General Exponential Functions

For fixed a, we want the exponential function a” to have at least the properties:

1 _ g (1)

Many other properties follow easily from these. If we put y = —x in (i), we get
1 =a’=a"t"% = ¢%¢*, so that
a ¥ =, in particular,a”t = — = E : (2)
a®*’ ’ at  a
If we iterate (i), we get for any positive integer n
anz — am+x+...+az — axax o CLI — (ax>n (3)

the nth power of ¢” in the ordinary sense. By taking x = 1, we see that a” is the nth
power of a as usually understood.

Existence and uniqueness We cannot expect to define a® for all real x and a.
We note that axiom (i) gives a® = (a®/?)? > 0. Also, equation (2) requires a® # 0, so
that we must have a” > 0. Then (iii) gives a = a' > 0.

THEOREM 4 Given a > 0, there exists a unique function a” that satisfies the axioms
equation (1). It satisfies a® > 0 for all x.

For a rational number x = p/q, with p and ¢ integers and ¢ > 0, equation (3) gives
(a*)? = a9 = aP, which determines a® uniquely. This, with continuity, is enough to
determine a” uniquely for all real . We defer the proof of existence of a”.

Applications We make some immediate applications of Theorem 4. The method
in each case is to show that a certain function satisfies the axioms equation (1) for a”
for some a, and therefore by the uniqueness in Theorem 4 must coincide with a*.
Our first application is the elementary fact that 1 = 1 for all z. (In detail, define
f(z) =1 for all z; then f(x+y) =1= f(x)f(y), f(0) =1= f(1), and the constant
function f is clearly continuous; hence f(x) = 17.)
Our second application generalizes equation (3).

THEOREM 5 Given a > 0, we have a*® = (a*)" for any real z and .
Proof Fix a and z and define g(z) = a*® for all . Then g(x+y) = a*@*¥) =
a*™t = a*®a® = g(x)g(y), 9(0) = a® = 1, g(1) = a*, and g is continuous. Thus g(x)

satisfies the axioms for (a*)* and must coincide with it. 0O
Our third application shows that a” is multiplicative in a.

THEOREM 6 Given a > 0 and b > 0, we have (ab)* = a*b" for all x.
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2 General Exponential Functions

Proof We put h(z) = a*b” for all xz. Then h(zx+y) = a7V = a®a%b"Y =
h(z)h(y), h(0) = 1, h(1) = a'b' = ab, and h is continuous. Thus h satisfies the
axioms for (ab)”, and so must be (ab)*. O

Differentiation In order to differentiate a®, we must take the limit of

z+h T x . h

—a a*a” —a” Lah—1
= = Q

h h h

as h — 0. As this limit is not obvious, we give it a name.

a

DEFINITION 7 Given a > 0, we define the natural logarithm loga (or Ina) of a as
the limit

h—1
logazlna:}Lima

-0 h (8)

When we plug this in, we obtain the answer

d

%(a’”) =a"loga . 9)

THEOREM 10 We have loga > 0 whenever a > 1, log1 = 0, and loga < 0 whenever
0<a<l.

Proof As a® > 0 always, equation (9) shows that a” is an increasing, decreasing,
or constant function according as to whether loga > 0, loga < 0, or loga = 0.
Comparison of a® = 1 and a' = a shows which case applies. [

The main property of the function log x follows easily from equation (9).

THEOREM 11 We have log ab = loga + logb for any a > 0 and b > 0.

Proof When we differentiate in Theorem 6, the product rule gives
(ab)® log ab = a*(log a)b® + a”b” log b,

in which we put z =0. 0O
Similarly, we can differentiate in Theorem 5.

THEOREM 12 We have log(a®) = zloga for any a > 0 and any z.

Proof  Differentiation of a** = (a*)* with respect to x gives
a**zloga = (a®)® log(a”) .
Again we put . =0. [
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