
Function Spaces

In standard terminology,

map = mapping = continuous function.

Given spaces X and Y , denote by Y X the set of all maps X → Y . (If X is a discrete
space with m points and Y has n points, there are nm maps.) We wish to topologize
this set in some reasonable manner. When this is done, it is commonly known as
a function space (although the term mapping space is often used too, and is more
accurate).

Example If X is compact and Y is a metric space, it is reasonable to define the
distance between two maps g: X → Y and h: X → Y as

D(g, h) = max
x∈X

D(g(x), h(x)). (1)

Note that D(g(x), h(x)) is a continuous real-valued function of x, and because X is
compact, the maximum exists. It is readily verified that this defines a metric on Y X ,
known as the metric of uniform convergence.

Generally, suppose that f : W ×X → Y is a map, where we impose no conditions
on the spaces. For each w ∈ W , we can define a map fw: X → Y by fw(x) = f(w, x);
then we construct a function f̂ : W → Y X by f̂(w) = fw. This suggests the following
axiom:

f̂ : W → Y X is continuous if and only if f : W ×X → Y is continuous. (2)

An important special case is when W = Y X and f̂ is the identity map; then f
becomes the evaluation function e: Y X ×X → Y , given by e(g, x) = g(x). It is easy
to recover f from f̂ as

f(w, x) = e(f̂(w), x). (3)

Uniqueness of such a topology on Y X is not difficult to see. (If we have two
candidates, we take W = Y X with either topology and f̂ as the identity map. Then
(2) shows that e is continous with either topology on Y X , also that f̂ is continuous
even when the two copies of Y X have different topologies, in either order. It follows
that the two candidate topologies on Y X coincide.)

The following result is far beyond the scope of this note.

Theorem 4 In general, no topology on Y X satisfies axiom (2) for all W .

Moreover, even when such a topology exists, it may not be the most appropriate
one for a specific context. Still, we can look for situations where there is a topology
that satisfies the axiom.

Theorem 5 If X is compact and Y is a metric space, the topology on Y X defined
by the metric (1) does satisfy axiom (2).

110.413 Intro to Topology JMB File: fnspace, Rev. A; 18 Apr 2003; Page 1



2 Function Spaces

Proof First, assume that f : W ×X → Y is continuous. We have to show that f̂ is
continuous. Take w0 ∈ W and a disk neighborhood N(fw0 , p) of fw0 = f̂(w0) in Y X ;
we seek a neighborhood M of w0 in W such that f̂(M) ⊂ N(fw0 , p). Let P be the
open set consisting of all points (w, x) ∈ W ×X such that D(f(w0, x), f(w, x)) < p;
evidently, w0 ×X ⊂ P . By the tube lemma, since X is assumed compact, there is a
neighborhood M of w0 such that M ×X ⊂ P . Then for any w ∈M ,

D(fw0(x), fw(x)) = D(f(w0, x), f(w, x)) < p for all x ∈ X,

as required.
For the converse, we see from (3) that we need only show that e is continuous. Take

a point (g, x0) ∈ Y X ×X and a disk neighborhood N(y0, p) of y0 = g(x0) in Y . We
need neighborhoods N(g, q) of g in Y X and V of x0 in X such that e(N(g, q)× V ) ⊂
N(y0, p). We take q = p/2 and choose V such that g(V ) ⊂ N(y0, p/2). Then
D(g(x), h(x)) < p/2 for any h ∈ N(g, q) and any x; also, D(y0, g(x)) < p/2 if x ∈ V .
By the triangle inequality, D(y0, e(h, x)) = D(y0, h(x)) < p.

In spite of the previous caution, there is a topology on Y X that works much of
the time in practice (and necessarily includes the above example as a special case).

Definition 6 Given a compact subspace K ⊂ X and an open set U ⊂ Y , denote
by N(K, U) the set of all maps g: X → Y that satisfy g(K) ⊂ U . The compact-open
topology on Y X is defined as having the collection of all such subsets N(K,U) of Y X

as a subbasis.

Lemma 7 If f : W ×X → Y is continuous and we give Y X the compact-open topol-
ogy, then f̂ : W → Y X is continuous.

Proof We have only to prove that f̂−1(N(K,U)) is open. Take any w0 ∈ W such
that f̂(w0) ∈ N(K, U), i. e. w0 × K ⊂ f−1(U). By the tube lemma, there is a
neighborhood M of w0 in W such that M ×K ⊂ f−1(U), i. e. f̂(M) ⊂ N(K, U).

Lemma 8 The evaluation function e: Y X ×X → Y is continuous if we give Y X the
compact-open topology and X is locally compact.

Proof To show that e is continuous at (g, x0) ∈ Y X ×X, take a neighborhood U of
e(g, x0) = g(x0). We seek neighborhoods N of g and V of x0 such that e(N×V ) ⊂ U .
Now g−1(U) is a neighborhood of x0. Since X is locally compact, there is a compact
subspace K ⊂ g−1(U) that contains a neighborhood V of x0. We take N = N(K, U).
Since g(K) ⊂ U , g ∈ N . For any h ∈ N , h(V ) ⊂ h(K) ⊂ U , i. e. e(N×V ) ⊂ U .

Combining these two lemmas with equation (3), we have the main theorem.

Theorem 9 Let X be locally compact and Y and W any spaces. If we give Y X the
compact-open topology, then f : W ×X → Y is continuous if and only if f̂ : W → Y X

is continuous.
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