Derivatives

Given a function f, assume that $f^{\prime}(a)=m$, where a is fixed. We put

$$
\epsilon(h)=\frac{f(a+h)-f(a)}{h}-m \quad \text { for } h \neq 0
$$

in order to arrange $\epsilon(h) \rightarrow 0$ as $h \rightarrow 0$. When we multiply up, we get

$$
\begin{equation*}
f(a+h)=f(a)+m h+h \epsilon(h) \tag{1}
\end{equation*}
$$

On the right, we have the constant term $f(a)$, then a constant multiple of h, then an error term which is small compared to h.
Definition 2 The function f is differentiable at a, with derivative $f^{\prime}(a)=m$, if and only if equation (1) holds with $\epsilon(h) \rightarrow 0$ as $h \rightarrow 0$.

In equation (1) we no longer have any division by h, and it remains valid for $h=0$, whatever value we choose for $\epsilon(0)$. The reasonable choice is $\epsilon(0)=0$, to make the function ϵ continuous at $h=0$. This form of the definition leads to cleaner proofs of the standard rules.

Theorem 3 If f is differentiable at a, it is continuous at a.
Proof We must show that $f(a+h) \rightarrow f(a)$ as $h \rightarrow 0$. From equation (1) we have

$$
f(a+h) \rightarrow f(a)+0+0=f(a) \quad \text { as } h \rightarrow 0
$$

Constant multiples If we multiply equation (1) by a constant c, we get

$$
c f(a+h)=c f(a)+c m h+c h \epsilon(h)
$$

to which Definition 2 applies immediately. We write $c m=c f^{\prime}(a)$.
Theorem 4 Given a constant c, if f is differentiable at a, then so is $c f$, with derivative $c f^{\prime}(a)$.

Sums and Differences Assume also that $g^{\prime}(a)=p$, so that like equation (1) we have

$$
\begin{equation*}
g(a+h)=g(a)+p h+h \theta(h) \tag{5}
\end{equation*}
$$

with $\theta(h) \rightarrow 0$ as $h \rightarrow 0$. If we add (or subtract) equations (1) and (5), we see that

$$
f(a+h) \pm g(a+h)=f(a) \pm g(a)+(m \pm p) h+h\{\epsilon(h) \pm \theta(h)\}
$$

which has the form prescribed by Definition 2 for showing that $f \pm g$ is differentiable.
Theorem 6 If f and g are differentiable at a, then so is $f \pm g$, with derivative $f^{\prime}(a) \pm g^{\prime}(a)$.
The Product Rule We can just as well multiply equations (1) and (5). There are nine terms, which we collect as we go,

$$
\begin{aligned}
f(a+h) g(a+h)= & f(a) g(a)+\{f(a) p+m g(a)\} h \\
& h\{f(a) \theta(h)+m p h+m h \theta(h)+\epsilon(h) g(a)+\epsilon(h) p h+h \epsilon(h) \theta(h)\}
\end{aligned}
$$

Again, Definition 2 applies, and we plug in $p=g^{\prime}(a)$ and $m=f^{\prime}(a)$.

Theorem 7 If f and g are differentiable at a, then so is $f g$, with derivative

$$
f^{\prime}(a) g(a)+f(a) g^{\prime}(a)
$$

The Chain Rule Suppose that $u=g(x)$ and $y=f(u)$, so that $y=f(u)=f(g(x))$. Assume first that $g^{\prime}(a)=p$, so that we have by equation (5)

$$
\begin{aligned}
g(a+h) & =g(a)+p h+h \theta(h) \\
& =b+k
\end{aligned}
$$

where we write $b=g(a)$ and $k=h(p+\theta(h))$ in preparation for the next step, which is to expand $f(g(a+h))=f(b+k)$. We note that $k \rightarrow 0$ as $h \rightarrow 0$.

Assume that $f^{\prime}(b)=q$, so that like equation (1),

$$
\begin{aligned}
f(g(a+h))=f(b+k) & =f(b)+q k+k \epsilon(k) \\
& =f(b)+q p h+h\{q \theta(h)+p \epsilon(k)+\theta(h) \epsilon(k)\}
\end{aligned}
$$

where $\epsilon(k) \rightarrow 0$ as $k \rightarrow 0$ and we substituted for k in some places. Once again, Definition 2 applies, and the derivative of $f \circ g$ is $q p$. (It is possible to have $k=0$ exactly, but this is not a problem if we define $\epsilon(0)=0$ as suggested, to make ϵ continous.) We plug in $q=f^{\prime}(b)=f^{\prime}(g(a))$ and $p=g^{\prime}(a)$.

ThEOREM 8 If g is differentiable at a and f is differentiable at $g(a)$, then the composite $f \circ g$ is differentiable at a, with derivative $f^{\prime}(g(a)) g^{\prime}(a)$.

Reciprocals We apply Theorem 8 with $f(u)=1 / u$, for which $f^{\prime}(u)=-1 / u^{2}$.
Theorem 9 If f is differentiable at a, then so is $1 / f$, with derivative $\frac{-f^{\prime}(a)}{f(a)^{2}}$ (provided that $f(a) \neq 0$).

The Quotient Rule

Theorem 10 If u and v are differentiable at a, then so is $\frac{u}{v}$, with derivative

$$
\frac{v(a) u^{\prime}(a)-u(a) v^{\prime}(a)}{v(a)^{2}}
$$

provided $v(a) \neq 0$.
Proof We write $u / v=u .(1 / v)$ and apply the product rule Theorem 7 and Theorem 9, to get

$$
u^{\prime}(a) \frac{1}{v(a)}+u(a) \frac{-v^{\prime}(a)}{v(a)^{2}}
$$

which can be rearranged as stated.

