General Exponential Functions

For fixed a, we want the exponential function a^{x} to have at least the properties:
(i) $a^{x+y}=a^{x} a^{y}$;
(ii) $a^{0}=1$;
(iii) $a^{1}=a$;
(iv) a^{x} is continuous in x.

Many other properties follow easily from these. If we put $y=-x$ in (i), we get $1=a^{0}=a^{x+(-x)}=a^{x} a^{-x}$, so that

$$
\begin{equation*}
a^{-x}=\frac{1}{a^{x}}, \quad \text { in particular, } a^{-1}=\frac{1}{a^{1}}=\frac{1}{a} . \tag{2}
\end{equation*}
$$

If we iterate (i), we get for any positive integer n

$$
\begin{equation*}
a^{n x}=a^{x+x+\ldots+x}=a^{x} a^{x} \ldots a^{x}=\left(a^{x}\right)^{n}, \tag{3}
\end{equation*}
$$

the nth power of a^{x} in the ordinary sense. By taking $x=1$, we see that a^{n} is the nth power of a as usually understood.

Existence and uniqueness We cannot expect to define a^{x} for all real x and a. We note that axiom (i) gives $a^{x}=\left(a^{x / 2}\right)^{2} \geq 0$. Also, equation (2) requires $a^{x} \neq 0$, so that we must have $a^{x}>0$. Then (iii) gives $a=a^{1}>0$.

Theorem 4 Given $a>0$, there exists a unique function a^{x} that satisfies the axioms equation (1). It satisfies $a^{x}>0$ for all x.

For a rational number $x=p / q$, with p and q integers and $q>0$, equation (3) gives $\left(a^{x}\right)^{q}=a^{q x}=a^{p}$, which determines a^{x} uniquely. This, with continuity, is enough to determine a^{x} uniquely for all real x. We defer the proof of existence of a^{x}.

Applications We make some immediate applications of Theorem 4. The method in each case is to show that a certain function satisfies the axioms equation (1) for a^{x} for some a, and therefore by the uniqueness in Theorem 4 must coincide with a^{x}.

Our first application is the elementary fact that $1^{x}=1$ for all x. (In detail, define $f(x)=1$ for all x; then $f(x+y)=1=f(x) f(y), f(0)=1=f(1)$, and the constant function f is clearly continuous; hence $f(x)=1^{x}$.)

Our second application generalizes equation (3).
Theorem 5 Given $a>0$, we have $a^{z x}=\left(a^{z}\right)^{x}$ for any real z and x.
Proof Fix a and z and define $g(x)=a^{z x}$ for all x. Then $g(x+y)=a^{z(x+y)}=$ $a^{z x+z y}=a^{z x} a^{z y}=g(x) g(y), g(0)=a^{0}=1, g(1)=a^{z}$, and g is continuous. Thus $g(x)$ satisfies the axioms for $\left(a^{z}\right)^{x}$ and must coincide with it.

Our third application shows that a^{x} is multiplicative in a.
Theorem 6 Given $a>0$ and $b>0$, we have $(a b)^{x}=a^{x} b^{x}$ for all x.

Proof We put $h(x)=a^{x} b^{x}$ for all x. Then $h(x+y)=a^{x+y} b^{x+y}=a^{x} a^{y} b^{x} b^{y}=$ $h(x) h(y), h(0)=1, h(1)=a^{1} b^{1}=a b$, and h is continuous. Thus h satisfies the axioms for $(a b)^{x}$, and so must be $(a b)^{x}$.
Differentiation In order to differentiate a^{x}, we must take the limit of

$$
\frac{a^{x+h}-a^{x}}{h}=\frac{a^{x} a^{h}-a^{x}}{h}=a^{x} \frac{a^{h}-1}{h}
$$

as $h \rightarrow 0$. As this limit is not obvious, we give it a name.
Definition 7 Given $a>0$, we define the natural logarithm $\log a$ (or $\ln a$) of a as the limit

$$
\begin{equation*}
\log a=\ln a=\lim _{h \rightarrow 0} \frac{a^{h}-1}{h} . \tag{8}
\end{equation*}
$$

When we plug this in, we obtain the answer

$$
\begin{equation*}
\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a \tag{9}
\end{equation*}
$$

ThEOREM 10 We have $\log a>0$ whenever $a>1, \log 1=0$, and $\log a<0$ whenever $0<a<1$.

Proof As $a^{x}>0$ always, equation (9) shows that a^{x} is an increasing, decreasing, or constant function according as to whether $\log a>0, \log a<0$, or $\log a=0$. Comparison of $a^{0}=1$ and $a^{1}=a$ shows which case applies.

The main property of the function $\log x$ follows easily from equation (9).
Theorem 11 We have $\log a b=\log a+\log b$ for any $a>0$ and $b>0$.
Proof When we differentiate in Theorem 6, the product rule gives

$$
(a b)^{x} \log a b=a^{x}(\log a) b^{x}+a^{x} b^{x} \log b
$$

in which we put $x=0$.
Similarly, we can differentiate in Theorem 5.
Theorem 12 We have $\log \left(a^{z}\right)=z \log a$ for any $a>0$ and any z.
Proof Differentiation of $a^{z x}=\left(a^{z}\right)^{x}$ with respect to x gives

$$
a^{z x} z \log a=\left(a^{z}\right)^{x} \log \left(a^{z}\right) .
$$

Again we put $x=0$.

