4 takes care of (a).

For (b), we map ¢: G/H, — Gy by ¢(9H,) = gy; since ghy = gy for any h € H,,
this is well defined. It is visibly surjective. Suppose that ¢(gH,) = ¢(kH,), i.e.
gy =ky. Then k~'gy =y, k~'g € H,, and kH, = k(k~'g)H, = gH,.

Equation (3) gives the necessity in (c). Conversely, we define the isomorphism of
G-sets G/H 2 G/gHg ' by kH — kHg ' = (kg ')(¢gHg™') for any k € G. [

We need to determine the automorphism group of G/H. With that in hand, we
can write down the automorphism group of any G-set.

THEOREM 8 Given a subgroup H of G, the automorphism group Aut(G/H) of the
G-set G/H is isomorphic to the group N(H)/H, where N(H) ={g € G : gHg™" =
H} is the normalizer of H in G, the largest subgroup of G in which H is a normal
subgroup.

The action of Aut(G/H) on G/H is transitive if and only if H is normal in G.

Proof Take any G-map 0: G/H — G/H. Then §(H) = k~'H for some k € G. (The
reason to use k~! here will appear later.) Because 6 is a G-map, we have
0(gH) = g0(H) = gk~ *H for any g € G, 9)

so that the element £ € GG completely determines . Now take g = h € H; since hH =
H, we must have hk~'H = k~'H, which reduces to khk~' € H, hence kHk™' C H.
This is enough to ensure that equation (9) is well defined for all g, as

0(ghH) = ghk™*H = gk~ *(khk™)H = gk 'H = 0(gH).

We note that 6 is automatically surjective, as 0(gkH) = gkk™*H = gH for any
g € G. However, it is not automatically 1-1. Suppose 0(gH) = 0(H). Then gk~'H =
k~'H, which reduces to kgk~! € H, then to g € k~*Hk. For 6 to be 1-1, this must
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G-sets, G-spaces and Covering Spaces 3

imply g € H,i.e. k"'Hk C H, or H C kHk™'. This, together with kHk~'H C H,
shows that k € N(H).
The action of Aut(G/H) on G/H is transitive if and only if §(H) = k' H can be
any element of G/H. Since k € N(H) is arbitrary, this is equivalent to N(H) = G.
Thus given k € N(H), we have the automorphism 6 of G/H defined by (9). Now
k — 6 is a homomorphism of groups from N(H) to Aut(G/H), because

O (0r(gH)) = 0, (gk ™ H) = gk 'm ™ H = 0, (gH).
We saw that this homomorphism is surjective, and its kernel is clearly H. 0O

Applications to covering spaces

PROPOSITION 10 Let p: X — X be a covering map, and put 7 = m (X, xo). Then
the fibre F = p~'(xq) is a m-set, and the stabilizer of any point & € F is Hz =

p*(m(f(,:i)).

Proof  Given a point & € F and a loop 7 in X at z, lift 7 to a path 7 ending at 7.
We define [y]z = 5(0) € F; it is well defined, because if v ~ 8, ¥ ~ §. If [y] € Hz, 7
is a loop, and [y] = p.[7]; and conversely.

We must verify the axioms (2). If  is the constant path ¢,, at xo, ¥ = ¢z, and
we have 1% = [¢,,]T = ¢z(0) = Z. Let [ be another loop at xo. We lift it to a path
3 ending at 7(0), so that [5]([y]7) = [8]7(0) = 3(0). Then 3 - lifts to (- 7, and
([Blv)z = [8-1]2 = (8- 9)(0) = 5(0). D

Remark Some writers avoid the contortions in this proof by making the action of 7
on I a right action.

COROLLARY 11 Assume that X is path-connected. Then each path component of
X intersects the m-set F in exactly one orbit. In particular, X is path-connected if
and only if F' is a transitive m-set.

Proof First, each orbit in F lies in one path-component of X. If #; and &, belong
to the same orbit, say s = [v]Z1, the loop ~ lifts to a path in X from Z» to .

Conversely, if 71 and T2 are two points of F' that lie in the same path-component
of X, there is a path 8 in X from &, to #;, hence [p o 8]Z1 = T2, and the two points
are in the same orbit.

Finally, each path component of X contains a point of F. Given Z € X, choose
a path § in X from p(Z) to xo, and lift it to a path §in X from 7 to some point
B(1)e F. O

COROLLARY 12 IfX and X are path-connected, the number of sheets in the covering
is the index in w of the stabilizer H; of any point x € F. [

Now Suppose that p1: X7 — X and ps: Xy — X are two covering maps, with
fibres Fy = p;*(z¢) and Fy = py*(20). It is obvious that a map f: X, — X, over
X (one that satisfies ps o f = p;) induces a m-map of w-sets f|Fy: Fy — F,, where
m=m (X, z). We have the converse, for well-behaved X.
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4 G-sets, G-spaces and Covering Spaces

THEOREM 13 Assume that X is path-connected and locally path-connected. Then

any m-map F| — F, extends uniquely to a map f: X; — Xy of covering spaces over
X.

Proof As X, isa covering space of X, it too is locally path-connected, and its path
components are therefore open. It sufﬁces to construct f on each path component of
X1, which reduces the problem to the known case where X; is path-connected. O

A homeomorphism of X over X is known as a deck transformation. These form
the automorphism group Aut(X) of X. We combine Theorems 13 and 8.

COROLLARY 14 With X as in Theorem 13, suppose that X is a path-connected cov-
ering space and &y € F = p~'(zy). Then the group Aut(X) of deck transformations
of X is isomorphic to N(H)/H, where H = p,(m(X, %)) and N(H) denotes the
normalizer of H in 7.

The action of Aut(X) on F is transitive if and only if H is normal in 7. If so, we
have a regular or normal covering space, 7/H is a group, and we can identify X with
the orbit space X /(m/H).

Remark  Even if H is normal in 7, the m-action (via w/H) on X given by Corollary 14
is unrelated to the m-action on the fibre F' given by Proposition 10 (unless w/H
happens to be abelian); in particular, the action on X does not in general extend the
action on F. Write ¢:m — w/H for the quotient homomorphism; then in terms of
the proof of Theorem 8, the m-set action on F' is given by ¢'q(g9) = q(¢')q(g), using
left multiplication, while by equation (9), the deck transformation action induces on
F = m/H the action 0rq(g) = q(g)q(k™"'), using right multiplication.

Universal covering spaces A simply-connected covering space of X is called a
universal covering space of X. Under the conditions of Theorem 13, it is unique up
to homeomorphism. A further condition is needed to ensure existence.

COROLLARY 15 With X as in Theorem 13, suppose that X is a universal covering
space. Then X has the group m of deck transformations, and given any subgroup H
of 7, the orbit space X /H is a covering space of X with m(X/H) = H.

Proof  As the subgroup {1} of 7 is normal, we have the group 7 of deck transfor-
mations of X. Then p: X — X factors to give a covering map p: X /H — X, and
P~ (x0) is the m-set 7/H, with stabilizer group H = m(X/H). O
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