General Exponential Functions

For fixed a, we want the exponential function a^x to have at least the properties:

- (i) $a^{x+y} = a^x a^y$; (ii) $a^0 = 1$; (iii) $a^1 = a$; (1)
- (iv) a^x is continuous in x.

Many other properties follow easily from these. If we put y = -x in (i), we get $1 = a^0 = a^{x+(-x)} = a^x a^{-x}$, so that

$$a^{-x} = \frac{1}{a^x}$$
, in particular, $a^{-1} = \frac{1}{a^1} = \frac{1}{a}$. (2)

If we iterate (i), we get for any positive integer n

$$a^{nx} = a^{x+x+\dots+x} = a^x a^x \dots a^x = (a^x)^n,$$
(3)

the *n*th power of a^x in the ordinary sense. By taking x = 1, we see that a^n is the *n*th power of *a* as usually understood.

Existence and uniqueness We cannot expect to define a^x for all real x and a. We note that axiom (i) gives $a^x = (a^{x/2})^2 \ge 0$. Also, equation (2) requires $a^x \ne 0$, so that we must have $a^x > 0$. Then (iii) gives $a = a^1 > 0$.

THEOREM 4 Given a > 0, there exists a unique function a^x that satisfies the axioms equation (1). It satisfies $a^x > 0$ for all x.

For a rational number x = p/q, with p and q integers and q > 0, equation (3) gives $(a^x)^q = a^{qx} = a^p$, which determines a^x uniquely. This, with continuity, is enough to determine a^x uniquely for all real x. We defer the proof of existence of a^x .

Applications We make some immediate applications of Theorem 4. The method in each case is to show that a certain function satisfies the axioms equation (1) for a^x for some a, and therefore by the uniqueness in Theorem 4 must coincide with a^x .

Our first application is the elementary fact that $1^x = 1$ for all x. (In detail, define f(x) = 1 for all x; then f(x+y) = 1 = f(x)f(y), f(0) = 1 = f(1), and the constant function f is clearly continuous; hence $f(x) = 1^x$.)

Our second application generalizes equation (3).

THEOREM 5 Given a > 0, we have $a^{zx} = (a^z)^x$ for any real z and x.

Proof Fix a and z and define $g(x) = a^{zx}$ for all x. Then $g(x+y) = a^{z(x+y)} = a^{zx+zy} = a^{zx}a^{zy} = g(x)g(y)$, $g(0) = a^0 = 1$, $g(1) = a^z$, and g is continuous. Thus g(x) satisfies the axioms for $(a^z)^x$ and must coincide with it. \Box

Our third application shows that a^x is multiplicative in a.

THEOREM 6 Given a > 0 and b > 0, we have $(ab)^x = a^x b^x$ for all x.

110.108 Calculus I JMB File: genexp, Revision A; 30 Aug 2001; Page 1

Proof We put $h(x) = a^x b^x$ for all x. Then $h(x+y) = a^{x+y} b^{x+y} = a^x a^y b^x b^y = h(x)h(y)$, h(0) = 1, $h(1) = a^1 b^1 = ab$, and h is continuous. Thus h satisfies the axioms for $(ab)^x$, and so must be $(ab)^x$. \Box

Differentiation In order to differentiate a^x , we must take the limit of

$$\frac{a^{x+h} - a^x}{h} = \frac{a^x a^h - a^x}{h} = a^x \frac{a^h - 1}{h}$$

as $h \to 0$. As this limit is not obvious, we give it a name.

DEFINITION 7 Given a > 0, we define the *natural logarithm* $\log a$ (or $\ln a$) of a as the limit

$$\log a = \ln a = \lim_{h \to 0} \frac{a^h - 1}{h} .$$
 (8)

When we plug this in, we obtain the answer

$$\frac{d}{dx}(a^x) = a^x \log a \ . \tag{9}$$

THEOREM 10 We have $\log a > 0$ whenever a > 1, $\log 1 = 0$, and $\log a < 0$ whenever 0 < a < 1.

Proof As $a^x > 0$ always, equation (9) shows that a^x is an increasing, decreasing, or constant function according as to whether $\log a > 0$, $\log a < 0$, or $\log a = 0$. Comparison of $a^0 = 1$ and $a^1 = a$ shows which case applies. \Box

The main property of the function $\log x$ follows easily from equation (9).

THEOREM 11 We have $\log ab = \log a + \log b$ for any a > 0 and b > 0.

Proof When we differentiate in Theorem 6, the product rule gives

 $(ab)^x \log ab = a^x (\log a)b^x + a^x b^x \log b,$

in which we put x = 0. \Box

Similarly, we can differentiate in Theorem 5.

THEOREM 12 We have $\log(a^z) = z \log a$ for any a > 0 and any z.

Proof Differentiation of $a^{zx} = (a^z)^x$ with respect to x gives

$$a^{zx}z\log a = (a^z)^x\log(a^z) \ .$$

Again we put x = 0. \Box