
G-sets, G-spaces and Covering Spaces

These notes amplify pages 68–72 of Hatcher’s “Algebraic Topology”.

Here, G will always be a discrete group (though the definitions make sense and
are useful for topological groups, also with spaces replaced by many other kinds of
mathematical object).

G-spaces

Definition 1 A (left) G-space Y is a space Y equipped with an action map G×Y →
Y , usually written (g, y) 7→ gy, that satisfies the axioms

(i) 1y = y for any y ∈ Y ;

(ii) g(g′y) = (gg′)y for any y ∈ Y , g, g′ ∈ G.
(2)

The orbit of y ∈ Y is the subspace Gy = {gy ∈ Y : g ∈ G}. The stabilizer of y ∈ Y
is the subgroup Hy = {g ∈ G : gy = y} of G.

If Z is another G-space, a map f : Y → Z is a G-map if f(gy) = g(f(y)) for all
y ∈ Y and g ∈ G.

In view of (ii), we may omit many parentheses. For each g ∈ G, the map y 7→
gy is a homeomorphism of Y , usually written simply as g: Y → Y , with inverse
homeomorphism g−1: Y → Y .

The axioms imply that Hy is indeed a subgroup of G (proof omitted). We have
the useful identity

Hgy = gHyg
−1. (3)

To see this, note that gHyg
−1 ⊂ Hgy because for any h ∈ Hy, (ghg−1)gy = ghy = gy.

Similarly, we have g−1Hgyg ⊂ Hy, which implies Hgy ⊂ gHyg
−1.

If f : Y → Z is a G-map, it is clear that Hy ⊂ Hf(y) for any y ∈ Y .

Lemma 4 The orbits in a G-space Y form a partition of Y : y ∈ Gy for any y ∈ Y ,
and for any y, z ∈ Y , either Gy = Gz or Gy and Gz are disjoint.

Proof Clearly, y = 1y ∈ Gy. Suppose w ∈ Gy ∩ Gz, i. e. w = gy = hz for some
g, h ∈ G. Then g−1w = g−1gy = 1y = y. Given any k ∈ G, ky = kg−1w = kg−1hz ∈
Gz shows that Gy ⊂ Gz; similarly, Gz ⊂ Gy.

Definition 5 Given a G-space Y , the orbit space Y/G of Y is the set of all orbits
in Y , topologized as a quotient space of Y by means of the obvious quotient map
q: Y → Y/G given by q(y) = Gy.

The G-space Y is free if for every y ∈ Y , gy 6= y for all g 6= 1 in G. This implies
that as g varies, the points gy are all distinct. We consider a stronger condition:

Every point y ∈ Y has a neighborhood U such that U ∩ gU = ∅ for
all g 6= 1.

(6)

Then as g varies, the sets gU are all disjoint and open. It follows that q: Y → Y/G is
a covering map: since q−1(q(U)) =

∐
g gU , the set GU = q(U) is open in Y/G and is

evenly covered by the sets gU ⊂ Y .
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2 G-sets, G-spaces and Covering Spaces

G-sets A G-set is simply a discrete G-space. It is transitive if there is only one
orbit.

Example Any disjoint union of G-sets is a G-set.

Example Given a subgroup H ⊂ G, denote by G/H the set of all cosets gH = {gh :
h ∈ H} of H in G. It is a transitive G-set with action g′(gH) = (g′g)H. (This does
not conflict with the notation of Definition 5: G/H is the orbit space of the action of
H on G given by right multiplication, (h, g) 7→ gh−1.)

The stabilizer of the coset H = 1H ∈ G/H is just HH = H. Observe that the
number of elements of G/H is the index of H in G, if finite.

G-sets are easily classified. We note that each orbit is itself a G-set.

Theorem 7 Let G be a discrete group.

(a) Any G-set Y is the disjoint union of its orbits;

(b) For any y ∈ Y , the orbit Gy is isomorphic to the G-set G/Hy;

(c) The G-sets G/H and G/K are isomorphic if and only if the subgroups H and
K of G are conjugate.

