
General Exponential Functions

For fixed a, we want the exponential function ax to have at least the properties:

(i) ax+y = axay;

(ii) a0 = 1;

(iii) a1 = a;

(iv) ax is continuous in x.

(1)

Many other properties follow easily from these. If we put y = −x in (i), we get
1 = a0 = ax+(−x) = axa−x, so that

a−x =
1

ax
, in particular, a−1 =

1

a1
=

1

a
. (2)

If we iterate (i), we get for any positive integer n

anx = ax+x+...+x = axax . . . ax = (ax)n, (3)

the nth power of ax in the ordinary sense. By taking x = 1, we see that an is the nth
power of a as usually understood.

Existence and uniqueness We cannot expect to define ax for all real x and a.
We note that axiom (i) gives ax = (ax/2)2 ≥ 0. Also, equation (2) requires ax 6= 0, so
that we must have ax > 0. Then (iii) gives a = a1 > 0.

Theorem 4 Given a > 0, there exists a unique function ax that satisfies the axioms
equation (1). It satisfies ax > 0 for all x.

For a rational number x = p/q, with p and q integers and q > 0, equation (3) gives
(ax)q = aqx = ap, which determines ax uniquely. This, with continuity, is enough to
determine ax uniquely for all real x. We defer the proof of existence of ax.

Applications We make some immediate applications of Theorem 4. The method
in each case is to show that a certain function satisfies the axioms equation (1) for ax

for some a, and therefore by the uniqueness in Theorem 4 must coincide with ax.
Our first application is the elementary fact that 1x = 1 for all x. (In detail, define

f(x) = 1 for all x; then f(x+y) = 1 = f(x)f(y), f(0) = 1 = f(1), and the constant
function f is clearly continuous; hence f(x) = 1x.)

Our second application generalizes equation (3).

Theorem 5 Given a > 0, we have azx = (az)x for any real z and x.

Proof Fix a and z and define g(x) = azx for all x. Then g(x+y) = az(x+y) =
azx+zy = azxazy = g(x)g(y), g(0) = a0 = 1, g(1) = az, and g is continuous. Thus g(x)
satisfies the axioms for (az)x and must coincide with it.

Our third application shows that ax is multiplicative in a.

Theorem 6 Given a > 0 and b > 0, we have (ab)x = axbx for all x.
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Proof We put h(x) = axbx for all x. Then h(x+y) = ax+ybx+y = axaybxby =
h(x)h(y), h(0) = 1, h(1) = a1b1 = ab, and h is continuous. Thus h satisfies the
axioms for (ab)x, and so must be (ab)x.

Differentiation In order to differentiate ax, we must take the limit of

ax+h − ax

h
=

axah − ax

h
= ax ah − 1

h

as h→ 0. As this limit is not obvious, we give it a name.

Definition 7 Given a > 0, we define the natural logarithm log a (or ln a) of a as
the limit

log a = ln a = lim
h→0

ah − 1

h
. (8)

When we plug this in, we obtain the answer

d

dx
(ax) = ax log a . (9)

Theorem 10 We have log a > 0 whenever a > 1, log 1 = 0, and log a < 0 whenever
0 < a < 1.

Proof As ax > 0 always, equation (9) shows that ax is an increasing, decreasing,
or constant function according as to whether log a > 0, log a < 0, or log a = 0.
Comparison of a0 = 1 and a1 = a shows which case applies.

The main property of the function log x follows easily from equation (9).

Theorem 11 We have log ab = log a + log b for any a > 0 and b > 0.

Proof When we differentiate in Theorem 6, the product rule gives

(ab)x log ab = ax(log a)bx + axbx log b,

in which we put x = 0.
Similarly, we can differentiate in Theorem 5.

Theorem 12 We have log(az) = z log a for any a > 0 and any z.

Proof Differentiation of azx = (az)x with respect to x gives

azxz log a = (az)x log(az) .

Again we put x = 0.
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