Function Spaces

In standard terminology,

$$map = mapping = continuous function.$$

Given spaces X and Y, denote by Y^X the set of all maps $X \to Y$. (If X is a discrete space with m points and Y has n points, there are n^m maps.) We wish to topologize this set in some reasonable manner. When this is done, it is commonly known as a *function space* (although the term *mapping space* is often used too, and is more accurate).

Example If X is compact and Y is a metric space, it is reasonable to define the *distance* between two maps $g: X \to Y$ and $h: X \to Y$ as

$$D(g,h) = \max_{x \in X} D(g(x), h(x)).$$

$$\tag{1}$$

Note that D(g(x), h(x)) is a continuous real-valued function of x, and because X is compact, the maximum exists. It is readily verified that this defines a metric on Y^X , known as the *metric of uniform convergence*.

Generally, suppose that $f: W \times X \to Y$ is a map, where we impose no conditions on the spaces. For each $w \in W$, we can define a map $f_w: X \to Y$ by $f_w(x) = f(w, x)$; then we construct a function $\hat{f}: W \to Y^X$ by $\hat{f}(w) = f_w$. This suggests the following axiom:

$$f: W \to Y^X$$
 is continuous if and only if $f: W \times X \to Y$ is continuous. (2)

An important special case is when $W = Y^X$ and \hat{f} is the identity map; then f becomes the *evaluation* function $e: Y^X \times X \to Y$, given by e(g, x) = g(x). It is easy to recover f from \hat{f} as

$$f(w,x) = e(\hat{f}(w),x).$$
(3)

Uniqueness of such a topology on Y^X is not difficult to see. (If we have two candidates, we take $W = Y^X$ with either topology and \hat{f} as the identity map. Then (2) shows that e is continuous with either topology on Y^X , also that \hat{f} is continuous even when the two copies of Y^X have different topologies, in either order. It follows that the two candidate topologies on Y^X coincide.)

The following result is far beyond the scope of this note.

THEOREM 4 In general, no topology on Y^X satisfies axiom (2) for all W.

Moreover, even when such a topology exists, it may not be the most appropriate one for a specific context. Still, we can look for situations where there is a topology that satisfies the axiom.

THEOREM 5 If X is compact and Y is a metric space, the topology on Y^X defined by the metric (1) does satisfy axiom (2).

110.413 Intro to Topology JMB File: fnspace, Rev. A; 18 Apr 2003; Page 1

Proof First, assume that $f: W \times X \to Y$ is continuous. We have to show that \hat{f} is continuous. Take $w_0 \in W$ and a disk neighborhood $N(f_{w_0}, p)$ of $f_{w_0} = \hat{f}(w_0)$ in Y^X ; we seek a neighborhood M of w_0 in W such that $\hat{f}(M) \subset N(f_{w_0}, p)$. Let P be the open set consisting of all points $(w, x) \in W \times X$ such that $D(f(w_0, x), f(w, x)) < p$; evidently, $w_0 \times X \subset P$. By the tube lemma, since X is assumed compact, there is a neighborhood M of w_0 such that $M \times X \subset P$. Then for any $w \in M$,

$$D(f_{w_0}(x), f_w(x)) = D(f(w_0, x), f(w, x)) < p$$
 for all $x \in X$,

as required.

For the converse, we see from (3) that we need only show that e is continuous. Take a point $(g, x_0) \in Y^X \times X$ and a disk neighborhood $N(y_0, p)$ of $y_0 = g(x_0)$ in Y. We need neighborhoods N(g, q) of g in Y^X and V of x_0 in X such that $e(N(g, q) \times V) \subset$ $N(y_0, p)$. We take q = p/2 and choose V such that $g(V) \subset N(y_0, p/2)$. Then D(g(x), h(x)) < p/2 for any $h \in N(g, q)$ and any x; also, $D(y_0, g(x)) < p/2$ if $x \in V$. By the triangle inequality, $D(y_0, e(h, x)) = D(y_0, h(x)) < p$. \Box

In spite of the previous caution, there is a topology on Y^X that works much of the time in practice (and necessarily includes the above example as a special case).

DEFINITION 6 Given a compact subspace $K \subset X$ and an open set $U \subset Y$, denote by N(K, U) the set of all maps $g: X \to Y$ that satisfy $g(K) \subset U$. The *compact-open topology* on Y^X is defined as having the collection of all such subsets N(K, U) of Y^X as a subbasis.

LEMMA 7 If $f: W \times X \to Y$ is continuous and we give Y^X the compact-open topology, then $\hat{f}: W \to Y^X$ is continuous.

Proof We have only to prove that $\hat{f}^{-1}(N(K,U))$ is open. Take any $w_0 \in W$ such that $\hat{f}(w_0) \in N(K,U)$, i.e. $w_0 \times K \subset f^{-1}(U)$. By the tube lemma, there is a neighborhood M of w_0 in W such that $M \times K \subset f^{-1}(U)$, i.e. $\hat{f}(M) \subset N(K,U)$. \Box

LEMMA 8 The evaluation function $e: Y^X \times X \to Y$ is continuous if we give Y^X the compact-open topology and X is locally compact.

Proof To show that *e* is continuous at $(g, x_0) \in Y^X \times X$, take a neighborhood *U* of $e(g, x_0) = g(x_0)$. We seek neighborhoods *N* of *g* and *V* of x_0 such that $e(N \times V) \subset U$. Now $g^{-1}(U)$ is a neighborhood of x_0 . Since *X* is locally compact, there is a compact subspace $K \subset g^{-1}(U)$ that contains a neighborhood *V* of x_0 . We take N = N(K, U). Since $g(K) \subset U$, $g \in N$. For any $h \in N$, $h(V) \subset h(K) \subset U$, i.e. $e(N \times V) \subset U$. □

Combining these two lemmas with equation (3), we have the main theorem.

THEOREM 9 Let X be locally compact and Y and W any spaces. If we give Y^X the compact-open topology, then $f: W \times X \to Y$ is continuous if and only if $\hat{f}: W \to Y^X$ is continuous. \Box