Proof Lemma 4 takes care of (a).
For (b), we map φ: G/Hy → Gy by φ(gHy) = gy; since ghy = gy for any h ∈ Hy,

this is well defined. It is visibly surjective. Suppose that φ(gHy) = φ(kHy), i. e.
gy = ky. Then k−1gy = y, k−1g ∈ Hy, and kHy = k(k−1g)Hy = gHy.

Equation (3) gives the necessity in (c). Conversely, we define the isomorphism of
G-sets G/H ∼= G/gHg−1 by kH 7→ kHg−1 = (kg−1)(gHg−1) for any k ∈ G.

We need to determine the automorphism group of G/H. With that in hand, we
can write down the automorphism group of any G-set.

Theorem 8 Given a subgroup H of G, the automorphism group Aut(G/H) of the
G-set G/H is isomorphic to the group N(H)/H, where N(H) = {g ∈ G : gHg−1 =
H} is the normalizer of H in G, the largest subgroup of G in which H is a normal
subgroup.

The action of Aut(G/H) on G/H is transitive if and only if H is normal in G.

Proof Take any G-map θ: G/H → G/H. Then θ(H) = k−1H for some k ∈ G. (The
reason to use k−1 here will appear later.) Because θ is a G-map, we have

θ(gH) = gθ(H) = gk−1H for any g ∈ G, (9)

so that the element k ∈ G completely determines θ. Now take g = h ∈ H; since hH =
H, we must have hk−1H = k−1H, which reduces to khk−1 ∈ H, hence kHk−1 ⊂ H.
This is enough to ensure that equation (9) is well defined for all g, as

θ(ghH) = ghk−1H = gk−1(khk−1)H = gk−1H = θ(gH).

We note that θ is automatically surjective, as θ(gkH) = gkk−1H = gH for any
g ∈ G. However, it is not automatically 1-1. Suppose θ(gH) = θ(H). Then gk−1H =
k−1H, which reduces to kgk−1 ∈ H, then to g ∈ k−1Hk. For θ to be 1-1, this must
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G-sets, G-spaces and Covering Spaces 3

imply g ∈ H, i. e. k−1Hk ⊂ H, or H ⊂ kHk−1. This, together with kHk−1H ⊂ H,
shows that k ∈ N(H).

The action of Aut(G/H) on G/H is transitive if and only if θ(H) = k−1H can be
any element of G/H. Since k ∈ N(H) is arbitrary, this is equivalent to N(H) = G.

Thus given k ∈ N(H), we have the automorphism θk of G/H defined by (9). Now
k 7→ θk is a homomorphism of groups from N(H) to Aut(G/H), because

θm(θk(gH)) = θm(gk−1H) = gk−1m−1H = θmk(gH).

We saw that this homomorphism is surjective, and its kernel is clearly H.

Applications to covering spaces

Proposition 10 Let p: X̃ → X be a covering map, and put π = π1(X, x0). Then
the fibre F = p−1(x0) is a π-set, and the stabilizer of any point x̃ ∈ F is Hx̃ =
p∗(π1(X̃, x̃)).

Proof Given a point x̃ ∈ F and a loop γ in X at x0, lift γ to a path γ̃ ending at x̃.
We define [γ]x̃ = γ̃(0) ∈ F ; it is well defined, because if γ ' δ, γ̃ ' δ̃. If [γ] ∈ Hx̃, γ̃
is a loop, and [γ] = p∗[γ̃]; and conversely.

We must verify the axioms (2). If γ is the constant path cx0 at x0, γ̃ = cx̃, and
we have 1x̃ = [cx0 ]x̃ = cx̃(0) = x̃. Let β be another loop at x0. We lift it to a path
β̃ ending at γ̃(0), so that [β]([γ]x̃) = [β]γ̃(0) = β̃(0). Then β · γ lifts to β̃ · γ̃, and
([β][γ])x̃ = [β · γ]x̃ = (β̃ · γ̃)(0) = β̃(0).

Remark Some writers avoid the contortions in this proof by making the action of π
on F a right action.

Corollary 11 Assume that X is path-connected. Then each path component of
X̃ intersects the π-set F in exactly one orbit. In particular, X̃ is path-connected if
and only if F is a transitive π-set.

Proof First, each orbit in F lies in one path-component of X̃. If x̃1 and x̃2 belong
to the same orbit, say x̃2 = [γ]x̃1, the loop γ lifts to a path in X̃ from x̃2 to x̃1.

Conversely, if x̃1 and x̃2 are two points of F that lie in the same path-component
of X̃, there is a path β in X̃ from x̃2 to x̃1, hence [p ◦ β]x̃1 = x̃2, and the two points
are in the same orbit.

Finally, each path component of X̃ contains a point of F . Given x̃ ∈ X̃, choose
a path β in X from p(x̃) to x0, and lift it to a path β̃ in X̃ from x̃ to some point
β̃(1) ∈ F .

Corollary 12 If X and X̃ are path-connected, the number of sheets in the covering
is the index in π of the stabilizer Hx̃ of any point x̃ ∈ F .

Now suppose that p1: X̃1 → X and p2: X̃2 → X are two covering maps, with
fibres F1 = p−1

1 (x0) and F2 = p−1
2 (x0). It is obvious that a map f : X̃1 → X̃2 over

X (one that satisfies p2 ◦ f = p1) induces a π-map of π-sets f |F1: F1 → F2, where
π = π1(X, x0). We have the converse, for well-behaved X.
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4 G-sets, G-spaces and Covering Spaces

Theorem 13 Assume that X is path-connected and locally path-connected. Then
any π-map F1 → F2 extends uniquely to a map f : X̃1 → X̃2 of covering spaces over
X.

Proof As X̃1 is a covering space of X, it too is locally path-connected, and its path
components are therefore open. It suffices to construct f on each path component of
X̃1, which reduces the problem to the known case where X̃1 is path-connected.

A homeomorphism of X̃ over X is known as a deck transformation. These form
the automorphism group Aut(X̃) of X̃. We combine Theorems 13 and 8.

Corollary 14 With X as in Theorem 13, suppose that X̃ is a path-connected cov-
ering space and x̃0 ∈ F = p−1(x0). Then the group Aut(X̃) of deck transformations
of X̃ is isomorphic to N(H)/H, where H = p∗(π1(X̃, x̃0)) and N(H) denotes the
normalizer of H in π.

The action of Aut(X̃) on F is transitive if and only if H is normal in π. If so, we
have a regular or normal covering space, π/H is a group, and we can identify X with
the orbit space X̃/(π/H).

Remark Even if H is normal in π, the π-action (via π/H) on X̃ given by Corollary 14
is unrelated to the π-action on the fibre F given by Proposition 10 (unless π/H
happens to be abelian); in particular, the action on X̃ does not in general extend the
action on F . Write q: π → π/H for the quotient homomorphism; then in terms of
the proof of Theorem 8, the π-set action on F is given by g′q(g) = q(g′)q(g), using
left multiplication, while by equation (9), the deck transformation action induces on
F ∼= π/H the action θkq(g) = q(g)q(k−1), using right multiplication.

Universal covering spaces A simply-connected covering space of X is called a
universal covering space of X. Under the conditions of Theorem 13, it is unique up
to homeomorphism. A further condition is needed to ensure existence.

Corollary 15 With X as in Theorem 13, suppose that X̃ is a universal covering
space. Then X̃ has the group π of deck transformations, and given any subgroup H
of π, the orbit space X̃/H is a covering space of X with π1(X̃/H) ∼= H.

Proof As the subgroup {1} of π is normal, we have the group π of deck transfor-
mations of X̃. Then p: X̃ → X factors to give a covering map p′: X̃/H → X, and
p′−1(x0) is the π-set π/H, with stabilizer group H ∼= π1(X̃/H).
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